Supporting Information

Ruthenium(II)-Catalyzed Regioselective 1,6-Conjugate Addition of Umpolung Aldehydes as Carbanion Equivalents

Hyotaik Kang and Chao-Jun Li*

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, Canada H3A OB8

correspondence E-mail: cj.li@mcgill.ca

Table of Contents

1. General Experimental Information. 3
2. Experimental Procedures 4
3. Optimization for the Reaction Conditions 6
4. Synthesis of Starting Materials 9
5. Chemoselective Competition Experiment 9
6. Deuterium-Labelling Studies 10
7. ${ }^{13} \mathrm{C}$-Labelling Study 15
8. Product and Starting Material Characterization 17
9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra. 34
10. HPLC Chromatograph 93
11. References 94

1. General Experimental Information

Solvents: Tetrahydrofuran (THF) was taken from Pure Solvent MD-7 purification system from Innovative Technology in a dry round bottom flask with activated $5 \AA$ molecular sieves beads activated in the oven at $380^{\circ} \mathrm{C}$ for at least 12 h before use and purchased from Millipore Sigma. Solvents for filtration, transfers, and chromatography, were acetone (ACS grade), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (ACS grade), ethyl acetate (EtOAc) (ACS grade), hexane (Fisher, ACS grade), pentane (ACS grade), methanol (ACS grade), and chloroform (ACS grade).

Purification: All work-up and purification procedures were carried out with reagent-grade solvents. Analytical thin-layer chromatography (TLC) was performed using E. Merck silica gel $60 \mathrm{~F}_{254}$ pre-coated plates (0.25 mm). Flash column chromatography was performed with E. Merck silica gel P60 (40-63 $\mu \mathrm{m}$ particle size, $230-400$ mesh $)\left(\mathrm{SiO}_{2}\right)$. Visualization was accomplished with UV light. Automated flash column chromatography was performed on Biotage Isolera ${ }^{\text {TM }}$ Spektra Systems with $\mathrm{ACI}^{\text {TM }}$.

Chemicals: In the model study, benzaldehyde (Millipore Sigma) was distilled before use. Other commercially available chemicals are purchased from Millipore Sigma, Alfa Aesar, Oakwood Chemicals, Thermo Fisher Scientific, and Santa Cruz Biotechnology and used without further purification.

NMR Spectroscopy: Nuclear magnetic resonance (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$) spectra were recorded on a Bruker AV500 equipped with a 60-position Sample Xpress sample changer (${ }^{1} \mathrm{H}, 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125 \mathrm{MHz},{ }^{19} \mathrm{~F} 471 \mathrm{MHz}$). Chemical shifts are expressed in parts per million (ppm) units downfield from TMS, with the solvent residue peak as the chemical shift standard (CDCl_{3} : $\delta 7.26 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$ NMR, $\delta 77.0 \mathrm{ppm}$ in ${ }^{13} \mathrm{C}$ NMR). Data are reported as following: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{t}=$ triplet, $\mathrm{td}=$ triplet of doublets, $\mathrm{q}=$ quartet, quint $=$ quintet, sext = sextet, sept = septet, $m=$ multiplet, $b r=$ broad singlet $)$, coupling constants $J(\mathrm{~Hz})$, and integration.

Mass Spectrometry: EI-MS was obtained from the Agilent GC-MS system. High-Resolution Mass (HRMS) spectra were performed by the McGill Chemistry Department Mass Spectrometry Facility and were recorded using electrospray ionization (ESI+) and/or atmospheric pressure chemical ionization $\mathrm{APCI}(+/-)$, performed either on an "Exactive Plus Orbitrap" ThermoScientific high-resolution accurate mass (HR/AM) FT mass spectrometer, or a Bruker Daltonics Maxis Impact quadrupole-time of flight (QTOF) mass spectrometer. Protonated molecular ions (M+H) ${ }^{+}$or sodium adducts $(\mathrm{M}+\mathrm{Na})^{+}$were used for empirical formula confirmation.

2. Experimental Procedures

2.1 Preparation of hydrazone solution

Hydrazone solution (1.25 M): Dry THF (1.0 mL) was added first into a small vial with a stir bar. Hydrazine monohydrate $(2.3 \mathrm{mmol}, 111.6 \mu \mathrm{~L}, 64-65 \mathrm{wt} \%)$ was added into the vial at $0^{\circ} \mathrm{C}$. Then, the corresponding aldehyde 1 (1.5 mmol) was added dropwise into the stirred solution and the mixture was stirred for 30 minutes. The solution was warmed to room temperature and stirred for an additional 3 h with the addition of a proper amount of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for water removal.
2.2 General procedure for the regioselective 1,6-conjugate addition reaction

In a flame-dried or oven-dried V-shaped microwave reaction vial (2.0 mL) equipped with a Teflon-coated magnetic stirring bar, electron-deficient diene $3(0.2 \mathrm{mmol})$, $\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{RuCl}_{2}(0.003 \mathrm{mmol}, 3.7 \mathrm{mg}, 1.5 \mathrm{~mol} \%)$, dppe (0.006 mmol , $2.4 \mathrm{mg}, 3.0 \mathrm{~mol} \%)$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.01 \mathrm{mmol}, 1.1 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$ were charged. The vial was sealed and transferred into the glovebox and charged with hydrazone solution 2 (1.25 M THF solution, $240 \mu \mathrm{~L}, 1.5$ equiv), CsF (0.2 mmol , 30.4 mg , 1.0 equiv), and dry THF ($100 \mu \mathrm{~L}$). The vial was sealed with aluminum seals with PTFE-faced silicone septa, under an atmosphere of nitrogen. The mixture was stirred for 16 h under N_{2} at $60^{\circ} \mathrm{C}$. After completion, the solution was filtered by celite with DCM as eluent, concentrated, and purified by silica gel thin-layer chromatography (TLC) to give the corresponding product.

2.3 General procedure for the enantioselective 1,6-addition reaction

In a flame-dried or oven-dried V-shaped microwave reaction vial (2.0 mL) equipped with a Teflon-coated magnetic stirring bar, electron-deficient diene 3a ($0.2 \mathrm{mmol}, 46.8 \mathrm{mg}$), (PPh_{3}) ${ }_{4} \mathrm{RuCl}_{2}(0.0015 \mathrm{mmol}, 1.8 \mathrm{mg}, 0.75 \mathrm{~mol} \%$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.01 \mathrm{mmol}, 1.1 \mathrm{mg}, 5.0 \mathrm{~mol} \%$) were charged. The vial was sealed and transferred into the glovebox and charged with hydrazone solution $\mathbf{2 a}(1.25 \mathrm{M}$ THF solution, $320 \mu \mathrm{~L}, 2.0$ equiv), (S,S)-Ph-BPE ($0.006 \mathrm{mmol}, 3.0 \mathrm{mg}, 3.0$ $\mathrm{mol} \%)$, CsF ($0.2 \mathrm{mmol}, 30.4 \mathrm{mg}, 1.0$ equiv), and dry THF ($100 \mu \mathrm{~L}$). The vial was sealed with aluminum seals with PTFEfaced silicone septa, under a nitrogen atmosphere. The mixture was stirred for 48 h under N_{2} at $0^{\circ} \mathrm{C}$. After completion, the solution was filtered by celite with DCM as eluent, concentrated, and purified by silica gel TLC to give the corresponding product. The enantiomeric excess (ee \%) was determined by HPLC.

2.4 Gram-scale synthesis of 4a

In a flame-dried screw-capped pressure reaction vial (15 mL) equipped with a Teflon-coated magnetic stirring bar, electron-deficient diene $\mathbf{3 a}(5 \mathrm{mmol}, 1.17 \mathrm{~g})$, $\left(\mathrm{PPh}_{3}\right) 4 \mathrm{RuCl}_{2}(0.0375 \mathrm{mmol}, 45.9 \mathrm{mg}, 0.75 \mathrm{~mol} \%)$, dppe (0.075 mmol ,
$29.9 \mathrm{mg}, 1.5 \mathrm{~mol} \%$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.25 \mathrm{mmol}, 26.5 \mathrm{mg}, 5.0 \mathrm{~mol} \%$) were charged. The vial was sealed and transferred into the glovebox, and charged with hydrazone solution $\mathbf{2 a}$ (1.25 M THF solution, $6.0 \mathrm{~mL}, 1.5$ equiv), CsF (5 mmol , $759.5 \mathrm{mg}, 1.0$ equiv), and dry THF (2.5 mL). The vial was sealed with a rubber O-ring attached screwcap under a nitrogen atmosphere. The mixture was stirred for 24 h under N_{2} at $60^{\circ} \mathrm{C}$. After completion, the reaction mixture was then filtered by celite with DCM as eluent, concentrated, and purified by automated flash column chromatography (hexanes/ethyl acetate 9:1) to give the desired product 4a as yellow crystal (1.45 g, 89\% yield).

3. Optimization for the Reaction Conditions

Table S1. Evaluation of different bases ${ }^{\text {a }}$

Entry	Base (5.0 mol\%)	Yield (\%)
1	KOtBu	48
2	LiOtBu^{2}	47
3	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	52
4	CaCO_{3}	58
5	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	57
6	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	55
7	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	62
8	-	15

${ }^{\text {and }}$ Reaction conditions: $\mathbf{2 a}$ (1.25 M THF solution, 1.5 equiv), $\mathbf{3 a}$ (0.2 mmol), [Ru(p-cymene) $\left.\mathrm{Cl}_{2}\right]_{2}(0.003 \mathrm{mmol}, 1.5 \mathrm{~mol} \%)$, dmpe (0.006 $\mathrm{mmol}, 3.0 \mathrm{~mol} \%$), base ($0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), CsF ($0.2 \mathrm{mmol}, 1.0$ equiv), dry THF ($100 \mu \mathrm{~L}$), $60^{\circ} \mathrm{C}$, 12 h , and under N_{2}. Yields determined by crude ${ }^{1} \mathrm{H}$ NMR using mesitylene as an internal standard.

Table S2. Evaluation of catalyst ${ }^{\text {a }}$

Entry	Catalyst (1.5 mol\%)	Yield (\%)
1	[Ru(p-cymene) $\left.\mathrm{Cl}_{2}\right]_{2}$	62
2	[Ru(COD) Cl_{2}]n	56
3	$\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{RuCl}_{2}$	66
4	$[\mathrm{Rh}(\mathrm{nbd}) \mathrm{Cl}]_{2}$	7
5	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	7
6	[$\left.\mathrm{Cp}{ }^{*} \mathrm{RhCl}_{2}\right]_{2}$	20
7	[$\left.\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}$	15

${ }^{2}$ Reaction conditions: 2a (1.25 M THF solution, 1.5 equiv), $\mathbf{3 a}$ (0.2 mmol), catalyst ($0.003 \mathrm{mmol}, 1.5 \mathrm{~mol} \%$), dmpe ($0.006 \mathrm{mmol}, 3.0$ $\mathrm{mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), CsF ($0.2 \mathrm{mmol}, 1.0$ equiv), dry $\mathrm{THF}(100 \mu \mathrm{~L}), 60^{\circ} \mathrm{C}, 12 \mathrm{~h}$, and under N_{2}. Yields determined by crude ${ }^{1} \mathrm{H}$ NMR using mesitylene as an internal standard.

Table S3. Evaluation of ligands ${ }^{\text {a }}$

Entry	Ligand (3.0 mol \%)	Yield (\%)
1	SL1	30
2	SL2	66
3	SL3	51
4	SL4	53
5	SL5	86
6	SL6	56
7	SL7	61
8	SL8	43
9	SL9	54

${ }^{2}$ Reaction conditions: 2a (1.25 M THF solution, 1.5 equiv), $\mathbf{3 a}(0.2 \mathrm{mmol})$, $\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{RuCl}_{2}(0.003 \mathrm{mmol}, 1.5 \mathrm{~mol} \%)$, ligand (0.006 mmol , $3.0 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), CsF (0.2 mmol , 1.0 equiv), dry THF ($100 \mu \mathrm{~L}$), $60^{\circ} \mathrm{C}, 12 \mathrm{~h}$, and under N_{2}. Yields determined by crude ${ }^{1} \mathrm{H}$ NMR using mesitylene as an internal standard.

SL1 dppm
Bis(diphenylphosphino)methane

1,2-Bis(dicyclohexylphosphino)ethane

SL7 dppp
1,3-Bis(diphenylphosphino)propane

Me
SL2 dmpe
1,2-Bis(dimethylphosphino)ethane

Ph
SL5 dppe
1,2-Bis(diphenylphosphino)ethane

SL8 dcpb
1,4-Bis(dicyclohexylphosphino)butane

Et
SL3 depe
1,2-Bis(diethylphosphino)ethane
Cy Cy

SL6 dcpp
1,3-Bis(dicyclohexylphosphino)propane

Figure S1. Ligands in Tables S3.

Table S4. Evaluation of different experimental parameters ${ }^{\text {a }}$

${ }^{\text {a Reaction conditions: }} \mathbf{2 a}\left(1.25 \mathrm{M}\right.$ THF solution, 1.5 equiv), 3 a (0.2 mmol), $\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{RuCl}_{2}$ ($0.003 \mathrm{mmol}, 1.5 \mathrm{~mol} \%$), dmpe (0.006 mmol , $3.0 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), CsF ($0.2 \mathrm{mmol}, 1.0$ equiv), dry THF ($100 \mu \mathrm{~L}$), $60^{\circ} \mathrm{C}, 12 \mathrm{~h}$, and under N_{2}. Yields determined by crude ${ }^{1} \mathrm{H}$ NMR using mesitylene as an internal standard.

Table S5. Evaluation of asymmetric reaction conditions ${ }^{\text {a }}$

Entry		Chiral ligand		ee (\%)	Yield (\%)
1		SCL1		0	51
2		SCL2		0	43
3		SCL3		0	54
4		SCL4		0	28
5		SCL5		0	46
6		SCL6		0	55
7		SCL7		0	91
8		SCL8		0	52
9		SCL9		19	59
$10^{\text {b }}$		SCL9		44	55
$11^{\text {c }}$		SCL9		98	28

${ }^{\text {a Reaction conditions: }} \mathbf{2 a}\left(1.25 \mathrm{M}\right.$ THF solution, 1.5 equiv), 3 a (0.2 mmol), $\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{RuCl}_{2}(0.0015 \mathrm{mmol}, 0.75 \mathrm{~mol} \%), \mathrm{CL}(0.003 \mathrm{mmol}$, $1.5 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), CsF ($0.2 \mathrm{mmol}, 1.0$ equiv), dry THF ($100 \mu \mathrm{~L}$), $60^{\circ} \mathrm{C}, 16 \mathrm{~h}$, and under N_{2}. Yields determined by crude ${ }^{1} \mathrm{H}$ NMR using mesitylene as an internal standard. ${ }^{\mathrm{b}} 40^{\circ} \mathrm{C} .{ }^{\circ} 0^{\circ} \mathrm{C}, 48 \mathrm{~h}, \mathbf{2 a}(1.25 \mathrm{M} \mathrm{THF}$ solution, 2.0 equiv), SCL9 $3.0 \mathrm{~mol} \%$.

SCL1
(R^{\prime}) -Josiphos

SCL2
(S'S)-iPr-PyBox type

SCL3
($R^{\prime} R$)-DPEN

SCL4
(S)-SEGPHOS

SCL8
(S'S)_iPr-BPE

SCL9
(S'S)-Ph-BPE

Figure S2. Chiral ligands in Table S5.

4. Synthesis of Starting Materials

The general procedures are demonstrated by the synthesis of (E, E)-cinnamylideneacetophenone, and other conjugated ketones are synthesized in similar methods with the appropriate substitution of acetophenone or cinnamaldehyde. The starting materials $\mathbf{3 I}$ and $\mathbf{3 m}$ are synthesized following a different method according to reported literature. ${ }^{3}$

Synthesis of (E, E)-cinnamylideneacetophenone (3a): The methods used were according to reported literature. ${ }^{1,2}$ To a 50 mL round-bottom flask charged with a magnetic stir bar, acetophenone ($4.0 \mathrm{mmol}, 466.6 \mu \mathrm{~L}$), 20 mL methanol, and sodium hydroxide ($6 \mathrm{mmol}, 240 \mathrm{mg}, 1.5$ equiv) were slowly added and cooled to $0^{\circ} \mathrm{C}$. After cooling the solution to $0^{\circ} \mathrm{C}$, cinnamaldehyde ($4.8 \mathrm{mmol}, 604.1 \mu \mathrm{~L}, 1.2$ equiv) was added dropwise under constant stirring. The mixture was brought to room temperature and stirred for an additional 20 h . After completion of the reaction, the mixture was quenched by water and dilute hydrochloric acid (1 M). The obtained precipitate was filtered, washed with cooled methanol, and purified by silica gel chromatography. The purity of the product was determined by ${ }^{1} \mathrm{H}$ NMR and recrystallized from ethanol if needed. The 3a was isolated as yellow crystals (80% yield) and shown to match analytical data to those previously reported. ${ }^{1,2}$

5. Chemoselective Competition Experiment

A competition experiment was designed with a 1:1:1 mixture of (E, E)-cinnamylideneacetophenone (3a), (E)-chalcone (3ab), and benzophenone (3ac). In a flame-dried or oven-dried V-shaped microwave reaction vial (2 mL) equipped with a Teflon-coated magnetic stirring bar, $\mathbf{3 a}$ ($0.1 \mathrm{mmol}, 23.4 \mathrm{mg}, 1.0$ equiv), 3 ab ($0.1 \mathrm{mmol}, 20.8 \mathrm{mg}, 1.0$ equiv), 3 ac (0.1 $\mathrm{mmol}, 18.2 \mathrm{mg}, 1.0$ equiv), $\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{RuCl}_{2}(0.0015 \mathrm{mmol}, 1.8 \mathrm{mg}, 1.5 \mathrm{~mol} \%$, $)$, dppe ($0.003 \mathrm{mmol}, 1.2 \mathrm{mg}, 3.0 \mathrm{~mol} \%$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.005 \mathrm{mmol}, 0.5 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$ were charged. The vial was transferred into the glovebox and charged with hydrazone solution ($1.25 \mathrm{M}, 80 \mu \mathrm{~L}, 1.0$ equiv), CsF ($0.1 \mathrm{mmol}, 15.2 \mathrm{mg}, 1.0$ equiv), and $100 \mu \mathrm{~L}$ of dry THF and then sealed with a PTEF-faced silicone septum under N_{2} atmosphere. The reaction system was then heated to $60^{\circ} \mathrm{C}$ in an oil bath. After completion, the solution was filtered by celite, concentrated, and the yield was determined by ${ }^{1} \mathrm{H}$ NMR with dibromomethane as the internal standard (4a 70\%, 4ab 24\%, and 4ac n.d.), we observed high chemoselectivity for the 1,6-addition.

6. Deuterium-Labelling Studies

The deuterated hydrazone 2a-d was synthesized according to the literature. ${ }^{4}$ Hydrazone 2-d (90\% D): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{br}, 0.20 \mathrm{H}) .{ }^{2} \mathrm{H}$ NMR ($77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.45$
The other operations were following the general procedures at 0.1 mmol scale. $4 \mathrm{a}-\mathrm{d}(31.2 \mathrm{mg}, 96 \%)$. Isolated by preparative TLC. Percent deuterium (\% D) incorporation was depicted as the amount of deuterium in place of the combined hydrogen atoms at that site. 4a-d: ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.48$ $-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.33-6.29(\mathrm{~m}, 1 \mathrm{H}), 6.18-6.13(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dt}, \mathrm{J}=8.1$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.04(\mathrm{~m}, 1.70 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 0.50 \mathrm{H})$. HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{D}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$ 351.1688; found: 351.1685. Deuterium incorporation was determined by ${ }^{1} \mathrm{H}$ NMR.

The deuterated hydrazone 2a-d5 was synthesized according to the literature. ${ }^{4}$ Hydrazone $\mathbf{2 - d _ { 5 }}$ ($99 \% \mathrm{D}$): ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 $\left.\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 0.01 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 0.01 \mathrm{H}), 7.36(\mathrm{~s}, 0.01 \mathrm{H}), 5.52(\mathrm{br}, 2 \mathrm{H}) .{ }^{2} \mathrm{H} \mathrm{NMR} \mathrm{(77} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ठ 7.89, 7.56, 7.38.
The other operations were following the general procedures at 0.1 mmol scale. $4 \mathrm{a}-\mathrm{d}_{5}$ ($31.8 \mathrm{mg}, 96 \%$). Isolated by preparative TLC. Percent deuterium (\% D) incorporation was depicted as the amount of deuterium in place of the combined hydrogen atoms at that site. 4a-d5: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.87 (dd, J = 8.4, 1.3 Hz, 2H), $7.55-7.51$ $(\mathrm{m}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{dd}, \mathrm{J}=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dt}, \mathrm{J}=$ $15.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.26(\mathrm{dt}, \mathrm{J}=8.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.06(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.86(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H})$. HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{D}_{5} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 354.1877$; found: 354.1883. Deuterium incorporation was determined by ${ }^{1} \mathrm{H}$ NMR.

7. ${ }^{13} \mathrm{C}$-Labelling Study

Hydrazone 2a- ${ }^{13} \mathrm{C}:{ }^{\mathbf{1}} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, \mathrm{~J}=156 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H})$, 7.32 - 7.27 (m, 1H), 5.52 (br, 2H).

The other operations were following the general procedures at 0.1 mmol scale. $\mathbf{4 a}-{ }^{13} \mathbf{C}(31.2 \mathrm{mg}, 96 \%)$. Isolated by preparative TLC. $\mathbf{4 a -}{ }^{13} \mathbf{C}$: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.88 (dd, J = 8.4, $1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42$ (m, 2H), $7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.29(\mathrm{dd}, \mathrm{J}=15.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.15(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dt}, \mathrm{J}=8.1$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.72(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.2,139.4,137.4,137.2,132.9,132.7,130.2,129.4,129.4,128.5,128.4,128.4,128.3$,
128.0, 127.1, 126.2, 126.1, 42.9, 41.4, 40.4. HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{23}{ }^{13} \mathrm{CH}_{22} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 350.1596$; found: 350.1603.

8. Product and Starting Material Characterization

8.1 1,6-conjugate addition electrophilic substrates

3a
(2E,4E)-1,5-diphenylpenta-2,4-dien-1-one (3a)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.13$ - 7.08 (m, 1H), 7.07 - 7.03 (m, 2H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 190.5,144.8,141.9,138.2,136.1,132.6,129.2,128.8,128.6,128.4,127.3,126.9,125.4$. HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$235.1117; found: 235.1119.

3b
(2E,4E)-1-(4-fluorophenyl)-5-phenylpenta-2,4-dien-1-one (3b)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.21$ $-7.15(m, 2 H), 7.11-7.03(m, 3 H)$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.8,165.5(\mathrm{~d}, \mathrm{~J}=254.1 \mathrm{~Hz}), 145.1,142.2,136.1,134.5(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 131.0(\mathrm{~d}, \mathrm{~J}=$ $9.1 \mathrm{~Hz}), 129.3,128.9,127.4,126.8,124.9,115.7(\mathrm{~d}, \mathrm{~J}=22.3 \mathrm{~Hz})$.
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{FONa}[\mathrm{M}+\mathrm{Na}]^{+} 275.0847$; found: 275.0843.

3c
(2E,4E)-1-(4-chlorophenyl)-5-phenylpenta-2,4-dien-1-one (3c)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42$ $-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.06-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.63-6.44(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.1,145.3,142.4,139.0,136.5,136.0,129.8,129.3,128.9,128.9,127.3,126.7,124.8$. HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+} 269.0725$; found: 269.0728.

3d
(2E,4E)-1-(4-bromophenyl)-5-phenylpenta-2,4-dien-1-one (3d)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.9-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.43-$ 7.37 (m, 4H), $7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.51(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.3,145.4,142.4,136.9,136.0,131.9,129.9,129.3,128.9,127.7,127.3,126.7,124.7$.
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+} 313.0223$; found: 313.0220.

3 e
(2E,4E)-1-(4-iodophenyl)-5-phenylpenta-2,4-dien-1-one (3e)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.47$ - 7.29 (m, 4H), $7.08-7.01$ (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.6,145.4,142.4,137.9,137.5,136.0,129.8,129.3,128.9,127.3,126.8,124.7,100.4$. HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{IONa}[\mathrm{M}+\mathrm{Na}]^{+}$382.9903; found: 382.9902.

3f
(2E,4E)-1-(2,6-dichlorophenyl)-5-phenylpenta-2,4-dien-1-one (3f)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.08-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.62-6.42(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.7,147.7,143.0,138.0,135.7,131.9,130.5,129.7,129.6,128.9,128.2,127.5,126.5$.
HRMS (ESI +ve, m/z) Calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$325.0167; found: 325.0157.

$3 g$
(2E,4E)-1-(4-phenoxyphenyl)-5-phenylpenta-2,4-dien-1-one (3g)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.25$ $-7.22(m, 1 H), 7.22-6.90(m, 7 H)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 188.8,161.7,155.6,144.4,141.7,136.2,132.8,130.7,130.1,129.2,128.9,127.3,127.0$, 125.1, 124.6, 120.1, 117.4.

HRMS (APCI +ve, m/z) Calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$327.1380; found: 327.1367.

3h
(2E,4E)-5-phenyl-1-(4-(piperidin-1-yl)phenyl)penta-2,4-dien-1-one (3h)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.19$ $-6.88(\mathrm{~m}, 5 \mathrm{H}), 3.42-3.40(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.8,154.3,142.8,140.5,136.4,130.6,128.8,128.8,127.3,127.3,127.1,125.6,113.3$, 48.6, 25.4, 24.3.

HRMS (APCI +ve, m/z) Calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$318.1780; found: 318.1790.

$3 i$
(2E,4E)-5-(4-methoxyphenyl)-1-phenylpenta-2,4-dien-1-one (3i)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.09-6.90(\mathrm{~m}, 5 \mathrm{H}), 3.84$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.5,160.6,145.4,141.8,138.4,132.5,128.9,128.8,128.5,128.3,124.8,124.2,114.3$, 55.3.

HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$271.1093; found: 271.1105.

3j
(2E,4E)-5-phenyl-1-(thiophen-2-yl)penta-2,4-dien-1-one (3j)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{dd}, \mathrm{J}=3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}$, 3H), 7.21 - 7.19 (m, 1H), 7.09-7.00 (m, 3H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 182.1, 145.7, 144.0, 142.1, 136.1, 133.6, 131.5, 129.2, 128.8, 128.2, 127.3, 126.7, 125.0. HRMS (APCI +ve, m / z) calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 241,0682 \mathrm{~m}$; found: 241.0672.

3k
(2E,4E)-4-methyl-1,5-diphenylpenta-2,4-dien-1-one (3k)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H})$, $7.44-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.8,150.2,140.5,138.5,136.7,134.7,132.6,129.5,128.5,128.4,128.4,127.9,121.5$, 13.9.

HRMS (ESI +ve, m / z) calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$271.1093; found: 271.1105.

31
(2E,4E)-1-phenylhexa-2,4-dien-1-one (3I)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 6.87$ (d, J = $15.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.37-6.23$ (m, 2H), 1.90 (d, J = $6.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) δ 191.0, 145.3, 141.1, 138.3, 132.5, 130.6, 128.5, 128.4, 123.4, 18.9.
HRMS (ESI +ve, m / z) calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$195.0780; found: 195.0784.

(2E,4E)-1-phenylhepta-2,4-dien-1-one (3m)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.35-6.23(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 191.0,147.9,145.5,138.3,132.5,128.5,128.4,128.2,123.6,26.3,12.9$.
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$209.0937; found: 209.0940.

(2E,4E)-1-cyclopropylhexa-2,4-dien-1-one (3n)
Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(\mathrm{tt}, \mathrm{J}=7.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.18-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.95(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ठ 200.1, 142.0, 141.2, 136.1, 129.8, 129.1, 128.9, 127.2, 126.9, 19.55, 11.2.
HRMS (ESI +ve, m / z) calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 221.0937$; found: 221.0944.
8.2 1,6-conjugate addition products

4a
(E)-1,5,6-triphenylhex-3-en-1-one (4a) ($96 \%, 62.5 \mathrm{mg}$)

Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.24$ $-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.28(\mathrm{dd}, \mathrm{J}=15.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dt}, \mathrm{J}=15.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dt}, \mathrm{J}=8.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, \mathrm{~J}$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz} 2 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.1,139.6,137.4,137.2,132.9,132.7,130.2,129.4,128.5,128.4,128.3,128.0,127.1$, 126.2, 126.1, 42.9, 41.3, 40.3.

TLC $\mathbf{R f}_{\mathrm{f}}=0.55$ in hexanes/ethyl acetate 20:1
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$349.1563; found: 349.1574.

(E)-1,5-diphenyl-6-(p-tolyl)hex-3-en-1-one (5) (76\%, 51.6 mg) Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.29$ $-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 5 \mathrm{H}), 6.41-6.33(\mathrm{~m}, 1 \mathrm{H}), 6.20-6.13(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dt}, \mathrm{J}=8.0,7.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.08(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.87-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.2,141.6,137.4,137.3,136.4,135.6,131.5,129.3,129.0,128.5,128.5,128.4,128.0$, 127.0, 126.1, 42.8, 40.9, 40.3, 21.6.

TLC $R_{f}=0.57$ in hexanes/ethyl acetate 20:1
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 363.1719$; found: 363.1729.

(E)-1,5-diphenyl-6-(m-tolyl)hex-3-en-1-one (6) (68\%, 46.2 mg)

Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.20$ $-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.41-6.33(\mathrm{~m}, 1 \mathrm{H}), 6.24-6.16(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dt}, \mathrm{J}=8.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, \mathrm{~J}$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.87-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.2,139.5,138.5,137.8,137.4,137.3,132.1,128.8,128.7,128.5,128.4,128.2,128.0$, 127.0, 126.9, 126.4, 126.1, 42.8, 41.3, 40.3, 21.4.

TLC $\mathbf{R}_{\mathrm{f}}=0.57$ in hexanes/ethyl acetate 20:1
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$363.1719; found: 363.1723.

(E)-1,5-diphenyl-6-(o-tolyl)hex-3-en-1-one (7) (56\%, 38.0 mg)

Appearance: Yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{dd}, \mathrm{J}=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}$, $4 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.36-6.28(\mathrm{~m}, 1 \mathrm{H}), 6.20-6.09(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dt}, \mathrm{J}=8.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, \mathrm{~J}=6.7,2 \mathrm{H})$, $2.89-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.1,138.5,137.9,137.3,137.2,136.4,133.1,130.9,128.5,128.4,128.2,128.0,127.4$, 127.1, 126.3, 126.1, 125.7, 43.2, 39.4, 38.7, 19.6.

TLC $\mathbf{R}_{\mathbf{f}}=0.57$ in hexanes/ethyl acetate 20:1
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$363.1719; found: 363.1721.

(E)-6-(3-isopropylphenyl)-1,5-diphenylhex-3-en-1-one (8) (50\%, 36.8 mg) appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR $\delta 7.87-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 5 \mathrm{H})$, $6.40-6.33(\mathrm{~m}, 1 \mathrm{H}), 6.24-6.17(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dt}, \mathrm{J}=8.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 2 \mathrm{H})$, 2.81 - 2.76 (m, 1H), 1.23 (d, J = $6.9 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.2,146.7,137.4,137.3,136.8,132.9,132.9,130.0,129.3,128.5,128.4,128.0$, 127.0, 126.3, 126.1, 42.8, 40.9, 40.3, 33.7, 24.0.

HRMS (ESI +ve, m / z) calculated for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 391.2032$; found: 391.2039.

(E)-6-(4-methoxyphenyl)-1,5-diphenylhex-3-en-1-one (9) (62\%, 44.2 mg) Appearance: Light yellow solid ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{dd}, \mathrm{J}=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.27(\mathrm{~m}$, $4 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.38-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.22-6.14(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, 3 H), 3.22 (dt, $J=8.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.08(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.84-2.77(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl ${ }_{3}$) $\delta 199.2,158.0,137.4,137.3,132.9,132.8,131.6,130.3,130.1,128.5,128.4,128.0,127.0$, 126.1, 113.7, 55.2, 42.8, 40.5, 40.5.

TLC $\mathbf{R}_{\mathrm{f}}=0.57$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$357.1849; found: 357.1846.

10
(E)-1,5-diphenyl-6-(3,4,5-trimethoxyphenyl)hex-3-en-1-one (10) (57\%, 47.4 mg)

Appearance: Bright yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, \mathrm{J}=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}$, $4 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 2 \mathrm{H}), 6.38-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{dt}, \mathrm{J}=15.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H})$, 3.27 (dt, J = 7.9, 6.9 Hz, 1H), 3.09 (d, J = $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.81-2.79(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.1,152.9,137.3,137.2,136.3,135.2,133.0,132.7,130.2,128.6,128.5,128.0,127.2$, 126.0, 106.3, 60.8, 56.0, 42.6, 41.5, 40.1.

TLC $\mathbf{R}_{\mathrm{f}}=0.57$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 417.2060$; found: 417.2059.

11
(E)-6-(4-(benzyloxy)phenyl)-1,5-diphenylhex-3-en-1-one (11) (56\%, 48.4 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{dd}, \mathrm{J}=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.27(\mathrm{~m}$, $4 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.40-6.31(\mathrm{~m}, 2 \mathrm{H}), 6.23-6.14(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{~s}$, 2 H), 3.22 (dt, J = 8.1, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.08(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.84-2.76(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.2,157.3,144.8,141.9,137.4,137.3,137.1,132.9,132.8,131.9,130.4,130.2,128.5$, 128.4, 128.0, 127.9, 127.5, 127.0, 126.1, 114.7, 70.0, 42.8, 40.5.

TLC $\mathbf{R}_{\mathrm{f}}=0.66$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 433.2162$; found: 433.2156.

12
(E)-6-(benzo[d][1,3]dioxol-5-yl)-1,5-diphenylhex-3-en-1-one (12) (62\%, 45.9 mg)
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, ~\right) ~ \delta 7.89$ (dd, J = 8.4, $1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 4 \mathrm{H}), 7.20-$ $7.16(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{dd}, \mathrm{J}=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.38-6.32(\mathrm{~m}, 1 \mathrm{H}), 6.21-6.13(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H})$, $3.20(\mathrm{dt}, \mathrm{J}=8.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.1,147.5,145.9,137.3,137.2,133.4,132.9,132.6,130.2,128.5,128.4,128.0,127.1$, 126.1, 122.3, 109.6, 108.0, 100.8, 42.8, 41.1, 40.5.

HRMS (ESI +ve, m / z) calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$393.1461; found: 393.1461.

13
(E)-6-(2,3-dihydro-1H-inden-5-yl)-1,5-diphenylhex-3-en-1-one (13) (66\%, 48.3 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.20$ $-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.40-6.33(\mathrm{~m}, 1 \mathrm{H}), 6.26-6.17(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dt}, \mathrm{J}=7.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, \mathrm{~J}=7.4,2 \mathrm{H}), 2.98-$ $2.94(\mathrm{~m}, 4 \mathrm{H}), 2.87-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 199.3,145.0,144.4,142.0,137.5,137.3,137.2,133.1,132.9,128.5,128.4,128.0,127.2$, 126.1, 125.4, 124.6, 42.8, 41.2, 40.4, 33.0, 32.5, 25.4.

TLC $R_{f}=0.45$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 367.1900$; found: 367.1904.

(E)-6-([1,1'-biphenyl]-4-yl)-1,5-diphenylhex-3-en-1-one (14) (88\%, 70.7 mg) Appearance: Light yellow solid
${ }^{1}{ }^{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.20$ $-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.40-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{dt}, \mathrm{J}=15.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dt}, \mathrm{J}=7.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.91-2.89(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 199.1,140.9,139.1,138.7,137.3,137.2,133.0,132.6,130.3,129.8,128.7,128.5,128.4$, 128.0, 127.1, 127.0, 127.0, 127.0, 126.1, 42.9, 41.0, 40.2.

TLC $\mathbf{R}_{\mathbf{f}}=0.47$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$403.2056; found: 403.2055.

15
(E)-1,5-diphenyl-6-(4-(trifluoromethyl)phenyl)hex-3-en-1-one (15) (33\%, 26.1 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, \mathrm{J}=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27$ (m, $3 H), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{dd}, \mathrm{J}=15.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.12(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{dt}, \mathrm{J}=7.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, \mathrm{~J}$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.98-2.85(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 198.7,143.8,137.2,137.1,133.1,131.9,130.7,129.7,128.8,128.6$ ($q, \mathrm{~J}=20.5 \mathrm{~Hz}$), $128.5,128.4,128.0,127.3,126.1(q, J=238.4 \mathrm{~Hz}), 125.1(q, J=3.7 \mathrm{~Hz}), 42.9,41.0,40.1$.
TLC $R_{f}=0.70$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 395.1617$; found: 395.1634.

16
(E)-6-(4-fluorophenyl)-1,5-diphenylhex-3-en-1-one (16) (69\%, 47.3 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.86-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}$, $2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.96-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.33-6.29(\mathrm{~m}, 1 \mathrm{H}), 6.21-6.12(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dt}$, $J=8.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.79(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $)_{3} \delta 198.9,161.0(\mathrm{~d}, \mathrm{~J}=246.5 \mathrm{~Hz}), 139.3,137.2(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}), 135.2(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}),, 133.0$, $132.3,130.5,128.6,128.4,128.3,128.0,127.2,126.1,115.0(d, J=20.9 \mathrm{~Hz}), 42.8,40.5,40.4$.
TLC $\mathbf{R}_{\mathrm{f}}=0.60$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m/z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+} 345.1649$; found: 345.1647.

17
(E)-6-(2-fluorophenyl)-1,5-diphenylhex-3-en-1-one (17) (87\%, 59.8 mg)

Appearance: Light yellow solid
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.07$ $-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.37-6.30(\mathrm{~m}, 1 \mathrm{H}), 6.21-6.14(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{dt}, \mathrm{J}=7.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.92$ (d, J = 6.4 Hz, 2H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 198.9,161.3(\mathrm{~d}, \mathrm{~J}=252.5 \mathrm{~Hz}), 139.2,137.3(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}), 132.9,132.3,131.6(\mathrm{~d}, \mathrm{~J}=$ $4.7 \mathrm{~Hz}), 130.5,128.5,128.4,128.0(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}), 127.9,127.1,126.5,126.1,123.9(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}), 115.3(\mathrm{~d}, \mathrm{~J}=22.5$ $\mathrm{Hz})$, 43.1, 39.7, 34.2.
TLC $\mathbf{R}_{\mathbf{f}}=0.60$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+} 345.1649$; found: 345.1647.

18
(E)-6-(4-chlorophenyl)-1,5-diphenylhex-3-en-1-one (18) (88\%, 63.4 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.23$ $-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.36-6.28(\mathrm{~m}, 1 \mathrm{H}), 6.18-6.11(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.77(\mathrm{~m}$, 2H).
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 198.9,138.1,137.2,133.1,132.2,131.9,130.6,129.7,129.1,128.6,128.4,128.4,128.0$, 127.2, 126.1, 42.8, 40.6, 40.2.

TLC $\mathbf{R}_{\mathbf{f}}=0.65$ in hexane/ethyl acetate 20:1
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClONa}[\mathrm{M}+\mathrm{Na}]^{+}$383.1173; found: 383.1165.

19
(E)-6-(3-chlorophenyl)-1,5-diphenylhex-3-en-1-one (19) (69\%, 49.7 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23$
$-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.36-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.18-6.11(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dt}, \mathrm{J}=8.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 198.8,141.7,137.2,137.2,134.1,133.1,132.1,130.6,129.5,129.4,128.6,128.4,128.0$, 127.6, 127.2, 126.4, 126.1, 42.9, 40.9, 40.1.

TLC $\mathbf{R}_{\mathrm{f}}=0.65$ in hexane/ethyl acetate 20:1
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClONa}[\mathrm{M}+\mathrm{Na}]^{+}$383.1173; found: 383.1179.

20
(E)-6-(2-chlorophenyl)-1,5-diphenylhex-3-en-1-one (20) (73\%, 52.5 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, \mathrm{J}=7.7,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.34$ (dd, J=7.6, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 8 \mathrm{H}), 6.32-6.26(\mathrm{~m}, 1 \mathrm{H}), 6.21-6.15(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{dt}, \mathrm{J}=7.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, \mathrm{~J}=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-2.96(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 198.9,137.4,137.3,137.2,134.3,133.0,132.2,131.5,130.5,129.5,128.5,128.4,128.1$, 127.7, 127.1, 126.6, 126.2, 43.2, 39.5, 38.6.

TLC $\mathbf{R f}_{\mathrm{f}}=0.65$ in hexane/ethyl acetate 20:1
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClONa}[\mathrm{M}+\mathrm{Na}]^{+}$383.1173; found: 383.1173.

21
(E)-6-(2,3-dichlorophenyl)-1,5-diphenylhex-3-en-1-one (21) (46\%, 36.3 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, \mathrm{J}=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.30(\mathrm{~m}$, $1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.32-6.26(\mathrm{~m}, 1 \mathrm{H}), 6.20-6.13(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{dt}, \mathrm{J}=7.7,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.17-2.97(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 198.7,139.9,137.1,137.1,133.2,133.0,132.5,131.8,130.8,129.6,128.6,128.5,128.4$, 128.1, 127.2, 126.9, 126.2, 43.3, 39.5, 39.3.

TLC $R_{f}=0.65$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m/z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$395.0964; found: 395.0967.

22
(E)-6-(4-bromophenyl)-1,5-diphenylhex-3-en-1-one (22) (86\%, 69.5 mg)

Appearance: Bright yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, \mathrm{J}=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.35-6.29(\mathrm{~m}, 1 \mathrm{H}), 6.18-6.11(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{dt}$, $J=8.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~m}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.89-2.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 198.8,138.6,137.2,133.1,132.1,131.3,131.1,130.6,128.6,128.5,128.0,127.2,126.1$, 125.5, 120.0, 42.8, 40.7, 40.1.

TLC $\mathbf{R}_{\mathbf{f}}=0.70$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+} 405.0848$; found: 405.0848 .

23
(E)-6-(2-bromophenyl)-1,5-diphenylhex-3-en-1-one (23) (93\%, 74.9 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, \mathrm{J}=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}$, $6 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.34-6.26(\mathrm{~m}, 1 \mathrm{H}), 6.21-6.16(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{dt}, \mathrm{J}=7.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, 2H), $3.06-2.96(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 198.9,139.2,137.3,137.1,132.9,132.9,132.1,131.6,130.5,128.5,128.4,128.1,127.9$, 127.2, 127.1, 126.2, 120.3, 43.2, 41.1, 39.6.

TLC $\mathbf{R}_{\mathrm{f}}=0.70$ in hexane/ethyl acetate $20: 1$
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BrONa}[\mathrm{M}+\mathrm{Na}]^{+} 427.0668$; found: 427.0652.

24
(E)-6-(2-iodophenyl)-1,5-diphenylhex-3-en-1-one (24) (78\%, 70.5 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{dd}, \mathrm{J}=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.27-6.15(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{dt}, \mathrm{J}=7.8,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.16 (d, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.05-2.95(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 198.9$, 142.4, 139.6, 137.2, 137.1, 133.0, 131.9, 130.7, 130.6, 128.8, 128.6, 128.4, 128.1, 128.1, 127.1, 126.2, 101.4, 45.6, 43.2, 39.9.

TLC $\mathbf{R f}_{\mathrm{f}}=0.70$ in hexane/ethyl acetate 20:1
HRMS ($\mathrm{APCl}+\mathrm{ve}, \mathrm{m} / \mathrm{z}$) Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{IO}[\mathrm{M}+\mathrm{H}]^{+} 453.0710$; found: 453.0713.

25
(E)-6-(4-(dimethylamino)phenyl)-1,5-diphenylhex-3-en-1-one (25) (70\%, 51.7 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{dd}, \mathrm{J}=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}$, $3 H), 7.26-7.25(m, 1 H), 7.19-7.16(m, 1 H), 7.10-7.07(m, 2 H), 6.70-6.68(m, 2 H), 6.39-6.33(m, 1 H), 6.25-6.17$ (m, 1H), $3.21(\mathrm{dt}, \mathrm{J}=8.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 6 \mathrm{H}), 2.84-2.71(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.4,148.8,140.6,137.5,137.3,133.2,132.8,130.0,129.9,128.5,128.4,128.1,126.9$, 126.1, 112.8, 42.8, 40.8, 40.5, 40.4 .

TLC $\mathbf{R}_{\mathbf{f}}=0.59$ in hexane/ethyl acetate 20:1
HRMS ($\mathrm{APCl}+\mathrm{ve}, \mathrm{m} / \mathrm{z}$) Calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 370.1093$; found: 370.1091.

26
(E)-6-(3-nitrophenyl)-1,5-diphenylhex-3-en-1-one (26) (40\%, 29.6 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{dd}, \mathrm{J}=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.35-6.25(\mathrm{~m}, 1 \mathrm{H}), 6.17-6.09(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dt}, \mathrm{J}=7.5,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.16 (d, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.11-2.86$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 198.5,148.2,141.8,137.0,136.9,135.6,133.2,131.4,131.3,129.1,128.7,128.5,128.0$, 127.4, 126.1, 124.1, 121.4, 43.1, 40.8, 40.2.

TLC $\mathbf{R}_{\mathrm{f}}=0.45$ in hexane/ethyl acetate 20:1
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$394.1414; found: 394.1409.

27
(E)-1,5-diphenyl-6-(thiophen-2-yl)hex-3-en-1-one (27) (31\%, 20.6 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, \mathrm{J}=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.48-6.39(\mathrm{~m}, 1 \mathrm{H}), 6.27-6.18(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{dt}, \mathrm{J}=8.1,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.15-3.09(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.8,141.8,137.2,133.0,132.4,130.8,130.0,128.6,128.4,128.0,127.8,127.2,126.7$, 126.2, 123.8, 42.7, 40.3, 35.2.

TLC $\mathbf{R}_{\boldsymbol{f}}=0.65$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 333.1307$; found: 333.1305.

28
(E)-1,5-diphenyl-6-(thiophen-3-yl)hex-3-en-1-one (28) (27\%, 17.9 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, \mathrm{J}=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}$, $3 H), 7.25-7.24(m, 2 H), 7.20-7.17(m, 1 H), 6.99-6.97(m, 2 H), 6.42-6.34(m, 1 H), 6.22-6.15(m, 1 H), 3.29(d t$, $J=7.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 199.0,139.8,137.3,137.2,133.0,132.7,130.3,128.8,128.6,128.4,128.0,127.1,126.1$, 125.3, 121.7, 42.9, 39.6, 35.6.

TLC $\mathbf{R f}_{\mathrm{f}}=0.65$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m/z) Calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 333.1307$; found: 333.1303.

29
(E)-6-(3-bromothiophen-2-yl)-1,5-diphenylhex-3-en-1-one (29) (33\%, 27.0 mg)

Appearance: Light yellow solid
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.21$ $-7.17(m, 1 H), 7.15-7.12(m, 1 H), 7.11-7.08(m, 1 H), 6.90-6.89(m, 1 H), 6.45-6.37(m, 1 H), 6.22-6.16(m, 1 H)$, $3.36(\mathrm{dt}, \mathrm{J}=7.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.05(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 198.5,137.2,137.1,136.6,133.0,131.6,131.1,129.8,128.6,128.4,128.1,127.2,126.2$, 124.0, 110.1, 42.9, 40.0, 34.2.

TLC $\mathbf{R f}_{\mathrm{f}}=0.68$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrOS}[\mathrm{M}+\mathrm{H}]^{+}$411.1304; found: 411.1300.

30
(E)-6-(benzo[b]thiophen-2-yl)-1,5-diphenylhex-3-en-1-one (30) (67\%, 51.2 mg)

Appearance: Light yellow solid
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46$ $-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.51-6.46(\mathrm{~m}, 1 \mathrm{H}), 6.31-6.22(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{dt}, \mathrm{J}=8.0,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 198.7,143.1,140.0,139.7,137.2,137.1,133.0,132.0,130.9,128.6,128.5,128.1,127.3$, 126.2, 124.1, 123.6, 122.9, 122.4, 122.1, 42.7, 39.8, 36.1.

TLC $R_{f}=0.66$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 383.1307$; found: 383.1301.

31
(E)-1,5-diphenyl-6-(pyridin-4-yl)hex-3-en-1-one (31) (86\%, 56.2 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51-8.50(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41$ $-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.35-6.28(\mathrm{~m}, 1 \mathrm{H}), 6.16-6.08(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, 2H), $3.00-2.78$ (m, 2H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.4,150.0148 .2,137.0,136.7,133.3,131.3,131.1,128.7,128.5,128.0,127.5,126.1$, 125.2, 43.0, 40.6, 39.5.

TLC $\mathbf{R}_{\boldsymbol{f}}=0.59$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$328.1823; found: 328.1803.

32
(E)-1,5-diphenyl-6-(pyridin-2-yl)hex-3-en-1-one (32) (76\%, 49.7 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54-8.52(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45$ $-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.36-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.25-6.18(\mathrm{~m}, 1 \mathrm{H})$, 3.49 (dt, J = 8.6, 7.0 Hz, 1H), 3.24-3.07 (m, 4H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 198.9,159.7,149.0,137.3,137.2,136.5,132.9,132.3,130.5,128.5,128.4,128.1,127.1$, 126.1, 123.9, 121.4, 43.3, 43.3, 39.4.

TLC $\mathbf{R f}_{\mathrm{f}}=0.59$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$328.1823; found: 328.1803.

33
(E)-1,5-diphenyl-6-(quinolin-2-yl)hex-3-en-1-one (33) (45\%, 33.9 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.54$ $-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.44-6.36(\mathrm{~m}, 1 \mathrm{H}), 6.30-6.25(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dt}, \mathrm{J}=8.9,7.1$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.31-3.13$ (m, 4H).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.0,160.4,147.8,137.2,137.2,136.3,132.9,132.4,130.4,129.4,128.8,128.5,128.4$, 128.1, 127.5, 127.1, 126.8, 126.2, 125.9, 122.1, 44.2, 43.3, 39.1.

TLC $\mathbf{R f}_{\mathbf{f}}=0.59$ in hexane/ethyl acetate 20:1
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 400.1672$; found: 400.1675.

34
(E)-7-ethyl-1,5-diphenylundec-3-en-1-one (34) (27\%, 18.8 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.28(\mathrm{~s}$, $1 \mathrm{H}), 6.19-6.14(\mathrm{~m}, 1 \mathrm{H}), 6.05-6.02(\mathrm{dt}, \mathrm{J}=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 1 \mathrm{H}), 1.29-$ $1.25(\mathrm{~m}, 11 \mathrm{H}), 0.89-0.86(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 200.1,139.7,136.6,133.6,132.1,128.7,128.5,128.4,128.1,127.7,126.5,45.2,44.4$, 39.2, 36.0, 33.1, 31.7, 29.3, 22.4, 14.0, 10.9.

TLC $R_{f}=0.30$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$349.2212; found: 349.2218.

35
(E)-6-cyclohexyl-1,5-diphenylhex-3-en-1-one (35) (34\%, 22.6 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.25$ $-6.17(m, 1 H), 5.96-5.91(m, 1 H), 3.20(d, J=7.5 \mathrm{~Hz}, 2 H), 2.73-2.62(m, 1 H), 1.51-1.45(m, 2 H), 1.31-1.16(m$, 11H).
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 200.1,140.3,136.6,133.7,132.1,128.7,128.6,128.4,128.1,127.7,126.5,45.2,42.7$, 38.1, 33.4, 25.7, 25.3, 25.0.

TLC $\mathbf{R}_{\mathrm{f}}=0.32$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 333.2056$; found: 333.2060.

36
(E)-1-(4-fluorophenyl)-5,6-diphenylhex-3-en-1-one (36) (49\%, 33.7 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.12$ $-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.37-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.19-6.13(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~d}, \mathrm{~J}=7.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-$ 2.81 (m, 2H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl 3) $\delta 197.4,165.7(\mathrm{~d}, \mathrm{~J}=250.9 \mathrm{~Hz}$), 139.5, 137.3, 134.1, 132.5, $130.7(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}), 130.3$, $128.8,128.5,128.4,128.3,126.3,126.2,115.5(\mathrm{~d}, \mathrm{~J}=22.5 \mathrm{~Hz}), 42.7,41.3,40.3$.
TLC $R_{f}=0.60$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m/z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+}$345.1649; found: 345.1647.

37
(E)-1-(4-chlorophenyl)-5,6-diphenylhex-3-en-1-one (37) (46\%, 33.1 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.22$ $-7.17(\mathrm{~m}, 4 \mathrm{H}), 6.37-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.21-6.13(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dt}, \mathrm{J}=7.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-$ $2.80(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 197.8,139.4,137.2,135.5,134.1,132.4,129.5,129.4,128.8,128.5,128.4,128.3,127.2$, 126.2, 126.1, 42.8, 41.3, 40.4.

TLC $\mathbf{R}_{\mathrm{f}}=0.65$ in hexane/ethyl acetate 20:1
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClONa}[\mathrm{M}+\mathrm{Na}]^{+}$383.1173; found: 383.1179.

38
(E)-1-(4-bromophenyl)-5,6-diphenylhex-3-en-1-one (38) (46\%, 37.2 mg) Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89$ (dd, J = 7.4, $2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.76-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}$, $2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.39-6.33(\mathrm{~m}, 1 \mathrm{H}), 6.23-6.15(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dt}, \mathrm{J}=8.2,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.05 (d, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.92-2.83$ (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.0,139.4,135.9,132.4,131.8,130.4,129.6,129.4,128.8,128.5,128.4,128.3,127.2$, 126.3, 126.1, 42.8, 41.3, 40.4.

TLC $\mathbf{R}_{\mathrm{f}}=0.70$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}$405.0848; found: 405.0848.

39
(E)-1-(4-iodophenyl)-5,6-diphenylhex-3-en-1-one (39) (46\%, 41.6 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21$ $-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.36-6.29(\mathrm{~m}, 1 \mathrm{H}), 6.18-6.12(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dt}, \mathrm{J}=8.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.89$ $-2.80(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.4,139.4,137.8,136.4,134.1,132.4,131.2,130.4,128.8,128.5,128.4,128.3,127.2$, 126.1, 100.9, 42.7, 41.3, 40.4.

TLC $\mathbf{R}_{\mathrm{f}}=0.70$ in hexane/ethyl acetate 20:1
HRMS (ESI +ve, m/z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{IONa}[\mathrm{M}+\mathrm{Na}]^{+} 475.0529$; found: 475.0525.

40
(E)-1-(2,6-dichlorophenyl)-5,6-diphenylhex-3-en-1-one (40) (71\%, 56.0 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 12 \mathrm{H}), 6.34(\mathrm{dd}, \mathrm{J}=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dt}, \mathrm{J}=$ $15.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.33-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.98-2.80(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.7,139.6,139.5,137.4,132.2,130.5,130.5,130.4,129.4,128.4,128.3,128.1,127.1$, 126.2, 126.1, 48.0, 41.1, 38.9.

TLC $\mathbf{R}_{\mathrm{f}}=0.65$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$395.0964; found: 395.0967.

41
(E)-1-(4-phenoxyphenyl)-5,6-diphenylhex-3-en-1-one (41) (48\%, 40.1 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.07$ $-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.37-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{dt}, \mathrm{J}=15.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dt}, \mathrm{J}=8.3,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.03 (d, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6,161.8,155.5,139.6,137.4,132.7,131.9,130.3,130.2,130.0,129.4,128.4,128.3$, 127.1, 126.2, 126.1, 124.5, 120.1, 117.3, 42.6, 41.4, 40.4.

TLC $\mathbf{R}_{\mathrm{f}}=0.66$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 419.2005$; found: 419.2003.

42
(E)-5,6-diphenyl-1-(4-(piperidin-1-yl)phenyl)hex-3-en-1-one (42) (52\%, 42.5 mg) Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 9 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.34$ $-6.29(m, 1 H), 6.20-6.15(m, 1 H), 3.37-3.33(m, 4 H), 3.25(d t, J=7.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-$ $2.80(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.64(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}{ }^{3}$ C NMR (126 MHz, CDCl_{3}) $\delta 197.1,154.3,139.8,137.6,133.2,130.2,129.8,129.5,128.3,128.2,126.9,126.6,126.1$, 126.0, 113.2, 48.6, 42.2, 41.4, 40.6, 25.3, 24.3.

TLC $\mathbf{R}_{\mathbf{f}}=0.60$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 410.2478$; found: 410.2477.

43
(E)-5-(4-methoxyphenyl)-1,6-diphenylhex-3-en-1-one (43) (78\%, 55.5 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{dd}, \mathrm{J}=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{dd}, \mathrm{J}=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dt}, \mathrm{J}=15.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, 3 H), 3.24 ($\mathrm{dt}, \mathrm{J}=8.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06 (d, J = $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.85-2.83(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl ${ }_{3}$) $\delta 199.2,158.8,139.7,137.3,132.9,130.5,130.2,129.5,129.4,128.5,128.3,128.0,127.2$, 126.1, 113.8, 55.2, 43.0, 41.5, 40.3.

TLC $\mathbf{R}_{\mathrm{f}}=0.60$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m/z) Calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$357.1852; found: 357.1849.

44
(E)-5,6-diphenyl-1-(thiophen-2-yl)hex-3-en-1-one (44) (42\%, 27.9 mg) Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.35$ $(\mathrm{dd}, \mathrm{J}=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dt}, \mathrm{J}=15.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 191.9,144.7,139.4,137.3,133.6,132.4,131.8,130.4,129.4,128.4,128.3,128.0,127.1$, 126.2, 126.1, 43.7, 41.3, 40.7.

TLC $\mathbf{R}_{\mathrm{f}}=0.60$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 333.1307$; found: 333.13059.

45
(E)-4-methyl-1,5,6-triphenylhex-3-en-1-one (45) (74\%, 50.3 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, \mathrm{J}=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.13(\mathrm{~m}, 6 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.08(\mathrm{~m}, 3 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 1.86 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.4,140.0,139.0,138.0,137.3,132.9,129.2,128.8,128.5,128.2,128.0,127.9,126.9$, 126.1, 126.0, 47.0, 42.1, 40.1, 15.3.

TLC $\mathbf{R f}_{\mathrm{f}}=0.60$ in hexane/ethyl acetate 20:1
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$363.1719; found: 363.1709.

46
(E)-5-methyl-1,6-diphenylhex-3-en-1-one (46) (63\%, 33.1 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ $7.21(\mathrm{~m}, 3 \mathrm{H}), 5.65-5.56(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.10-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=5.0$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.6,140.0,137.4,133.5,132.8,129.4,128.5,128.2,128.1,126.0,125.5,43.1,41.6$, 40.1, 17.9.

TLC $\mathbf{R}_{\mathbf{f}}=0.50$ in hexane/ethyl acetate 20:1
HRMS (ESI +ve, m / z) Calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$287.1406; found: 287.1407.

47
(E)-5-benzyl-1-phenylhept-3-en-1-one (47) (58\%, 32.2 mg)

Appearance: Light yellow solid
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.20$ $-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.69-5.68(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.04-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.88$ ($\mathrm{m}, 2 \mathrm{H}$), $0.85(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.7,140.0,137.5,132.8,132.8,131.2,129.5,128.5,128.2,128.1,126.0,43.2,41.7$, 40.2, 25.5, 13.7.

TLC $\mathrm{R}_{\mathrm{f}}=0.50$ in hexane/ethyl acetate 20:1
HRMS (ESI +ve, m/z) Calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$301.1562; found: 301.1566.

48
(E)-1-cyclopropyl-5-methyl-6-phenylhex-3-en-1-one (48) (44\%, 25.1 mg)

Appearance: Light yellow solid
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.13(\mathrm{dd}, \mathrm{J}=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dt}, \mathrm{J}=$ $15.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dt}, \mathrm{J}=7.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.66(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.00$ $-0.97(m, 2 H), 0.84-0.81(m, 2 H)$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 209.7,139.6,137.4,132.7,130.2,129.4,128.5,128.3,127.1,126.1,126.1,48.1,41.4$, 40.3, 21.0, 10.8.

TLC $\mathrm{R}_{\mathrm{f}}=0.50$ in hexane/ethyl acetate 20:1
HRMS (APCI +ve, m / z) Calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$291.1743; found: 291.1740.

9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

9.1 1,6-conjugate addition electrophilic substrates

3c

3d

$3 g$

3i

3j

9.2 1,6-conjugate addition products.

14

15

16

18

21

23

24

26

28

29

31

33

37

38

42

43

46

10. HPLC Chromatograph

HPLC instrument: Agilent Technologies 1260 Infinity instrument equipped with a quaternary pump
Column: Chiralpak OD-H, Daicel Corporation ($250 \mathrm{mmL} \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$)
Eluent: Pentane/IPA (98:2)
Flow rate: $0.7 \mathrm{~mL} / \mathrm{min}$
$\lambda=260 \mathrm{~nm}$

4aa
Racemic sample (4a):

Enriched sample (4aa):

11. References

1. K. Lee and D. Y. Oh, Synthesis, 1991, 213-214.
2. C. M. M. Santos, A. M. S. Silva, J. A. S. Cavaleiro, A. Lévai and T. Patonay, E. J. Org. Chem., 2007, 28772887.
3. D. Trubitsõn, J. Martõnova, K. Erkman, A. Metsala, J. Saame, K. Kõster, I. Järving, I. Leito and T. Kanger, Synthesis, 2020, 52, 1047-1059.
4. L. Lv, D. Zhu, Z. Qiu, J. Li and C.-J. Li, ACS Catal., 2019, 9, 9199-9205.
