Supporting Information for

Fe-Catalyzed Fukuyama-type Indole Synthesis Triggered by

Hydrogen Atom Transfer

Tianze Zhang, Min Yu, and Hanmin Huang*

Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, P. R. China. *Corresponding author: <u>hanmin@ustc.edu.cn</u>

CONTENTS

- 1 General experimental details and materials
- 2 Optimization of the reaction conditions
- **3** General procedure for the catalytic reaction
- 4 Experimental characterization data
- **5** References
- 6 NMR Spectra of Materials and Products

1. General experiment details and materials

All non-aqueous reactions and manipulations were using standard Schlenk techniques. All solvents before use were dried by standard methods and stored under nitrogen atmosphere. All reactions were monitored by TLC with silica gel-coated plates. NMR spectra were recorded on BRUKER Avence III 400 MHz spectrometers. Chemical shifts were reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. NMR data are reported as follows: chemical shift, multiplicity, coupling constants (Hz) and integration. Coupling constants (*J*) were reported in Hz and referred to apparent peak multiplications. High resolution mass spectra (HRMS) were recorded on Bruker MicroTOF-QII mass instrument (ESI). All commercially available compounds were purchased from Adamas or Energy Chemical. Flash column chromatography was performed using 200-300 mesh silica gels. Methyl (Me), ethyl (Et), iso-propyl (*i*-Pr), tert-butyl (*t*-Bu), acetylacetone (acac), diisobutyrylmethane (dibm), dipivaloylmethane (dpm), (EtO)₂MeSiH (DEMS), (MeO)₂MeSiH (DMMS), oxalate (ox).

2. Optimization of the reaction conditions

Ethyl (*E*)-3-(2-isocyanophenyl)acrylate **1aa** (40 mg, 0.20 mmol), catalyst (0.01 mmol, 5 mol%), solvent (1.2 mL) and hydrosilane (0.40 mmol, 2.0 equiv.) were added to a 25 mL flamedried Young-type tube. The reaction mixture was stirred at 35 °C for 2 hours, then cooled to room temperature. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 20/1 to 5/1) to give the desired product **2aa**.

OEt NC 1aa	Catalyst, PhSiH₃ i-PrOH, 60 °C, 2 h	OEt NH 2aa
Entry	Catalyst	yield
1	Fe(acac) ₃	25%
2	Fe(acac) ₂	ND
3	Fe(dibm) ₃	59%
4	Fe(dpm) ₃	75%
5	Fe(tfac) ₃	trace
6	Fe(hfac) ₃	trace
7	Co(acac) ₂	21%
8	Co(acac) ₃	21%
9	$Co(dpm)_2$	21%
10	Mn(dpm) ₃	46%
11	$Fe_2(ox)_3$	NR
12^b	Fe(dpm) ₃	82%
13 ^c	Fe(dpm) ₃	81%
$12^{b, d}$	Fe(dpm) ₃	82%

Table S1. Screening of catalysts^a

^{*a*} Reaction conditions: **1** (40 mg, 0.20 mmol), **catalyst** (0.060 mmol, 30 mol%), PhSiH₃ (44 mg, 0.40 mmol), *i*-PrOH (1.2 mL). 60 °C, 2h. Yield determined by GC using *n*-hexadecane as internal standard. ^{*b*} Used 5 mol% Fe(dpm)₃. ^{*c*} Used 2 mol% Fe(dpm)₃. ^{*d*} Reaction performed under N₂ atmosphere.

Table S2. Screening of solvents^a

O OEt NC 1aa	Fe(dpm) ₃ , PhSiH ₃ Solvent, 60 °C, 2 h	O O O Et Zaa
Entry	Solvent	yield
1	МеОН	trace
2	EtOH	56%
3	<i>i</i> -PrOH	82%
4	<i>n</i> -BuOH	38%
5	t-BuOH	77%
6	THF	NR
7	DCE	NR
8	THF/ <i>i</i> -PrOH (1:1)	57%
9	DCE/ <i>i</i> -PrOH (1:1)	82%

^{*a*} Reaction conditions: **1** (40 mg, 0.20 mmol), $Fe(dpm)_3$ (6 mg, 0.02 mmol, 5 mol%), $PhSiH_3$ (44 mg, 0.40 mmol), **solvent** (1.2 mL). 60 °C, 2h. Yield determined by GC using *n*-hexadecane as internal standard.

Table S3. Screening of temperature^{*a*}

O NC 1aa	`OEt Fe(dpm) ₃ , PhSiH ₃ <i>i</i> -PrOH, T °C, 2 h	OEt NH 2aa
Entry	Т	yield ^a
1	rt (23 °C)	51%
2	35 °C	82%
3	50 °C	77%
4	60 °C	82%
5	70 °C	80%

^{*a*} Reaction conditions: **1** (40 mg, 0.20 mmol), $Fe(dpm)_3$ (6 mg, 0.02 mmol, 5 mol%), $PhSiH_3$ (44 mg, 0.40 mmol), *i*-PrOH (1.2 mL). **T** °C, 2h. Yield determined by GC using *n*-hexadecane as internal standard.

Table S4. Screening of hydrosilanes^a

OEt NC 1aa	Fe(dpm) ₃ , [Si-H] <i>i</i> -PrOH, 35 °C, 2 h	OEt NH 2aa
Entry	Hydrosilane	yield ^a
1	PhSiH ₃	82%
2^b	Ph_2SiH_2	80%
3^b	Et ₃ SiH	12%
4	(EtO) ₃ SiH	28%
5^b	DMMS	79%
6^b	DEMS	79%
7^c	PhSiH ₃	77%

^{*a*} Reaction conditions: **1** (40 mg, 0.20 mmol), $Fe(dpm)_3$ (6 mg, 0.02 mmol, 5 mol%), $PhSiH_3$ (44 mg, 0.40 mmol), *i*-PrOH (1.2 mL). 35 °C, 2h. Yield determined by GC using *n*-hexadecane as internal standard. ^{*b*} Reaction at 60 °C for 5 h. ^{*c*} Used 1.5 equiv. PhSiH₃.

3. General procedure for the catalytic reaction

3.1. Synthesis of catalyst Fe(dpm)3:

To a biphasic mixture of 2,2,6,6-tetramethyl-3,5-heptanedionate (3.1 g, 16.6 mmol, 3.0 equiv.) and NaOAc•3H₂O (2.3 g, 16.6 mmol, 3.0 equiv.) in an aqueous solution of EtOH (1:1 EtOH:H₂O, 50 mL) was added anhydrous FeCl₃ (0.89 g, 5.6 mmol, 1.0 equiv.). A red slurry formed and the reaction mixture was heated at 60 °C with stirring for 2 hours, at this time the orange precipitate was formed. The slurry was cooled to room temperature, then cooled in refrigerator (-18 °C) for 2 hours, and filtered to give an orange powder. The orange powder was rinsed with EtOH (10 mL) and H₂O (10 mL), collected, and dried under high vacuum.

Recrystallization: The above obtained orange solid was dissolved in 50 mL of hexane to give a red, homogenous solution. Filtered the hexane solution through a filter paper and the resulting filtrate was concentrated under reduced pressure to afford pure Fe(dpm)₃ as a red powder (2.8 g) in 83% yield.

3.2. General procedure for the catalytic reaction

Ethyl (*E*)-3-(2-isocyanophenyl)acrylate **1** (100 mg, 0.50 mmol), Fe(dpm)₃ (16.0 mg, 5 mol%), *i*-PrOH (2 mL), DCE (1 mL) and PhSiH₃ (108 mg, 1.0 mmol, 2.0 equiv.) were added to a 25 mL flame-dried Young-type tube. The reaction mixture was stirred at 35 °C for 2 hours, then cooled to room temperature. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 20/1 to 5/1) to give the desired product **2**.

4. Experimental characterization data

4.1. Preparation and spectral data of isonitrile substrates

Procedure A: Synthesis of substrate 1aa~1ag, 1aj, 1ak, 1ba~1da, 1fa~1ja, 1la~1pa

Step 1.

The starting aniline (15 mmol, 1.0 equiv.), $Pd(OAc)_2$ (35 mg, 1 mol%), $P(o-Tol)_3$ (0.40 g, 8 mol%) were added to a 100 mL flame-dried Young-type tube containing a stir bar. The tube was evacuated and back-filled with nitrogen for three times, then olefin (18 mmol, 1.2 equiv.), anhydrous acetonitrile (20 mL) and triethylamine (3 mL) were added. The resulting mixture was stirred at 120 °C overnight. After cooling to room temperature, the reaction mixture was poured into water and then extracted with ethyl acetate (3 × 30 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography on silica gel to afford the corresponding 2-alkenylarylaniline as a bright yellow solid (2.4 g, 84% yield).

1aa~1ag, **1aj**, **1ak**, **1da**, **1ga**, **1ha**, **1ia** and **1na** were obtained from the corresponding 2-iodoaniline and olefin.

1ba, **1ca**, **1fa**, **1ja**, **1la**, **1ma**, **1oa** and **1pa** were obtained from the corresponding 2bromoaniline and olefin.

Step 2.

Acetic anhydride (1.5 equiv.) and formic acid (1.6 equiv.) were stirred at 50 $\,^{\circ}$ C in a sealed tube for 2 hours. The resulting mixed anhydride was cooled to room temperature and was added dropwise to a stirred solution of 2-alkenyl aniline (8 mmol, 1.0 equiv.) in anhydrous THF (16 mL). The solution was stirred at room temperature for 30 min. The reaction mixture was quenched by saturated aqueous solution of NaHCO₃ (50 mL, Caution! Gas evolution) and then the organic layer was extracted with ethyl acetate (3 \times 20 mL). The combined organic layer was washed with aqueous solution of NaHCO₃ and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude product was utilized in the subsequent step without further purification.

Step 3.

The crude formamide was mixed with anhydrous THF (16 mL) in a dry reaction flask under nitrogen. Anhydrous triethylamine (6.0 equiv.) was added, and the mixture (solution or suspension) was cooled to 0 %. Then, neat POCl₃ (2.0 equiv.) was added dropwise while

maintaining the reaction temperature at 0 °C. The mixture was stirred at 0 °C for an additional 2 hours, and then quenched with saturated aqueous solution of NaHCO₃ (50 mL, Caution! Gas evolution) at 0 °C. After the gas evolution subsided, the mixture was extracted with ethyl acetate (3×30 mL), washed with saturated aqueous NaHCO₃, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography on silica gel to afford the corresponding 2-alkenylarylisocyanide (1.2 g, 75% yield).

Procedure B: Synthesis of substrate 1ea, 1ka

Step 1.

The wittig reagent (18 mmol, 1.2 equiv.) was added to a solution of 2-nitrobenzaldehyde (15 mmol, 1.0 equiv.) in DCM (35 mL). The mixture was stir at room temperature for 1 hour, and then quenched with H₂O. The mixture was extracted with DCM (3×20 mL) and the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to afford the corresponding 2-nitrocinnamate as a white solid (4.0 g, 89% yield).

Step 2.

Iron powder (60 mmol, 6.0 equiv.) and AcOH (10 mL) were added to a solution of nitroaromatic substrate (10 mmol, 1.0 equiv.) in EtOH (10 mL) and water (5 mL). The mixture was heated to 60 $^{\circ}$ C with vigorous stirring for 1 hour. The reaction mixture was cooled to room temperature and filtered through a Celite pad, and the filtrate was extracted with ethyl acetate (3 × 20 mL). The combined organic layer was washed with aqueous solution of NaHCO₃ and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel to afford the corresponding 2-alkenylarylaniline as a bright yellow solid (2.3 g, 78% yield).

Step 3.

Acetic anhydride (1.5 equiv.) and formic acid (1.6 equiv.) were stirred at 50 $\,^{\circ}$ C in a sealed tube for 2 hours. The resulting mixed anhydride was cooled to room temperature and was added dropwise to a stirred solution of 2-alkenyl aniline (8 mmol, 1.0 equiv.) in anhydrous THF (16 mL). The solution was stirred at room temperature for 30 min. The reaction mixture was quenched by saturated aqueous solution of NaHCO₃ (50 mL, Caution! Gas evolution) and then

the organic layer was extracted with ethyl acetate (3 \times 20 mL). The combined organic layer was washed with aqueous solution of NaHCO₃ and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude product was utilized in the subsequent step without further purification.

Step 4.

The crude formamide was mixed with anhydrous THF (16 mL) in a dry reaction flask under nitrogen. Anhydrous triethylamine (6.0 equiv.) was added, and the mixture (solution or suspension) was cooled to 0 %. Then, neat POCl₃ (2.0 equiv.) was added dropwise while maintaining the reaction temperature at 0 %. The mixture was stirred at 0 % for an additional 2 hours, and then quenched with saturated aqueous solution of NaHCO₃ (50 mL, Caution! Gas evolution) at 0 %. After the gas evolution subsided, the mixture was extracted with ethyl acetate (3 × 30 mL), washed with saturated aqueous NaHCO₃, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography on silica gel to afford the corresponding 2-alkenylarylisocyanide (1.9 g, 80% yield in two steps).

Procedure C: Synthesis of substrate 1ah, 1ai

Step 1.

Following a modification of the method of Patti¹, to a dry flask was added 2nitrobenzaldehyde (16 mmol, 1.0 equiv.) under N₂ atmosphere. Then ketone (9.6 mmol, 1.2 equiv.), ZrCl₄ (1.5 g, 40 mol%) and anyhydrous DCE (80 mL) were added. The mixture was maintained at 60 °C for 20 h. The reaction mixture was quenched with H₂O and then extracted with DCM (3 \times 20 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to afford the corresponding 2-nitrochalcone.

Step 2.

Iron powder (60 mmol, 6.0 equiv.) and AcOH (10 mL) were added to a solution of nitroaromatic substrate (10 mmol, 1.0 equiv.) in EtOH (10 mL) and water (5 mL). The mixture was heated to 60 °C with vigorous stirring for 1 hour. The reaction mixture was cooled to room temperature and filtered through a Celite pad, and the filtrate was extracted with ethyl acetate (3×20 mL). The combined organic layer was washed with aqueous solution of NaHCO₃ and

brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel to afford the corresponding 2-alkenylarylaniline (1.7 g, 56% yield in two steps).

Step 3.

Acetic anhydride (1.5 equiv.) and formic acid (1.6 equiv.) were stirred at 50 $\,^{\circ}$ C in a sealed tube for 2 hours. The resulting mixed anhydride was cooled to room temperature and was added dropwise to a stirred solution of 2-alkenyl aniline (8 mmol, 1.0 equiv.) in anhydrous THF (16 mL). The solution was stirred at room temperature for 30 min. The reaction mixture was quenched by saturated aqueous solution of NaHCO₃ (50 mL, Caution! Gas evolution) and then extracted with ethyl acetate (3 × 20 mL). The combined organic layer was washed with aqueous solution of NaHCO₃ and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude product was utilized in the subsequent step without further purification.

Step 4.

The crude formamide was mixed with anhydrous THF (16 mL) in a dry reaction flask under nitrogen. Anhydrous triethylamine (6.0 equiv.) was added, and the mixture (solution or suspension) was cooled to 0 %. Then, neat POCl₃ (2.0 equiv.) was added dropwise while maintaining the reaction temperature at 0 %. The mixture was stirred at 0 % for an additional 2 hours, and then quenched with saturated aqueous solution of NaHCO₃ (50 mL, Caution! Gas evolution) at 0 %. After the gas evolution subsided, the mixture was extracted with ethyl acetate (3 × 30 mL), washed with saturated aqueous NaHCO₃, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography on silica gel to afford the corresponding 2-alkenylarylisocyanide (1.2 g, 76% yield in two steps).

Procedure D: Synthesis of substrate 1al

Step 1.

To a dry flask was added 2-nitrobenzaldehyde (20 mmol, 2.0 equiv.), NaOH (80 mg, 10 mol%) and K₂CO₃ (0.28 g, 10 mol%). Then acetone (0.70 g, 1.2 equiv.) was added dropwise while maintaining the reaction temperature at 0 %, and the mixture was stirred at room temperature for additional 30 minutes to give a suspension. The precipitate was filtered, washed

with a cold mixture of $EtOH/H_2O$ to afford the dibenzalacetone derivative as a green yellow solid (1.3 g, 40% yield).

Step 2.

Iron powder (50 mmol, 12.0 equiv.) and AcOH (10 mL) were added to a solution of nitroaromatic substrate (4 mmol, 1.0 equiv.) in EtOH (10 mL) and water (5 mL). The mixture was heated to 60 $^{\circ}$ C with vigorous stirring for 1 hour. The reaction mixture was cooled to room temperature and filtered through a Celite pad, and the filtrate was extracted with ethyl acetate (3 × 20 mL). The combined organic layer was washed with aqueous solution of NaHCO₃ and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel to afford the corresponding product (0.5 g, 47% yield). *Step 3*.

Acetic anhydride (3.0 equiv.) and formic acid (3.2 equiv.) were stirred at 50 $^{\circ}$ C in a sealed tube for 2 hours. The resulting mixed anhydride was cooled to room temperature and was added dropwise to a stirred solution of 2-alkenyl aniline (2 mmol, 1.0 equiv.) in anhydrous THF (16 mL). The solution was stirred at room temperature for 30 min. The reaction mixture was quenched by saturated aqueous solution of NaHCO₃ (50 mL, Caution! Gas evolution) and then the organic layer was extracted with ethyl acetate (3 × 20 mL). The combined organic layer was washed with aqueous solution of NaHCO₃ and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude product was utilized in the subsequent step without further purification.

Step 4.

The crude formamide was mixed with anhydrous THF (16 mL) in a dry reaction flask under nitrogen. Anhydrous triethylamine (12.0 equiv.) was added, and the mixture (solution or suspension) was cooled to 0 %. Then, neat POCl₃ (4.0 equiv.) was added dropwise while maintaining the reaction temperature at 0 %. The mixture was stirred at 0 % for an additional 2 hours, and then quenched with saturated aqueous solution of NaHCO₃ (50 mL, Caution! Gas evolution) at 0 %. After the gas evolution subsided, the mixture was extracted with ethyl acetate (3 × 30 mL), washed with saturated aqueous NaHCO₃, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography on silica gel to afford the corresponding product (0.4 g, 74% yield in two steps).

4.2. Substrates characterization

Ethyl (E)-3-(2-isocyanophenyl)acrylate (1aa)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a pale yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, J = 16.0 Hz, 1H), 7.70-7.64 (m, 1H), 7.47-7.39 (m, 3H), 6.54 (d, J = 16.0 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 168.8, 166.1, 137.7, 130.9,

130.8, 129.7, 127.8, 127.0, 126.1, 122.5, 61.0, 14.4; **HRMS** (ESI) calcd for $C_{12}H_{12}NO_2$ [M+H]⁺: 202.0863, found: 202.0852.

Methyl (E)-3-(2-isocyanophenyl)acrylate (1ab)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 16.0 Hz, 1H), 7.70-7.65 (m, 1H), 7.48-7.39 (m, 3H), 6.55 (d, J = 16.1 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 166.5, 138.0, 130.9, 129.8, 127.9, 127.0, 126.1, 122.1,

52.2; **HRMS** (ESI) calcd for $C_{11}H_{10}NO_2$ [M+H]⁺: 188.0706, found: 188.0701.

Tert-butyl (*E*)-3-(2-isocyanophenyl)acrylate (1ac)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 16.0 Hz, 1H), 7.69-7.63 (m, 1H), 7.46-7.36 (m, 3H), 6.47 (d, J = 16.0 Hz, 1H), 1.55 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 165.4, 136.8, 131.1, 130.5, 129.7, 127.8, 126.9, 126.0,

124.4, 81.3, 28.2; **HRMS** (ESI) calcd for $C_{14}H_{16}NO_2$ [M+H]⁺: 230.1176, found: 230.1170.

(E)-3-(2-isocyanophenyl)-N,N-dimethylacrylamide (1ad)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (d, *J* = 15.6 Hz, 1H), 7.65-7.59 (m, 1H), 7.46-7.34 (m, 3H), 7.06 (d, *J* = 15.6 Hz, 1H), 3.19 (s, 3H), 3.09 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 168.7, 166.1, 135.8, 131.9, 129.9, 129.6, 128.0, 127.9, 125.5,

122.6, 37.7, 36.0; **HRMS** (ESI) calcd for $C_{12}H_{13}N_2O$ [M+H]⁺: 201.1022, found: 201.1016.

(E)-1-isocyano-2-(2-(phenylsulfonyl)vinyl)benzene (1ae)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03-7.90 (m, 3H), 7.70-7.64 (m, 1H), 7.62-7.56 (m, 3H), 7.50-7.41 (m, 3H), 7.05 (d, *J* = 15.5 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.8, 139.9, 135.8, 133.9, 131.8, 129.9, 129.6, 128.7, 128.08, 128.06, 127.8, 126.3;

HRMS (ESI) calcd for C₁₅H₁₁NO₂SNa [M+Na]⁺: 292.0403, found: 292.0397.

(E)-1-isocyano-2-(2-(phenylsulfonyl)vinyl)benzene (1af)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.79-7.62 (m, 2H), 7.49-7.38 (m, 3H), 6.45 (t, *J* = 17.3 Hz, 1H), 4.25-4.14 (m, 4H), 1.39 (t, *J* = 7.1 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 168.9, 141.2 (d, *J*_{C-P} = 7 Hz), 131.2 (d, *J*_{C-P} = 24 Hz), 130.8, 129.8, 127.8

(d, $J_{C-P} = 1$ Hz), 126.9 (d, $J_{C-P} = 1$ Hz), 125.8, 119.5 (d, $J_{C-P} = 191$ Hz), 62.4 (d, $J_{C-P} = 6$ Hz), 16.5 (d, $J_{C-P} = 6$ Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 17.1; **HRMS** (ESI) calcd for C₁₃H₁₆NO₃PNa [M+Na]⁺: 288.0760, found: 288.0758.

Ethyl (E)-3-(2-isocyanophenyl)-2-methylacrylate (1ag)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a pale yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, *J* = 1.7 Hz, 1H), 7.48-7.34 (m, 4H), 4.30 (q, *J* = 7.1 Hz, 2H), 2.03 (d, *J* = 1.6 Hz, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 167.7, 167.5, 133.1, 133.0, 132.8, 130.0, 129.2, 129.1,

127.3, 126.0, 61.3, 14.5, 14.4; **HRMS** (ESI) calcd for $C_{13}H_{14}NO_2$ [M+H]⁺: 216.1019, found: 216.1013.

(E)-3-(2-isocyanophenyl)-1-phenylprop-2-en-1-one (1ah)

The title compound was prepared according to procedure **C** and purified by column chromatography to give a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.08-8.01 (m, 3H), 7.82-7.76 (m, 1H), 7.67-7.59 (m, 2H), 7.56 -7.42 (m, 5H); ¹³**C NMR** (100 MHz, CDCl₃) δ 190.2, 169.1, 138.1, 137.7, 133.3, 131.4, 130.9, 129.8, 128.9, 128.8, 128.1, 127.7, 126.2; **HRMS**

(ESI) calcd for $C_{16}H_{11}NONa$ [M+Na]⁺: 256.0733, found: 256.0725.

(E)-1-(2-bromophenyl)-3-(2-isocyanophenyl)prop-2-en-1-one (1ai)

The title compound was prepared according to procedure **C** and purified by column chromatography to give a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.80-7.70 (m, 2H), 7.66 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.51-7.40 (m, 5H), 7.36 (td, *J* = 7.6, 2.1 Hz, 1H), 7.18 (d, *J* = 16.1 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 194.1, 169.2, 140.5, 139.3, 133.6, 132.0, 131.3,

130.9, 129.8, 129.5, 127.8, 127.6, 127.2, 126.5, 119.6; **HRMS** (ESI) calcd for C₁₆H₁₀BrNONa [M+Na]⁺: 333.9838, found: 333.9830.

(E)-3-(2-isocyanophenyl)acrylonitrile (1aj)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (d, *J* = 16.6 Hz, 1H), 7.65-7.59 (m, 1H), 7.54-7.45 (m, 3H), 6.05 (d, *J* = 16.7 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.7, 144.1, 131.9, 130.0, 129.7, 128.0, 126.2, 125.7, 117.3, 100.7; **HRMS** (ESI) calcd for C₁₀H₇N₂

[M+H]⁺: 155.0609, found: 155.0592.

(*E*)-2-(2-isocyanostyryl)pyridine (1ak)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.87 (d, J = 16.1 Hz, 1H), 7.79-7.74 (m, 1H), 7.69 (td, J = 7.7, 1.8 Hz, 1H), 7.50 (dd, J = 8.0, 1.3 Hz, 1H), 7.44-7.37 (m, 2H), 7.33-7.25 (m, 2H), 7.19 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H); ¹³**C**

NMR (100 MHz, CDCl₃) 167.5, 154.8, 149.8, 136.6, 133.0, 132.3, 129.5, 128.7, 127.5, 126.2, 126.1, 125.2, 122.8, 122.1; **HRMS** (ESI) calcd for C₁₄H₁₀N₂Na [M+Na]⁺: 229.0736, found: 229.0732.

(1*E*,4*E*)-1,5-bis(2-isocyanophenyl)penta-1,4-dien-3-one (1al)

The title compound was prepared according to procedure **D** and purified by column chromatography to give a green solid. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 16.1 Hz, 2H), 7.82-7.75 (m, 2H), 7.53-7.45 (m, 6H), 7.21 (d, *J* = 16.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 169.1, 137.1, 131.2, 131.0, 129.9, 128.5, 128.0, 127.3,

126.5; **HRMS** (ESI) calcd for $C_{19}H_{12}N_2ONa$ [M+Na]⁺: 307.0842, found: 307.0840.

Ethyl (E)-3-(2-isocyano-5-methylphenyl)acrylate (1ba)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a pale yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, *J* = 16.1 Hz, 1H), 7.46 (s, 1H), 7.34-7.29 (m, 1H), 7.24-7.17 (m, 1H), 6.52 (d, *J* = 16.0 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 2.40 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃)

δ 168.1, 166.2, 140.1, 137.9, 131.6, 130.6, 127.6, 127.4, 123.7, 122.2, 61.0, 21.5, 14.4; **HRMS** (ESI) calcd for C₁₃H₁₄NO₂ [M+H]⁺: 216.1019, found: 216.1013.

Ethyl (E)-3-(5-fluoro-2-isocyanophenyl)acrylate (1ca)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a white solid. ¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (dd, *J* = 16.0, 1.4 Hz, 1H), 7.45 (dd, *J* = 8.8, 5.0 Hz, 1H), 7.35 (dd, *J* = 9.0, 2.8 Hz, 1H), 7.13 (ddd, *J* = 8.8, 7.4, 2.8 Hz, 1H), 6.52 (d, *J* = 16.0 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H);

¹³**C NMR** (100 MHz, CDCl₃) δ 169.1, 165.7, 162.3 (d, $J_{C-F} = 252$ Hz), 136.7 (d, $J_{C-F} = 2$ Hz), 133.4 (d, $J_{C-F} = 9$ Hz), 129.8 (d, $J_{C-F} = 9$ Hz), 123.8, 122.4, 118.1 (d, $J_{C-F} = 24$ Hz), 113.7 (d, $J_{C-F} = 24$ Hz), 61.2, 14.4; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -107.8; **HRMS** (ESI) calcd for C₁₂H₁₀FNO₂Na [M+Na]⁺: 242.0588, found: 242.0579.

Ethyl (E)-3-(5-chloro-2-isocyanophenyl)acrylate (1da)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a pale yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, *J* = 16.0 Hz, 1H), 7.64 (s, 1H), 7.39 (s, 2H), 6.54 (d, *J* = 16.0 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 170.3, 165.7, 136.5, 135.9, 132.6,

130.8, 129.0, 127.1, 124.4, 123.9, 61.2, 14.4; **HRMS** (ESI) calcd for C₁₂H₁₀ClNO₂Na [M+Na]⁺: 258.0292, found: 258.0281.

Ethyl (E)-3-(5-bromo-2-isocyanophenyl)acrylate (1ea)

The title compound was prepared according to procedure **B** and purified by column chromatography to give a pale yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, *J* = 16.0 Hz, 1H), 7.80 (d, *J* = 2.1 Hz, 1H), 7.54 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.32 (d, *J* = 8.5 Hz, 1H), 6.53 (d, *J* = 16.0 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100

MHz, CDCl₃) δ 170.4, 165.7, 136.4, 133.7, 132.8, 130.0, 129.1, 124.9, 123.9, 123.8, 61.2, 14.4; **HRMS** (ESI) calcd for C₁₂H₁₁BrNO₂ [M+H]⁺: 279.9968, found: 279.9953.

Ethyl (E)-3-(2-chloro-6-isocyanophenyl)acrylate (1fa)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a pale yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, *J* = 16.4 Hz, 1H), 7.50 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.40 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.32 (t, *J* = 8.0 Hz, 1H), 6.72 (d, *J* = 16.4 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100

MHz, CDCl₃) δ 170.1, 166.0, 135.8, 135.4, 131.3, 130.1, 130.1, 127.7, 126.9, 126.1, 61.2, 14.3; **HRMS** (ESI) calcd for C₁₂H₁₁ClNO₂ [M+H]⁺: 236.0473, found: 236.0460.

Ethyl (E)-3-(4-chloro-2-isocyanophenyl)acrylate (1ga)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a pale yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, *J* = 16.0 Hz, 1H), 7.61 (d, *J* = 8.5 Hz, 1H), 7.48-7.39 (m, 2H), 6.52 (d, *J* = 16.1 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 170.5, 165.9, 136.6,

136.4, 130.3, 129.6, 128.1, 127.8, 126.7, 123.0, 61.2, 14.4; **HRMS** (ESI) calcd for $C_{12}H_{11}CINO_2 [M+H]^+$: 236.0473, found: 236.0461.

Ethyl (E)-3-(3,5-dichloro-2-isocyanophenyl)acrylate (1ha)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a white solid. ¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 16.0 Hz, 1H), 7.63-7.48 (m, 2H), 6.54 (d, *J* = 16.0 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 175.2, 165.4, 136.2, 135.8, 134.1, 133.1, 130.8, 125.4, 125.0, 123.5, 61.4, 14.3; **HRMS** (ESI) calcd for C₁₂H₁₀Cl₂NO₂

[M+H]⁺: 270.0083, found: 270.0073.

Ethyl (E)-3-(2-isocyano-5-(trifluoromethyl)phenyl)acrylate (1ia)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.01-7.90 (m, 2H), 7.68 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.58 (d, *J* = 8.3 Hz, 1H), 6.63 (d, *J* = 16.0 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 1.37 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 165.6, 136.3,

131.98 (q, $J_{C-F} = 34$ Hz), 131.96, 128.5, 127.4 (q, $J_{C-F} = 3$ Hz), 124.5, 124.3 (q, $J_{C-F} = 4$ Hz), 123.0 (q, $J_{C-F} = 273$ Hz), 61.3, 14.4; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.1; **HRMS** (ESI) calcd for C₁₃H₁₁F₃NO₂ [M+H]⁺: 270.0736, found: 270.0725.

Ethyl (E)-3-(2-isocyano-4-(trifluoromethyl)phenyl)acrylate (1ja)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a pale yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, J = 16.0 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.73-7.66 (m, 2H), 6.62 (d, J = 16.0 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 171.2, 165.5,

136.3, 134.4, 132.8 (q, $J_{C-F} = 34$ Hz), 127.9, 126.4 (q, $J_{C-F} = 4$ Hz), 126.3, 125.05, 125.01 (q, $J_{C-F} = 4$ Hz), 122.8 (d, $J_{C-F} = 273$ Hz), 61.4, 14.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2; HRMS (ESI) calcd for C₁₃H₁₁F₃NO₂ [M+H]⁺: 270.0736, found: 270.0728.

Ethyl (E)-3-(2-isocyano-5-methoxyphenyl)acrylate (1ka)

The title compound was prepared according to procedure **B** and purified by column chromatography to give a white solid. ¹**H** NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 16.0 Hz, 1H), 7.36 (d, *J* = 8.8 Hz, 1H), 7.10 (d, *J* = 2.8 Hz, 1H), 6.92 (dd, *J* = 8.8, 2.7 Hz, 1H), 6.51 (d, *J* = 16.0 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 3.86 (s, 3H), 1.36 (t, *J* = 7.1

Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 166.1, 160.0, 137.9, 132.2, 129.1, 122.6, 119.3, 116.7, 111.4, 61.0, 55.8, 14.4; HRMS (ESI) calcd for C₁₃H₁₄NO₃ [M+H]⁺: 232.0968, found: 232.0960.

Ethyl (*E*)-3-(2-isocyano-4-methoxyphenyl)acrylate (11a)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a white solid. ¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 15.9 Hz, 1H), 7.59 (d, *J* = 8.8 Hz, 1H), 6.97 (ddd, *J* = 8.9, 2.6, 0.6 Hz, 1H), 6.92 (d, *J* = 2.6 Hz, 1H), 6.42 (d, *J* = 16.0 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.85 (s, 3H), 1.35 (t, *J*

= 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 166.5, 161.3, 137.5, 128.2, 127.2, 123.4, 120.0, 116.7, 112.4, 60.8, 55.9, 14.4; **HRMS** (ESI) calcd for C₁₃H₁₄NO₃ [M+H]⁺: 232.0968, found: 232.0957.

Ethyl (E)-3-(2-isocyano-5-nitrophenyl)acrylate (1ma)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.56 (d, *J* = 2.5 Hz, 1H), 8.29 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.96 (d, *J* = 16.0 Hz, 1H), 7.66 (d, *J* = 8.7 Hz, 1H), 6.71 (d, *J* = 16.0 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz,

CDCl₃) δ 174.1, 165.3, 147.8, 135.5, 132.8, 130.1, 129.1, 125.5, 125.2, 122.3, 61.5, 14.3; **HRMS** (ESI) calcd for C₁₂H₁₀N₂O₄Na [M+Na]⁺: 269.0533, found: 269.0525.

Ethyl (E)-3-(5-cyano-2-isocyanophenyl)acrylate (1na)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 1.7 Hz, 1H), 7.91 (d, J = 16.1 Hz, 1H), 7.71 (dd, J = 8.2, 1.8 Hz, 1H), 7.58 (d, J = 8.3 Hz, 1H), 6.60 (d, J = 16.1 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz,

CDCl₃) δ 173.4, 165.3, 135.5, 133.6, 132.5, 131.1, 128.8, 125.1, 116.9, 114.1, 61.4, 14.3; **HRMS** (ESI) calcd for C₁₃H₁₀N₂O₂Na [M+Na]⁺: 249.0634, found: 249.0626.

Methyl (E)-3-(3-ethoxy-3-oxoprop-1-en-1-yl)-4-isocyanobenzoate (10a)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a white solid. ¹**H** NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 1.8 Hz, 1H), 8.07 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.97 (d, *J* = 16.0 Hz, 1H), 7.52 (d, *J* = 8.3 Hz, 1H), 6.65 (d, *J* = 16.0 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 3.97 (s, 3H), 1.37 (t, *J* =

7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 165.8, 165.2, 136.8, 131.5, 131.4, 131.3, 129.1, 128.4, 128.0, 123.8, 61.2, 52.9, 14.4; HRMS (ESI) calcd for C₁₄H₁₄NO₄ [M+H]⁺: 260.0917, found: 260.0905.

Methyl (E)-3-(3-ethoxy-3-oxoprop-1-en-1-yl)-2-isocyanobenzoate (1pa)

The title compound was prepared according to procedure **A** and purified by column chromatography to give a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 16.0 Hz, 1H), 8.00 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.85 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.51 (t, *J* = 7.9 Hz, 1H), 6.54 (d, *J* = 16.0 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 4.00 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 174.5, 165.8, 164.5, 137.4, 132.9, 132.4, 130.4, 129.2, 128.6,

124.6, 123.8, 61.2, 53.0, 14.4; **HRMS** (ESI) calcd for $C_{14}H_{13}NO_4Na$ [M+Na]⁺: 282.0737, found: 282.0729.

4.3 Products Characterization

Ethyl 2-(1*H*-indol-3-yl)acetate (2aa)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 80 mg, 81% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.61 (dd, *J* = 8.2, 0.9 Hz, 1H), 7.28 (dt, *J* = 8.1, 1.0 Hz, 1H), 7.21-7.09 (m, 2H), 7.05 (d, *J* = 2.5 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.76 (d, *J* = 1.0 Hz, 2H), 1.25 (t, *J* = 7.1

Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 136.2, 127.3, 123.3, 122.2, 119.7, 118.9, 111.3, 108.4, 60.9, 31.5, 14.3; **HRMS** (ESI) calcd for C₁₂H₁₃NO₂Na [M+Na]⁺: 226.0838, found: 226.0833.

Methyl 2-(1*H*-indol-3-yl)acetate (2ab)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 67 mg, 76% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.61 (dd, *J* = 7.8 Hz, 0.4 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.22-7.11 (m, 2H), 7.09 (d, *J* = 2.3 Hz, 1H), 3.78 (d, *J* = 0.9 Hz, 2H), 3.70 (s, 3H); ¹³C NMR (100 MHz,

 $CDCl_3$) δ 172.8, 136.2, 127.3, 123.2, 122.3, 119.8, 118.9, 111.3, 108.4, 52.1, 31.3; **HRMS** (ESI) calcd for $C_{11}H_{11}NO_2Na$ [M+Na]⁺: 212.0682, found: 212.0680.

Tert-butyl 2-(1*H*-indol-3-yl)acetate (2ac)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 84 mg, 75% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.62 (d, *J* = 7.7 Hz, 1H), 7.31 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.21-7.06 (m, 3H), 3.68 (d, *J* = 0.8 Hz, 2H), 1.46 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃) δ 171.7, 136.2, 127.4,

123.1, 122.1, 119.6, 119.1, 111.3, 109.1, 80.8, 32.8, 28.2; **HRMS** (ESI) calcd for C₁₄H₁₇NO₂Na [M+Na]⁺: 254.1151, found: 254.1149.

2-(1*H*-indol-3-yl)-*N*,*N*-dimethylacetamide (2ad)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 70 mg, 74% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.78 (s, 1H), 7.62 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.29 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.18-7.06 (m, 2H), 6.97-6.91 (m, 1H), 3.81 (d, *J* = 1.0 Hz, 2H), 2.99 (s, 3H), 2.97 (s, 3H); ¹³**C NMR** (100

MHz, CDCl₃) δ 171.9, 136.3, 127.2, 122.9, 122.0, 119.4, 118.7, 111.4, 108.8, 37.9, 35.8, 31.4; **HRMS** (ESI) calcd for C₁₂H₁₄N₂ONa [M+Na]⁺:225.0998, found: 225.0992.

3-((phenylsulfonyl)methyl)-1*H***-indole (2ae)**

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 65 mg, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.70-7.66 (m, 2H), 7.53 (ddt, J = 8.1, 7.1, 1.3 Hz, 1H), 7.42-7.30 (m, 3H), 7.27-7.23 (m, 1H),7.15 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.07 (d, J = 2.6 Hz, 1H), 7.01 (ddd, J = 8.1, 7.0, 1.0 Hz,

1H), 4.54 (d, J = 0.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 135.9, 133.6, 129.0, 128.7, 127.1, 126.0, 122.6, 120.5, 118.6, 111.4, 103.0, 54.6; HRMS (ESI) calcd for C₁₅H₁₃NO₂SNa [M+Na]⁺: 294.0559, found: 294.0560.

3-((phenylsulfonyl)methyl)-1*H*-indole (2af)

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 85 mg, 64% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.93 (s, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.19-7.06 (m, 3H), 4.10-3.90 (m, 4H), 3.30 (d, J = 20.1 Hz, 2H), 1.22 (t, J = 7.1 Hz, 6H); ¹³C NMR (100 MHz,

CDCl₃) δ 136.2, 127.5 (d, $J_{C-P} = 6$ Hz), 124.0 (d, $J_{C-P} = 8$ Hz), 122.0, 119.4, 118.8, 111.5, 104.5 (d, $J_{C-P} = 9$ Hz), 62.2 (d, $J_{C-P} = 7$ Hz), 23.1 (d, $J_{C-P} = 144$ Hz), 16.5 (d, $J_{C-P} = 6$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 27.9; **HRMS** (ESI) calcd for C₁₃H₁₈NO₃PNa [M+Na]⁺: 290.0917, found: 290.0912.

Ethyl 2-(1*H*-indol-3-yl)propanoate (2ag)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown oil, 62 mg, 64% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.72-7.67 (m, 1H), 7.33 (dt, J = 8.1, 1.0 Hz, 1H), 7.19 (ddd, *J* = 8.2, 7.0, 1.3 Hz, 1H), 7.15-7.08 (m, 2H), 4.21-4.06 (m, 2H), 4.02 (qd, J = 7.2, 0.8 Hz, 1H), 1.60 (d, J = 7.2 Hz, 3H),

1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 136.4, 126.6, 122.3, 121.7, 119.6, 119.4, 115.7, 111.3, 60.8, 37.2, 18.0, 14.3; HRMS (ESI) calcd for C13H15NO2Na [M+Na]⁺: 240.0995, found: 240.0990.

2-(1H-indol-3-yl)-1-phenylethan-1-one (2ah)

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 88 mg, 78% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.09-8.03 (m, 2H), 7.61 (d, *J* = 7.3 Hz, 1H), 7.57-7.51 (m, 1H), 7.48-7.40 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.22-7.10 (m, 2H), 7.07 (s, 1H), 4.41 (s, 2H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \,\delta \, 198.1, 136.7, 136.2, 133.2, 128.7, 127.4, 123.3, 122.3, 119.8, 118.9, 111.4, \\ 109.0, 35.7; \, \textbf{HRMS} \, (\text{ESI}) \, \text{calcd for } C_{16}H_{13}\text{NONa} \, [\text{M+Na}]^+: 258.0889, \, \text{found: } 258.0888.$

1-(2-bromophenyl)-2-(1*H*-indol-3-yl)ethan-1-one (2ai)

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 123 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.60-7.52 (m, 2H), 7.32-7.24 (m, 3H), 7.24-7.20 (m, 1H), 7.17 (ddd, *J* = 8.2, 7.0, 1.2 Hz, 1H), 7.13-7.07 (m, 2H), 4.36 (d, *J* = 0.9 Hz, 2H); ¹³C NMR (100

MHz, CDCl₃) δ 202.3, 141.7, 136.2, 133.6, 131.5, 128.8, 127.4, 123.7, 122.3, 119.8, 118.9, 118.7, 111.4, 107.8, 39.6; **HRMS** (ESI) calcd for C₁₆H₁₂BrNONa [M+Na]⁺: 335.9995, found: 335.9988.

2-(1*H*-indol-3-yl)acetonitrile (2aj)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown oil, 56 mg, 73% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.58 (d, *J* = 7.9 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.28-7.21 (m, 1H), 7.21-7.14 (m, 2H), 3.82 (s, 2H); ¹³**C**

NMR (100 MHz, CDCl₃) δ 136.3, 126.1, 123.0, 122.9, 120.3, 118.4, 118.2, 111.7, 104.7, 14.5; **HRMS** (ESI) calcd for C₁₀H₉N₂ [M+H]⁺: 157.0760, found: 157.0758.

3-(pyridin-2-ylmethyl)-1*H*-indole (2ak)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 60 mg, 58% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.55 (dd, *J* = 5.1, 1.8 Hz, 1H), 8.31 (s, 1H), 7.57-7.48 (m, 2H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.17 (t, *J* = 7.2 Hz, 2H), 7.12-7.03 (m, 3H), 4.31 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ

161.4, 149.2, 136.7, 136.6, 127.5, 122.93, 122.86, 122.1, 121.2, 119.5, 119.3, 113.9, 111.3, 34.6; **HRMS** (ESI) calcd for C₁₄H₁₂N₂Na [M+Na]⁺: 231.0893, found: 231.0890.

1,3-di(1H-indol-3-yl)propan-2-one (2al)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 30 mg, 35% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (s, 2H), 7.44 (d, J = 7.9 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 7.19-7.13 (m, 2H), 7.11-7.04 (m, 2H), 6.93 (d, J = 2.6 Hz, 2H), 3.87 (s, 4H); ¹³**C NMR** (100

MHz, CDCl₃) δ 207.8, 136.2, 127.4, 123.5, 122.3, 119.8, 118.8, 111.4, 108.6, 38.7; **HRMS** (ESI) calcd for C₁₉H₁₆N₂ONa [M+Na]⁺: 311.1155, found: 311.1150.

Ethyl 2-(5-methyl-1*H*-indol-3-yl)acetate (2ba)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 82 mg, 82% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.42-7.38 (m, 1H), 7.21 (d, *J* = 8.3 Hz, 1H), 7.09-7.06 (m, 1H), 7.01 (dd, *J* = 8.3, 1.7 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.73 (d, *J* = 0.9 Hz, 2H), 2.45 (s,

3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 134.5, 129.0, 127.6, 123.9, 123.3, 118.6, 111.0, 108.1, 60.9, 31.5, 21.6, 14.4; **HRMS** (ESI) calcd for C₁₃H₁₅NO₂Na [M+Na]⁺: 240.0995, found: 240.0988.

Ethyl 2-(5-fluoro-1*H*-indol-3-yl)acetate (2ca)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 98 mg, 90% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.29-7.20 (m, 2H), 7.15 (d, J = 2.5 Hz, 1H), 6.93 (td, J = 9.0, 2.5 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.72 (d, J = 0.9 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR

(100 MHz, CDCl₃) δ 172.1, 158.0 (d, $J_{C-F} = 235$ Hz), 132.7, 127.7 (d, $J_{C-F} = 10$ Hz), 125.0, 112.0 (d, $J_{C-F} = 10$ Hz), 110.7 (d, $J_{C-F} = 26$ Hz), 108.8 (d, $J_{C-F} = 5$ Hz), 104.0 (d, $J_{C-F} = 24$ Hz), 61.1, 31.5, 14.4; ¹⁹**F** NMR (376 MHz, CDCl₃) δ -124.4; **HRMS** (ESI) calcd for C₁₂H₁₂FNO₂Na [M+Na]⁺: 244.0744, found: 244.0736.

Ethyl 2-(5-chloro-1*H*-indol-3-yl)acetate (2da)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 90 mg, 79% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.58 (d, *J* = 1.8 Hz, 1H), 7.21 (dd, *J* = 8.7, 0.6 Hz, 1H), 7.12 (dd, *J* = 8.5, 1.9 Hz, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.72 (d, *J* = 0.9 Hz, 2H), 1.28 (t, *J* = 7.1 Hz,

3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 134.5, 128.4, 125.5, 124.7, 122.6, 118.6, 112.3, 108.3, 61.1, 31.3, 14.3; HRMS (ESI) calcd for C₁₂H₁₂ClNO₂Na [M+Na]⁺: 260.0449, found: 260.0444.

Ethyl 2-(5-bromo-1*H*-indol-3-yl)acetate (2ea)

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 98 mg, 83% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.74 (d, *J* = 1.8 Hz, 1H), 7.25 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.17 (d, *J* = 8.6 Hz, 1H), 7.10 (d, *J* = 2.4 Hz, 1H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.71 (s, 2H), 1.28 (t, *J* =

7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 134.8, 129.1, 125.1, 124.5, 121.7, 113.0, 112.8, 108.3, 61.1, 31.3, 14.3; **HRMS** (ESI) calcd for C₁₂H₁₂BrNO₂Na [M+Na]⁺: 303.9944, found: 303.9939.

Ethyl 2-(4-chloro-1*H*-indol-3-yl)acetate (2fa)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 101 mg, 90% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.08 (dd, J = 7.4, 1.7 Hz, 1H), 7.05-6.96 (m, 2H), 6.84 (d, J = 2.4 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.98 (d, J = 0.8 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (100

MHz, CDCl₃) δ 173.4, 137.8, 126.0, 125.2, 124.1, 122.6, 120.4, 110.3, 108.3, 61.1, 32.3, 14.4; **HRMS** (ESI) calcd for C₁₂H₁₂ClNO₂Na [M+Na]⁺: 260.0449, found: 260.0445.

Ethyl 2-(6-chloro-1*H*-indol-3-yl)acetate (2ga)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 103 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.50 (d, *J* = 8.5 Hz, 1H), 7.27 (d, *J* = 1.9 Hz, 1H), 7.11-7.04 (m, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.73 (d, *J* = 0.9 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta 172.2, 136.5, 128.1, 125.9, 123.9, 120.4, 119.9, 111.2, 108.7, 61.1, 31.4, 14.3;$ **HRMS** (ESI) calcd for C₁₂H₁₂ClNO₂Na [M+Na]⁺: 260.0449, found: 260.0448.

Ethyl 2-(5,7-dichloro-1*H*-indol-3-yl)acetate (2ha)

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 115 mg, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.50 (dd, *J* = 1.7, 0.7 Hz, 1H), 7.22 (d, *J* = 2.4 Hz, 1H), 7.19 (d, *J* = 1.7 Hz, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.71 (d, *J* = 1.0 Hz, 2H), 1.28 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 171.6, 132.1, 129.2, 125.5, 125.2, 121.9, 117.6, 117.2, 109.7, 61.2, 31.4, 14.3; HRMS (ESI) calcd for C₁₂H₁₂Cl₂NO₂ [M+H]⁺: 272.0240, found: 272.0234.

Ethyl 2-(5-(trifluoromethyl)-1*H*-indol-3-yl)acetate (2ia)

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 110 mg, 89% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.91 (s, 1H), 7.43-7.30 (m, 2H), 7.18 (s, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 2H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.1, 137.6,

126.7, 125.5 (q, $J_{C-F} = 270 \text{ Hz}$), 125.0, 122.2 (q, $J_{C-F} = 32 \text{ Hz}$), 119.0 (q, $J_{C-F} = 3 \text{ Hz}$), 116.9 (q, $J_{C-F} = 4 \text{ Hz}$), 111.6, 109.6, 61.2, 31.3, 14.3; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.2; **HRMS** (ESI) calcd for C₁₃H₁₃F₃NO₂ [M+H]⁺: 272.0893, found: 272.0892.

Ethyl 2-(6-(trifluoromethyl)-1*H*-indol-3-yl)acetate (2ja)

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 116 mg, 86% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.55 (s, 1H), 7.34 (dd, *J* = 8.4 Hz, 1.0 Hz, 1H), 7.16 (d, *J* = 2.3 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.78 (d, *J* = 0.8 Hz, 2H), 1.28 (t,

J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 135.0, 129.5, 126.0, 125.3 (q, $J_{C-F} = 270$ Hz), 124.3 (q, $J_{C-F} = 32$ Hz), 119.4, 116.4 (q, $J_{C-F} = 4$ Hz), 108.9 (q, $J_{C-F} = 4$ Hz), 108.8, 61.2, 31.3, 14.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -60.5; HRMS (ESI) calcd for C₁₃H₁₃F₃NO₂ [M+H]⁺: 272.0893, found: 272.0881.

Ethyl 2-(5-methoxy-1*H*-indol-3-yl)acetate (2ka)

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 101 mg, 84% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.21 (d, *J* = 8.8 Hz, 1H), 7.12-7.04 (m, 2H), 6.85 (dd, *J* = 8.8, 2.4 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.86 (s, 3H), 3.73 (s, 2H), 1.27 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 154.2, 131.3, 127.7, 124.0, 112.6, 112.1, 108.3, 100.6, 60.9, 55.9, 31.6, 14.4; **HRMS** (ESI) calcd for C₁₃H₁₅NO₃Na [M+Na]⁺: 256.0944, found: 256.0938.

Ethyl 2-(6-methoxy-1*H*-indol-3-yl)acetate (2la)

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 79 mg, 71% yield. ¹H NMR (400 MHz, CDCl₃) 8.03 (s, 1H), 7.48 (d, J = 8.6 Hz, 1H), 6.98 (d, J = 2.3 Hz, 1H), 6.83-6.75 (m, 2H), 4.16 (q, J = 7.1 Hz, 2H), 3.81 (s, 3H), 3.72 (s, 2H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta 172.4, 156.6, 137.0, 122.0, 121.7, 119.6, 109.7, 108.5, 94.7, 60.9, 55.7, 31.6, 14.3;$ **HRMS**(ESI) calcd for C₁₃H₁₅NO₃Na [M+Na]⁺: 256.0944, found: 256.0943.

Ethyl 2-(5-nitro-1*H*-indol-3-yl)acetate (2ma)

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 74 mg, 69% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.87 (s, 1H), 8.58 (d, *J* = 2.2 Hz, 1H), 8.05 (dd, *J* = 9.0, 2.2 Hz, 1H), 7.30 (d, *J* = 9.0 Hz, 1H), 7.24 (d, *J* = 2.3 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.81 (d, *J* = 1.0 Hz,

2H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 141.7, 139.3, 126.8, 126.6, 117.9, 116.5, 111.4, 111.0, 61.4, 31.1, 14.3; **HRMS** (ESI) calcd for C₁₂H₁₂N₂O₄Na [M+Na]⁺: 271.0689, found: 271.0681.

Ethyl 2-(5-cyano-1*H*-indol-3-yl)acetate (2na)

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 96 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 7.98-7.93 (m, 1H), 7.39-7.29 (m, 2H), 7.18 (d, *J* = 2.4 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.77 (d, *J* = 0.9 Hz, 2H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 172.0, 137.9, 127.1, 125.7, 124.9, 124.7, 121.0, 112.3, 109.2, 102.4, 61.3, 31.1, 14.3; **HRMS** (ESI) calcd for C₁₃H₁₃N₂O₂ [M+H]⁺: 229.0972, found: 229.0967.

Methyl 3-(2-ethoxy-2-oxoethyl)-1*H*-indole-5-carboxylate (20a)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 82 mg, 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.39 (s, 1H), 7.88 (dd, J = 8.6, 1.6 Hz, 1H), 7.30 (d, J = 8.6 Hz, 1H), 7.15 (s, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.93 (s, 3H), 3.79 (s,

2H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 168.4, 138.9, 127.0, 124.7, 123.6, 122.1, 121.7, 111.1, 110.0, 61.1, 52.0, 31.3, 14.3; **HRMS** (ESI) calcd for C₁₄H₁₅NO₄Na [M+Na]⁺: 284.0893, found: 284.0891.

Methyl 3-(2-ethoxy-2-oxoethyl)-1*H*-indole-7-carboxylate (2pa)

The title compound was prepared according to the general procedure and purified by column chromatography to give a brown solid, 82 mg, 66% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 9.75 (s, 1H), 7.89 (dd, *J* = 7.5, 1.1 Hz, 1H), 7.85 (dt, *J* = 7.9, 0.9 Hz, 1H), 7.29 (dd, *J* = 2.2 Hz, 1H), 7.17 (t, *J* = 7.7 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 3H), 3.79 (d, *J* = 0.9 Hz, 2H),

1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 167.9, 136.1, 128.6, 124.8, 124.6, 124.2, 119.0, 112.6, 108.8, 61.0, 52.0, 31.4, 14.3; **HRMS** (ESI) calcd for C₁₄H₁₅NO₄Na [M+Na]⁺: 284.0893, found: 284.0894.

4.4. Procedure for gram-scale reaction and deuterium-labeling experiments4.4.1. Gram-scale synthesis of product 2ca

Ethyl (*E*)-3-(5-fluoro-2-isocyanophenyl)acrylate **1ca** (1.12 g, 5.1 mmol), Fe(dpm)₃ (30 mg, 1 mol%), *i*-PrOH (10 mL), DCE (5 mL) and PhSiH₃ (810 mg, 7.5 mmol, 1.5 equiv.) were added to a 100 mL flame-dried Young-type tube. The reaction mixture was stirred at 35 °C for 2 hours, then cooled to room temperature. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 20/1 to 5/1) to give the desired product **2ca** (1.04g) as a brown solid in 94% yield.

4.4.2. Deuterium-labeling experiments

Synthesis of phenylsilane-*d*₃.

PhSiCl₃
$$\xrightarrow{\text{LiAID}_4}$$
 PhSiCl₃ $\xrightarrow{\text{Et}_2O, 0 \circ C}$ PhSiD₃

Following a modification of the method of Baran,² LiAlD₄ (262 mg, 6.24 mmol, 1 equiv.) was suspended in Et₂O (6.2 mL) under N₂ atmosphere and cooled to 0 $^{\circ}$ C with stirring. PhSiCl₃ (1.00 mL, 6.24 mmol, 1.0 equiv.) was added dropwise and the reaction mixture was warmed to rt and then refluxed at 45 $^{\circ}$ C for 3.5 hours. The reaction mixture was then cooled to 0 $^{\circ}$ C, where it was carefully quenched with ice cold H₂O. The organic layer was separated and held at 0 $^{\circ}$ C and the aqueous layer extracted with ice-cold Et₂O at 0 $^{\circ}$ C. The organic layers were combined, washed with ice-cold brine at 0 $^{\circ}$ C, dried over MgSO₄, filtered, and concentrated under reduced pressure at 0 $^{\circ}$ C at 40 mbar [CAUTION: concentrating below 40 mbar (e.g., 11 mbar) can result in the total loss of product] to furnish pure PhSiD₃ as a colorless oil (0.56 g, 81 wt% solution in Et₂O, D: >95%, 65% yield).

Spectroscopic data was identical to that reported in the literature.

Deuteration study with PhSiD3.

Ethyl (*E*)-3-(2-isocyanophenyl)acrylate **1aa** (100 mg, 0.50 mmol), Fe(dpm)₃ (15 mg, 5 mol%), *i*-PrOH (2 mL) and PhSiD₃ (137 mg, 81 wt% solution in Et₂O, 2.0 equiv.) were added to a 25 mL flame-dried Young-type tube. The reaction mixture was stirred at 35 °C for 2 hours,

then cooled to room temperature. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 20/1 to 5/1) to give the deuterated product **2aa-1** (85 mg) as a brown solid in 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.64-7.59 (m, 1H), 7.31 (dt, *J* = 8.1, 1.0 Hz, 1H), 7.21-7.09 (m, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.76 (s, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). Deuterium incorporation was determined by ¹H NMR.

Deuteration study with EtOD.

Ethyl (*E*)-3-(2-isocyanophenyl)acrylate **1aa** (100 mg, 0.50 mmol), Fe(dpm)₃ (15 mg, 5 mol%), EtOD (2 mL, D: 99%) and PhSiH₃ (108 mg, 2.0 equiv.) were added to a 25 mL flamedried Young-type tube. The reaction mixture was stirred at 35 °C for 2 hours, then cooled to room temperature. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 20/1 to 5/1) to give the desired product **2aa-2** (39 mg) as a brown solid in 44% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.65-7.60 (m, 1H), 7.36 (dt, *J* = 8.1, 1.0 Hz, 1H), 7.23-7.10 (m, 3H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.78-3.73 (m, 1H), 1.26 (t, *J* = 7.1 Hz, 3H). Deuterium incorporation was determined by ¹H NMR.

¹H NMR (400 MHz, CDCl₃) spectra for 2aa-2

5. References

(1) A. Patti and S. Pedotti, *Tetrahedron*, 2010, **66**, 5607.

(2) J. C. Lo, D. Kim, C. Pan, J. T. Edwards, Y. Yabe, J. Gui, T. Qin, S. Gutierrez, J. Giacoboni, M. W. Smith, P. L. Holland and P. S. Baran, J. Am. Chem. Soc., 2017, 139, 2484.

6. NMR Spectra of Materials and Products

¹³C NMR (100 MHz, CDCl₃) spectra for 1aa

¹H NMR (400 MHz, CDCl₃) spectra for 1ab

¹³C NMR (100 MHz, CDCl₃) spectra for 1ab

¹H NMR (400 MHz, CDCl₃) spectra for 1ac

¹³C NMR (100 MHz, CDCl₃) spectra for 1ac

¹H NMR (400 MHz, CDCl₃) spectra for 1ad

¹³C NMR (100 MHz, CDCl₃) spectra for 1ad

¹H NMR (400 MHz, CDCl₃) spectra for 1ae

¹H NMR (400 MHz, CDCl₃) spectra for 1af

**

¹³C NMR (100 MHz, CDCl₃) spectra for 1af

³¹P NMR (162 MHz, CDCl₃) spectra for 1af

¹³C NMR (100 MHz, CDCl₃) spectra for 1ag

8.063 8.046 8.046 8.028 8.024 7.782 7.777 7.656 7.656 7.638 7.656 7.638

30 50

120

512 486 473 465 460 449

----0:000

¹³C NMR (100 MHz, CDCl₃) spectra for 1ah

¹H NMR (400 MHz, CDCl₃) spectra for 1ai

7.7.65 7.7.75 7.7.75 7.7.75 7.7.743 7.7.743 7.7.748 7.654 7.654 7.654 7.654 7.654 7.654 7.654 7.654 7.466 7.476 7.445 7.7.420 7.7.720 7.7.720 7.7.720 7.7.720

---0.000

¹³C NMR (100 MHz, CDCl₃) spectra for 1ai

¹H NMR (400 MHz, CDCl₃) spectra for 1aj

¹³C NMR (100 MHz, CDCl₃) spectra for 1aj

S52

¹³C NMR (100 MHz, CDCl₃) spectra for 1ak

¹H NMR (400 MHz, CDCl₃) spectra for 1al

---0.000

¹³C NMR (100 MHz, CDCl₃) spectra for 1al

¹H NMR (400 MHz, CDCl₃) spectra for 1ba

¹³C NMR (100 MHz, CDCl₃) spectra for 1ba

¹H NMR (400 MHz, CDCl₃) spectra for 1ca

¹⁹F NMR (376 MHz, CDCl₃) spectra for 1ca

¹³C NMR (100 MHz, CDCl₃) spectra for 1da

¹³C NMR (100 MHz, CDCl₃) spectra for 1ea

¹H NMR (400 MHz, CDCl₃) spectra for 1fa

..... 5.0 4.5 fl (ppm) 8.0 7.5 7.0 2.5 2.0 1.5 0.0 -0.5 10.0 9.5 9.0 8.5 6.5 6.0 5.5 4.0 3.5 3.0 1.0 0.5

¹³C NMR (100 MHz, CDCl₃) spectra for 1fa

¹³C NMR (100 MHz, CDCl₃) spectra for 1ga

¹H NMR (400 MHz, CDCl₃) spectra for 1ha

¹³C NMR (100 MHz, CDCl₃) spectra for 1ha

¹H NMR (400 MHz, CDCl₃) spectra for 1ia

¹³C NMR (100 MHz, CDCl₃) spectra for 1ja

¹H NMR (400 MHz, CDCl₃) spectra for 1ka

¹³C NMR (100 MHz, CDCl₃) spectra for 1ka

¹H NMR (400 MHz, CDCl₃) spectra for 1la

¹³C NMR (100 MHz, CDCl₃) spectra for 1ma

_

¹H NMR (400 MHz, CDCl₃) spectra for 1na

¹³C NMR (100 MHz, CDCl₃) spectra for 1na

¹H NMR (400 MHz, CDCl₃) spectra for 10a

¹³C NMR (100 MHz, CDCl₃) spectra for 10a

¹H NMR (400 MHz, CDCl₃) spectra for 1pa

¹³C NMR (400 MHz, CDCl₃) spectra for 1pa

¹H NMR (400 MHz, CDCl₃) spectra for 2aa

5.0 fl (ppm) 2.04⊣

4.0

4.5

2.01 →

3.5

3.0

2.5

2.0

3.16 म

1.0

0.5

0.0

1.5

.....

-0.5

1.00 ∡ 1.03 2.09 0.97

7.0

6.5

6.0

5.5

7.5

0.92 H

8.0

8.5

10.5

10.0

9.5

9.0

¹³C NMR (100 MHz, CDCl₃) spectra for 2aa

¹H NMR (400 MHz, CDCl₃) spectra for 2ab

¹³C NMR (100 MHz, CDCl₃) spectra for 2ab

¹³C NMR (100 MHz, CDCl₃) spectra for 2ac

¹H NMR (400 MHz, CDCl₃) spectra for 2ad

¹³C NMR (100 MHz, CDCl₃) spectra for 2ad

¹H NMR (400 MHz, CDCl₃) spectra for 2ae

¹³C NMR (100 MHz, CDCl₃) spectra for 2ae

¹H NMR (400 MHz, CDCl₃) spectra for 2af

¹³C NMR (100 MHz, CDCl₃) spectra for 2af

³¹P NMR (162 MHz, CDCl₃) spectra for 2af

¹H NMR (400 MHz, CDCl₃) spectra for 2ag

¹H NMR (400 MHz, CDCl₃) spectra for 2ah

---0.000

¹³C NMR (100 MHz, CDCl₃) spectra for 2ah

¹H NMR (400 MHz, CDCl₃) spectra for 2ai

¹³C NMR (100 MHz, CDCl₃) spectra for 2ai

¹H NMR (400 MHz, CDCl₃) spectra for 2aj

¹H NMR (400 MHz, CDCl₃) spectra for 2ak

---0.000

S110

¹H NMR (400 MHz, CDCl₃) spectra for 2al

---0.000

¹³C NMR (100 MHz, CDCl₃) spectra for 2al

¹H NMR (400 MHz, CDCl₃) spectra for 2da

¹H NMR (400 MHz, CDCl₃) spectra for 2ea

- -

10.5

¹³C NMR (100 MHz, CDCl₃) spectra for 2fa

¹H NMR (400 MHz, CDCl₃) spectra for 2ga

S126

¹H NMR (400 MHz, CDCl₃) spectra for 2ha

¹³C NMR (100 MHz, CDCl₃) spectra for 2ha

210

¹³C NMR (100 MHz, CDCl₃) spectra for 2ja

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectra for 2ka

¹H NMR (400 MHz, CDCl₃) spectra for 2la

¹³C NMR (100 MHz, CDCl₃) spectra for 2la

¹H NMR (400 MHz, CDCl₃) spectra for 2ma

¹³C NMR (100 MHz, CDCl₃) spectra for 2ma

¹H NMR (400 MHz, CDCl₃) spectra for 2na

.

1.0

¹³C NMR (100 MHz, CDCl₃) spectra for 2na

¹H NMR (400 MHz, CDCl₃) spectra for 20a

¹³C NMR (100 MHz, CDCl₃) spectra for 20a

¹H NMR (400 MHz, CDCl₃) spectra for 2pa

¹H NMR (400 MHz, CDCl₃) spectra for 2aa-1

¹H NMR (400 MHz, CDCl₃) spectra for 2aa-2

