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1. Chemicals and materials

The 4 mM 1,1’-ferrocendimethanol (FcDM) solution is prepared by dissolving FcDM powder (Sigma) in 
0.01% v/v poly(4-styrene sulfonic acid) (PSS) aqueous solution. We observed that PSS increases the 
solubility of FcDM (usually limited to 2 mM in water). The solution was sonicated for 15 min and then 
filter with a 0.2 µm syringe filter. The solution was stocked in the fridge (4 °C) when not used and the 
aliquots used for experiments were discarded at the end of the day. A new solution was prepared 
every week. 

The concentration of GNP and FcDM in the solution used for the opto-electrochemical 
measurements was measured by UV-Visible absorption (Cary 50 Scan, Variant). First, we prepared 
suspensions of GNP at different known concentrations (9, 4.5, 2.25, 0.9 mg/mL in 0.01% v/v PSS 
aqueous solution) and measured a spectrum right after sonication. Based on these spectra we 
determined the extinction coefficient of GNP (Figure S1 A). We determined, in the same manner, the 
extinction coefficient of FcDM (Figure S1 B). The continuous absorption of GNP in the visible range 
leads to a black color while the absorption peak of FcDM at 432 nm gives a yellow color. The blank of 
the cuvette with 0.01% v/v PSS aqueous solution is systematically subtracted. The concentration of 
GNP and FcDM was determined using the extinction spectrum of each species and Beer-lambert law:

A = εlc

with the length of the optical cuvette, l, being fixed (l =1 cm) and the concentration, C, of the species. 
The concentration of FcDM is 3.5 mM while the concentration of GNP in the opto-electrochemical cell 
is 0.43 mg/mL. This mass concentration can be converted in molar concentration assuming that GNPs 
are 4.2 µm diameter and 15 nm thick disks and using the equation:

𝐶
(𝑚𝑜𝑙.𝐿 ‒ 1)

= 𝐶
(𝑔.𝐿 ‒ 1)

1
𝑁𝐴𝜌𝑉𝐺𝑁𝑃

where NA, ρ and VGNP are the Avogadro’s constant, the density of HOPG and the average volume of a 
GNP, respectively. A concentration of 0.43 mg/mL is equivalent to 1.5 pM of “disk-shaped” GNP.

Figure S1. UV-Visible extinction spectra of the GNP (A) and FcDM (B). The optical path is 1 cm.
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2. Electrode fabrication

The working electrode is a heat-sealed 10 µm Pt disk electrode. The procedure for the fabrication of 
the electrode is explained in detail in the following reference.1 Briefly, a 10 µm Pt wire (Goodfellow, 
hard temper) is sealed in a borosilicate glass capillary by slowly softening the glass with a heating coil 
under vacuum. The side of the wire is exposed by polishing the capillary with sandpaper and then 
alumina slurry (down to 0.1 µm, Buehler) until obtaining a mirror-like surface. The ultra-microelectrode 
(UME) is sharpened by manually polishing the side of the capillary on sandpaper until achieving an RG 
= 15 as shown in Figure S2 A (RG is the ratio of the diameter of the glass sheath divided by the diameter 
of the Pt disk). This step is important not to hinder too much the mass transfer of the GNP from the 
bulk toward the Pt surface once this later is positioned at 300 µm from the coverslip. Before each 
experiment, the UME is cleaned by immersion in fresh Piranha for few tens of seconds and rinsed with 
DI-water. Once a GNP is adsorbed on the UME this latter is systematically cleaned with Piranha before 
recording a new chronoamperogram.

Figure S2. Optical micrographs of the Pt UME taken with a 20X (A) and 100X (B) objective. The scale bars represent 
100 µm in (A) and 10 µm in (B). The yellow dashed line represents the edge of the glass sheath surrounding the 
Pt disk indicated by the arrow.
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3. SEM characterization of GNPs

The size and shape of the GNPs were measured by SEM (Hitachi S-4800). A drop of GNPs suspension 
was incubated for 10 min on a Si wafer (cleaned with Piranha, incubated in a PAA solution and rinsed 
with DI water) and then gently rinsed with DI water. Typical SEM images are shown in Figure S3A. The 
ill-defined shape of the GNP does not allow to provide one number to quantify the size of the GNP. We 
measured the longest and shortest axis of the GNPs and plotted their histogram in Figure S3 B and C 
respectively. The average longest and shortest axis measure 3.2 ± 2.0 µm and 1.8 ± 1.1 µm, 
respectively. The in-plane aspect ratio of the GNP is 1.8.

Figure S3. (A) Typical SEM image of GNPs adsorbed on a Si wafer. Histograms of the long (B) and short (C) axis 
of the GNP measured by SEM over 203 platelets.
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4. Image Analysis

A stack of 16-bit unsigned images is recorded for each video. The video is trimmed and then images 
are cropped in 85 x 85 pixel frames centered around the Pt disk. The color scale is then inverted and 
the background image (that is before the arrival of the GNP) is subtracted. The background image is 
constructed by averaging the first 700 frames (in absence of GNP). The difference highlights the 
difference in reflected light caused by the presence of the GNP. A typical frame before (left) and after 
processing (right) is shown in Figure S4. 

Figure S4. Example of an image acquired during a collision experiment before (left) and after (right) inverting 
the greyscale and subtracting the background
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5. Opto-electrochemical setup

The opto-electrochemical setup is composed of an inverted microscope (ix73, Olympus) and a Faraday 
cage mounted on the stage of the microscope as shown in the picture in Figure S5 A. A homemade 
opto-electrochemical cell (see Figure S5 B) allows monitoring the surface of a Pt UME through a 170 ± 
5 µm thick coverslip (25 mm diameter n°1.5H, Thorlabs). The cell and the o-ring are made of Teflon 
and PTFE, respectively. The entire cell is Piranha cleaned between experiments. A leakless Ag/AgCl 3.4 
M (Innovative Instruments, Inc) is inserted via a hole on the side of the cell. The UME is positioned at 
300 µm from the top side of the coverslip by focusing first on the surface of the coverslip, moving up 
the objective by 300 µm and then moving the UME down until getting a sharp image. The procedure 
is performed with a 10X objective and then repeated with a 40X objective in order to have a precision 
of at least 2 µm (see the calculation of the depth of field at the end of the section). The 10X (UPlanFLN, 
Olympus) and 40X (LUPlanFLN, Olympus) objectives have a numerical aperture of 0.3 and 0.6, 
respectively.

Figure S5. Photographs of the inverted microscope equipped with a Faraday cage (A) and the opto-
electrochemical cell (B).

The light source is halogen light (TH4-200, Olympus). The image is collected by a sCMOS camera 
(OrcaFlash v4 C13440, Hamamatsu). 256 x 256 pixel images are collected with a 16-bit resolution. The 
software is set to acquire a video at 1kHz and the camera is triggered by an external TTL. The potential 
applied between the UME and the reference electrode is set by an acquisition card (BNC 2110, National 
Instrument) using an analog voltage output (a follower amplifier plugged after the card protects this 
latter from short-circuits) and the current is measured using a trans-impedance amplifier (2V/nA fixed 
gain, BW 2kHz, LCA-2k-2G, Femto). The output voltage of the amplifier is measured at 2kHz using an 
analog input of the acquisition card. These operations are triggered by an external trigger (+5V TTL) 
generated by the card at the beginning of the experiment. The external trigger signal is also sent to the 
camera via a coaxial cable. An in-house Labview code is used to command the acquisition card. Before 
each collision measurement, the cleanliness of the electrode is checked optically and 
electrochemically. We verified (results not shown) that the illumination of the UME does not affect the 
electrochemical response.

The cell contains typically 5 mL of solution. After spiking the solution with the stock solution of GNP, 
a glass pipette is used to gently stir the solution and homogenize this latter without forming bubbles. 
The Faraday cage and the acquisition card are grounded together and connected to the earth. The 
microscope is placed on top of a floating table (CleanBench, TMC) to reduce mechanical vibrations.



7

The depth of field of the objectives, DOF, is calculated using the relation:2

𝐷𝑂𝐹 =
𝜆𝑛

𝑁𝐴2
+

𝑛𝑒
𝑀 × 𝑁𝐴

where λ, n, NA, e and M are the wavelength of the light used for illumination, the index of refraction 
of the medium between the sample and the objective, the numerical aperture of the objective, the 
pixel size of the camera and the magnification, respectively. Here, we consider λ = 550 nm (yellow-
green), n = 1.3 (average refractive index weighed by the beam path in water (300 µm), glass (170 µm) 
and air (3000 µm)) and e = 6.5 µm for our camera. With the 40X objective the DOF = 2 µm.
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6. Blank measurement

Figure S6 shows a chronoamperogram recorded in absence of GNP in solution. The current from FcDM 
oxidation is observed. No transient current is observed.
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Figure S6. Chronoamperogram recorded in absence of GNP. The solution contains 4 mM of FcDM in 0.01%v/v 
PSS aqueous solution. The working electrode is a 10 µm diameter Pt UME biased at +0.4 V versus an Ag/AgCl 3.4 
M KCl reference electrode. 
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7. Effect of the viscosity on the velocity of GNP 

The effect of the viscosity of solution on the velocity of GNP approaching UME is considered in this 
section. Figure S7 A, B and C show typical chronoamperograms during the collisions of GNP with a 5 
μm radius Pt UME in absence of glycerol (control group), and in presence of 10% v/v and 30% v/v 
glycerol, respectively. After the addition of glycerol in solution, the diffusion coefficient of FcDM 
decreases from 6.70 × 10-6 cm2/s (control group) to 4.90 × 10-6 cm2 (10% v/v glycerol) and 2.93 × 10-6 
cm2 (30% v/v glycerol) calculated from the steady-state current in respective cyclic voltammograms 
(not shown). The dynamic viscosity of the mixture of aqueous solution and glycerol can be 
approximately obtained by the equation:3

𝜇 = 𝜇 𝛼
𝑎𝑞𝜇1 ‒ 𝛼

𝑔

Where  is the dynamic viscosity of the mixture, and subscripts aq and g denote aqueous solution 𝜇

(here the viscosity is close to 1.0 mPa·s) and the glycerol (1.412 Pa·s), respectively.  is the weighting 𝛼

factor between NaOH solution and glycerol. Then, we obtained the viscosity of the solution of 1.0 
mPa·s, 2.1 mPa·s, and 8.8 mPa·s, corresponding to 0, 10 and 30% v/v glycerol, respectively. 

Figure S7. Chronoamperograms recorded at 2 kHz with a 5 μm radius Pt UME at 0.4 V vs Ag/AgCl 3.4 M KCl in 
presence of (A) 0%, (B) 10% v/v, and (C) 30% v/v glycerol. The enlarged current trace shown in Figure 2 is 
highlighted in colors, respectively. The solution contains 0.43 mg/ml of GNP, 2 mM FcDM, and 10 μM NaOH. 
These measurements were done with a pure electrochemical workstation (see our previous reference4) in order 
to obtain the statistical number of collisions within the reasonable experimental time course.  
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8. Numerical Simulation

The simulations were performed on a PC equipped with 128 GB of RAM and an Intel® Xeon® CPU E5-
2699 v4 processor of 2.70 GHz computer with COMSOL 5.3a. The simulations were performed in 2D 
axial geometry and for steady-state equations. The error arising from using stationary solutions instead 
of time-dependent solutions was estimated by computing the concentration profile of the stationary 
(red trace Figure S8) and time-dependent (black trace Figure S8) solution for the simple case of mass 
transfer limited oxidation at the disk UME with an insulating GNP. The time-dependent solution was 
computed at a time small enough (0.2 s) so that molecules diffusing from the electrode cannot reach 
the bulk boundary. The difference between these profiles normalized by the time-dependent solution 
is plotted in blue in the inset in Figure S8. At the location of the GNP where all the relevant quantities 
discussed in the present manuscript are computed, the stationary solution underestimates the 
concentration by less than 8% compared to the time-dependent solution. The error is larger (up to 
40%) at 4-5 radius away from the electrode. At these distances, no bipolar feedback can be observed. 
More importantly, the time-dependent solution is obtained after 238 s while the stationary solution is 
obtained in only 4 s.  For this simple case, the computation of the stationary solution is about 60 times 
faster than the time-dependent one for only 8% of error. As for the total simulation time for each 
experiment, the computation of the time-dependent solution takes up to 17901 s while the stationary 
solution only costs 47 s to compute. Thus, numerical simulations with the stationary solution are 
considered in this work. 

Figure S8. Concentration profiles along the symmetry axis z simulated for mass transfer oxidation of 3.4 mM 
FcDM at an insulating BPE (L = 5 µm, w = 1 µm, d = 0.5 µm) above a disk (a = 5 µm) UME using a steady-state (red 
trace) and time-dependent (black trace; 0.2 s) diffusion equation. The mesh is similar for both simulations. This 
inset shows the difference between the stationary and time-dependent profiles divided by the time-dependent 
profile. The vertical dashed lines indicate the extremity of the GNP in atypical simulation.

Figure S9 represents the domain of 2D axial numerical simulations with the stationary solution. 
The GNP is a prolate ellipsoid (red line) located above a disk UME (green line). The solution is 
represented by a quarter of the sphere (blue line). 
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Figure S9. 2D axial geometry used to simulate the electrochemistry of a spheroidal GNP (red line) placed above 
a disk UME (green line). 

The diffusion of the molecules in solution is governed by Fick’s law (Transport of Diluted Species 
module):

𝐽 = 𝐷∇𝐶

where J, D and C are the flux, diffusion coefficient and concentration of the species, respectively. The 
potential inside the GNP is governed by Ohm’s law (Electric Currents module):

∇𝐽 = 0

𝐽 = 𝜎𝐸

𝐸 =‒ ∇𝑉

where σ, E and V are the conductivity, the electric field and the potential, respectively. The coupling of 
the two physics occurs at the GNP boundary (same flux condition) where the flux depends on both the 
concentration of the species and the potential. In order to keep electro-neutrality, we also impose that 
the net flux of species over the entire surface S (i.e. anodic and cathodic sides) equals zero:

∫
∂Ω

𝐽𝑑𝑆 = 0

The flux of the species at the UME and GNP is governed by the Butler-Volmer equation:

𝐽 = 𝑛𝐹𝐷𝑘°([𝑂]𝑒
‒

𝛼𝑛𝐹
𝑅𝑇 (𝑉 ‒ 𝐸0)

‒ [𝑅]𝑒
(1 ‒ 𝛼)𝑛𝐹

𝑅𝑇 (𝑉 ‒ 𝐸0))
where n, F, k°, α, R, T and E° are the number of electrons exchanged, the Faraday’s constant, the 
standard electron transfer rate constant, the coefficient of symmetry, the gas constant, the 
temperature and the standard potential of the redox couple, respectively. Note that we use “V” to 
represent the potential of the electrode (UME or GNP). All the boundaries of the simulation are given 
in Table S1. 
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Table S1. Boundaries of the simulation.

Color code Description Type of boundary*

red line GNP

𝐽 = 𝑛𝐹𝐷𝑘°([𝑂]𝐺𝑁𝑃𝑒
‒

𝛼𝑛𝐹
𝑅𝑇 (𝑉𝐺𝑁𝑃 ‒ 𝐸0)

‒ [𝑅]𝐺𝑁𝑃𝑒
(1 ‒ 𝛼)𝑛𝐹

𝑅𝑇 (𝑉𝐺𝑁𝑃 ‒ 𝐸0))

and 
∫
∂Ω

𝐽𝑑𝑆 = 0

green line UME
 

𝐽 = 𝑛𝐹𝐷𝑘°([𝑂]𝑈𝑀𝐸𝑒
‒

𝛼𝑛𝐹
𝑅𝑇 (𝑉𝑈𝑀𝐸 ‒ 𝐸0)

‒ [𝑅]𝑈𝑀𝐸𝑒
(1 ‒ 𝛼)𝑛𝐹

𝑅𝑇 (𝑉𝑈𝑀𝐸 ‒ 𝐸0))
blue line bulk solution [R] = 3.43 mM; [O] = 0.01[R] 

black line
glass sheath and

axis of revolution
∇[𝑅] =  ∇[𝑂] = 0 

The total current passing through the GNP is computed using

 for 
𝑖 = 𝑠𝑔𝑛 (∂[𝑂]

∂𝑟
;
∂[𝑂]

∂𝑧 )𝑛𝐹𝐷∫ (∂[𝑂]
∂𝑟 )2 + (∂[𝑂]

∂𝑧 )2𝑑𝑆 ∂[𝑂]
∂𝑟

𝑎𝑛𝑑 
∂[𝑂]

∂𝑧
> 0

Note that we must integrate only the incoming or outgoing flux of O, otherwise the current is doubled. 
Indeed, at a GNP there is both oxidation and reduction, their current being equal. The current passing 
through UME is computed using

𝑖 = 𝑛𝐹𝐷∫ (∂[𝑂]
∂𝑟 )2 + (∂[𝑂]

∂𝑧 )2𝑑𝑟
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9. Simulated concentration and potential profiles near UME

Concentration profile near the surface of the UME. Under the condition of electro-neutrality of the 
GNP, the net current passing through the surface of the GNP must be null (i.e. no charge is being 
accumulated inside the GNP). The potential inside the GNP is governed by Ohm’s law. The diffusion of 
FcDM and FcDM+ is considerably faster than the motion of GNP observed in the movies (about 1 - 20 
µm/s). Consequently, the diffusion profiles of FcDM+ and FcDM “instantaneously” readapt to the 
position of the GNP and thus we sought for steady-state solutions of the diffusion equation. Figure S10 
A shows the simulated concentration map of FcDM in presence of insulating spheroidal particles (i.e. 
in absence of depolarization by faradaic reaction) near the surface of a UME having their bottom end 
at 0.5 µm from the surface of the UME. The black lines represent the gradient of concentration (i.e. 
the flux of species). The gradient of concentration displays a radial symmetry and is the strongest near 
the surface of the UME quickly decaying after a couple of electrode’s radius. The overpotential applied 
at the UME (EWE - E°= 0.4 V) is sufficiently large to reach mass transfer limited currents. 

Potential profile near the surface of the UME. The concentration profile near the surface of the UME 
is described by the Nernst equation:

𝐸 = 𝐸0 ‒
𝑅𝑇
𝑛𝐹

𝑙𝑛([𝑅]
[𝑂])

where E represents the potential of the electrons in the metal phase at equilibrium with the species O 
and R in solution,  is the formal potential of the FcDM+/FcDM redox couple, R is the gas constant, T 𝐸0

is the temperature, n is the number of electrons exchanged, F is the Faraday’s constant. The potential 
map near the surface of the UME can be obtained by using the concentration profile and Nernst 
equation, as shown in Figure S10 B.

Figure S10. (A) Concentration profile of FcDM+ in presence of an insulating spheroidal particles (5 µm tall and 1 
µm wide) near the surface of the UME at a steady state. The black lines represent the normal flux of FcDM+. (B) 
Potential profile of insulating particles calculated from the concentration profile in (A) via Nernst equation. The 
scale bar represents 2 µm. The parameters of the simulation are: [FcDM] = 3.431 mM, [FcDM+] = 0.035 mM, EWE 
= 0.4 V, n = 1, α = 0.5, k0 = 10 cm·s-1, σGNP = 6 x 106 S·cm-1, DFcDM = DFcDM+ = 6.5 x 10-6 cm2·s-1, a = 5 µm, L = 5 µm, 
W = 1 µm, d = 0.5 µm, T = 298 K. 
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10. Effect of the initial ratio [O]/[R] on the bipolar current 

Figure S11 shows the simulated bipolar current, iBPE, normalized by the steady-state current at the 
UME, iss, as a function of various ratios between oxidized and reduced species, [O]/[R]. Since the 
steady-state current at the UME is linearly proportional to the concentrations of [R], we normalized 
the bipolar current by iss to exclusively study the effect of initial ratio [O]/[R] on the bipolar current. 
The normalized bipolar current passing through the GNP is constant with the increase of the initial 
ratio [O]/[R], indicating that the bipolar current is independent of the initial bulk ratio [O]/[R]. 

0.001 0.01 0.1 1
0

25

50

75

100

i B
PE

/i s
s

[O]/[R]

Figure S11. Effect of the initial ratio [O]/[R] on the bipolar current. Each blue point corresponds to the specific 
ratio of [O]/[R]. 
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11. Collection efficiency

The current in absence of GNP is computed with the same mesh as that in presence of GNP in order to 
minimize variations caused by mesh. The boundary conditions on the GNP are removed and the inner 
volume of the GNP is integrated in the “Transport of Diluted Species” module. The maximum Electro-
Motive Force (EMF) is computed with an insulating GNP, that is in absence of any depolarization of the 
solution. The maximum is taken as the difference of the potential of the solution between the two 
extremities of the GNP. The collection efficiency is defined as

𝐶𝐸 =
𝑖𝐺𝑁𝑃
𝑈𝑀𝐸 ‒ 𝑖𝑏𝑎𝑟𝑒

𝑈𝑀𝐸

𝑖𝐺𝑁𝑃

where ,  and  are the current simulated at the UME in presence of the GNP, the current 𝑖𝐺𝑁𝑃
𝑈𝑀𝐸 𝑖𝑏𝑎𝑟𝑒

𝑈𝑀𝐸 𝑖𝐺𝑁𝑃

simulated at the UME in absence of GNP, and the current simulated at the GNP, respectively. 

The collection efficiency and the EMF as a function of the GNP-UME distance are shown in Figure S12, 
black and blue dots, respectively. As the GNP is further away in solution, the EMF drops. The 
concentration gradient fades away in solution and so is the collection efficiency.  As the GNP gets close 
to the UME (within 500 nm, d/a less than 0.1), the collection rate tends to level off. We believe this 
trend is caused by the peculiar geometry of the “generator” shaped as a needle.
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Figure S12. Collection efficiency simulated for a L = 5 µm tall and 1 µm large spheroidal GNP positioned at d above 
the surface of a = 5 µm radius UME
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12. Estimation of the bipolar feedback detection scheme

Here we wish to address the question of the smallest detectable object. As long as the object is a good 
conductor (we do not consider discontinuous electronic states or Coulombic blockade) the chemical 
gradient in the diffusion layer will always drive a bipolar current at the surface of the object. The 
question is to determine whether or not this current can be detected. Our approach consists of 
detecting a small variation (0.1% to 1%) of current on top of a large signal. As we decrease the size of 
the object the bipolar feedback current will decrease (Figure 4D) ending up dwarfed by the noise of 
the large baseline current recorded at the UME in absence of the bipolar feedback. 

Importantly, the magnitude of the bipolar feedback current scales linearly with the current at the 
UME (Figure 4A) and hence the size of the UME. It is thus expected that the size of the bipolar object 
can be scaled down as much as desired as long as the size of the UME is decreased in the same 
proportion. However, the signal-to-noise ratio of the setup and its bandwidth cannot stay constant as 
the current decreases, and eventually the increasing noise levels will hinder the detection of the 
bipolar feedback current setting a lower limit to the size of an object. According to Figure 5A an object 
having the same radius as the electrode and positioned at half a radius from the surface of the 
electrode produces 1% of the current variation. If the experimental setup allows the detection of a 
current variation of 0.1 pA, then the baseline current lies around 10 pA. Considering the steady-state 
oxidation of 3.8 mM FcDM, this size of the electrode is about 20 nm radius and thus an object of about 
the same size.  This reasoning is confirmed by the numerical simulation of a spheroidal GNP of 20 and 
4 nm width and length, respectively, positioned at 10 nm above the center of a 20 nm radius electrode. 
The simulated currents in absence and presence of the GNP are 16.57 pA and 16.64 pA, respectively. 
This difference corresponds to an increase of 0.4%, close to the 1% variation estimated above. Last but 
not least, we assume a bandwidth of 1 kHz to be sufficient for resolving the transient current feedback. 
For small objects, the velocities might be larger and require larger bandwidths. Increasing the 
concentration of redox mediator would produce larger currents and thus enable larger bandwidths.
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13. The velocity of GNP approaching the UME

First, we assume that the angle between the GNP and the surface of the UME is constant during the 
approach and equal to (or very close) 90°. Recent observation of latex spheres, bacteria and GNPs 
approaching the surface of a UME revealed strong electro-osmotic flow directed from above the UME 
toward the center of the UME (when current is passing with low supporting electrolyte 
concentration).5 Anisotropic objects like the GNPs preferentially orientate their long axis along this 
flow and thus arrive perpendicularly to the UME as described in our simulations. The ill-defined shape 
of the GNP is expected to introduce uncertainties in the absolute value of simulated currents. However, 
the relative variations of current are expected to be captured by the simulation. The calculation of the 
velocity of GNP approaching the UME is described step by step in Figure S13. 

Figure S13 A shows the simulated bipolar feedback current as a function of the GNP-UME distance d/a. 
We used the red line as a simulated approach curve to deduce the distance d at every time during the 
chronoamperogram (the red line in Figure S13B). The distance d with respect to time is then plotted 
in Figure S13 C (black line). Then, we calculate the derivative of the black line to obtain the 
instantaneous velocity of the GNP along the direction normal to the surface (Vz), as shown in the red 
line on the right axis. Finally, the velocity Vz as a function of d (on a semi-log scale) is represented in 
Figure S13 D. Several µm from the surface the GNP seems to accelerate and then, at d = 0.5 µm 
decelerate from 10-15 µm/s to few µm/s.

Figure S13. The procedure to calculate the velocity of GNP. (A) Simulated bipolar feedback current (blue dots) as 
a function of the GNP-UME distance d/a. (B) Normalized current trace by subtracting the baseline current (see 
Movie S2). The red line is the smoothed current trace and the truncated area (between yellow and violet dashed 
lines) corresponds to the ranges of 0.1% ~ 0.6% of bipolar feedback current in (A). (C) The black line shows the 
relation of d with respect to every time, and the red line is found by calculating the time-derivative of the black 
line.  (D) The velocity of GNP plotted as a function of d on a semi-log scale. 
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14. Calculation of the Peclet number

The Peclet number, Pe, is defined as 

𝑃𝑒 =  
𝑑𝑣
𝐷

where d is the characteristic length of the system, v is the velocity and D is the diffusion coefficient. 
For a characteristic distance of 2 µm between the GNP and the surface of the electrode, the velocity is 
about 10 µm/s while at 0.1 µm we measure v = 1 µm/s.

For a prolate spheroidal object of long axis 2a and short axis 2b the diffusion coefficient along the 
direction of the long axis, , and along the short axis, , are given by the expression6-9𝐷 ∥ 𝐷 ⊥

𝐷 ∥ , ⊥ =
𝑘𝑇

6𝜋𝜂𝑏𝐺 ∥ , ⊥

where k, T and η are the Boltzman constant, the temperature and the dynamic viscosity. The 
parameter G is defined as

𝐺 ∥ =
8
3[ 2𝑝

1 ‒ 𝑝2
+

2𝑝2 ‒ 1

(𝑝2 ‒ 1)3 2
𝑙𝑛(𝑝 + 𝑝2 ‒ 1

𝑝 ‒ 𝑝2 ‒ 1)] ‒ 1

𝐺 ⊥ =
8
3[ 𝑝

𝑝2 ‒ 1
+

2𝑝2 ‒ 3

(𝑝2 ‒ 1)3 2
𝑙𝑛(𝑝 + 𝑝2 ‒ 1)] ‒ 1

where p=a/b.

Since we consider the motion of the GNP mainly along the main axis (as shown in the video) we will 

use  cm2/s. We finally calculate Pe (@ 1 µm) = 10 and Pe (@ 0.1 µm) = 0.2.𝐷 ∥ =  10 ‒ 8
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