Supporting Information

Ruthenium(II)-Catalyzed Regioselective 1,6-Conjugate Addition of Umpolung Aldehydes as Carbanion Equivalents

Hyotaik Kang and Chao-Jun Li*

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, Canada H3A 0B8

correspondence E-mail: cj.li@mcgill.ca

Table of Contents

1.	General Experimental Information	3
2.	Experimental Procedures	4
3.	Optimization for the Reaction Conditions	6
4.	Synthesis of Starting Materials	9
5.	Chemoselective Competition Experiment	9
6.	Deuterium-Labelling Studies	.10
7.	¹³ C-Labelling Study	.15
8.	Product and Starting Material Characterization	.17
9.	¹ H and ¹³ C NMR Spectra	.34
10.	HPLC Chromatograph	.93
11.	References	.94

1. General Experimental Information

Solvents: Tetrahydrofuran (THF) was taken from Pure Solvent MD-7 purification system from Innovative Technology in a dry round bottom flask with activated 5 Å molecular sieves beads activated in the oven at 380 °C for at least 12 h before use and purchased from Millipore Sigma. Solvents for filtration, transfers, and chromatography, were acetone (ACS grade), dichloromethane (CH₂Cl₂) (ACS grade), ethyl acetate (EtOAc) (ACS grade), hexane (Fisher, ACS grade), pentane (ACS grade), methanol (ACS grade), and chloroform (ACS grade).

Purification: All work-up and purification procedures were carried out with reagent-grade solvents. Analytical thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F₂₅₄ pre-coated plates (0.25 mm). Flash column chromatography was performed with E. Merck silica gel P60 (40–63 µm particle size, 230–400 mesh) (SiO₂). Visualization was accomplished with UV light. Automated flash column chromatography was performed on Biotage Isolera[™] Spektra Systems with ACI[™].

Chemicals: In the model study, benzaldehyde (Millipore Sigma) was distilled before use. Other commercially available chemicals are purchased from Millipore Sigma, Alfa Aesar, Oakwood Chemicals, Thermo Fisher Scientific, and Santa Cruz Biotechnology and used without further purification.

NMR Spectroscopy: Nuclear magnetic resonance (¹H, ¹³C, and ¹⁹F) spectra were recorded on a Bruker AV500 equipped with a 60-position Sample Xpress sample changer (¹H, 500 MHz; ¹³C, 125 MHz, ¹⁹F 471 MHz). Chemical shifts are expressed in parts per million (ppm) units downfield from TMS, with the solvent residue peak as the chemical shift standard (CDCl₃: δ 7.26 ppm in ¹H NMR, δ 77.0 ppm in ¹³C NMR). Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, td = triplet of doublets, q = quartet, quint = quintet, sext = sextet, sept = septet, m = multiplet, br = broad singlet), coupling constants *J* (Hz), and integration.

Mass Spectrometry: EI-MS was obtained from the Agilent GC-MS system. High-Resolution Mass (HRMS) spectra were performed by the McGill Chemistry Department Mass Spectrometry Facility and were recorded using electrospray ionization (ESI+) and/or atmospheric pressure chemical ionization APCI(+/-), performed either on an "Exactive Plus Orbitrap" ThermoScientific high-resolution accurate mass (HR/AM) FT mass spectrometer, or a Bruker Daltonics Maxis Impact quadrupole-time of flight (QTOF) mass spectrometer. Protonated molecular ions (M+H)⁺ or sodium adducts (M+Na)⁺ were used for empirical formula confirmation.

2. Experimental Procedures

2.1 Preparation of hydrazone solution

Hydrazone solution (1.25 M): Dry THF (1.0 mL) was added first into a small vial with a stir bar. Hydrazine monohydrate (2.3 mmol, 111.6 μ L, 64-65 wt%) was added into the vial at 0 °C. Then, the corresponding aldehyde **1** (1.5 mmol) was added dropwise into the stirred solution and the mixture was stirred for 30 minutes. The solution was warmed to room temperature and stirred for an additional 3 h with the addition of a proper amount of anhydrous Na₂SO₄ for water removal.

2.2 General procedure for the regioselective 1,6-conjugate addition reaction

In a flame-dried or oven-dried V-shaped microwave reaction vial (2.0 mL) equipped with a Teflon-coated magnetic stirring bar, electron-deficient diene **3** (0.2 mmol), (PPh₃)₄RuCl₂ (0.003 mmol, 3.7 mg, 1.5 mol%), dppe (0.006 mmol, 2.4 mg, 3.0 mol%), and Na₂CO₃ (0.01 mmol, 1.1 mg, 5.0 mol%) were charged. The vial was sealed and transferred into the glovebox and charged with hydrazone solution **2** (1.25 M THF solution, 240 μ L, 1.5 equiv), CsF (0.2 mmol, 30.4 mg, 1.0 equiv), and dry THF (100 μ L). The vial was sealed with aluminum seals with PTFE-faced silicone septa, under an atmosphere of nitrogen. The mixture was stirred for 16 h under N₂ at 60 °C. After completion, the solution was filtered by celite with DCM as eluent, concentrated, and purified by silica gel thin-layer chromatography (TLC) to give the corresponding product.

2.3 General procedure for the enantioselective 1,6-addition reaction

In a flame-dried or oven-dried V-shaped microwave reaction vial (2.0 mL) equipped with a Teflon-coated magnetic stirring bar, electron-deficient diene **3a** (0.2 mmol, 46.8 mg), (PPh₃)₄RuCl₂ (0.0015 mmol, 1.8 mg, 0.75 mol%), and Na₂CO₃ (0.01 mmol, 1.1 mg, 5.0 mol%) were charged. The vial was sealed and transferred into the glovebox and charged with hydrazone solution **2a** (1.25 M THF solution, 320 μ L, 2.0 equiv), (*S*,*S*)-Ph-BPE (0.006 mmol, 3.0 mg, 3.0 mol%), CsF (0.2 mmol, 30.4 mg, 1.0 equiv), and dry THF (100 μ L). The vial was sealed with aluminum seals with PTFE-faced silicone septa, under a nitrogen atmosphere. The mixture was stirred for 48 h under N₂ at 0 °C. After completion, the solution was filtered by celite with DCM as eluent, concentrated, and purified by silica gel TLC to give the corresponding product. The enantiomeric excess (ee %) was determined by HPLC.

2.4 Gram-scale synthesis of 4a

In a flame-dried screw-capped pressure reaction vial (15 mL) equipped with a Teflon-coated magnetic stirring bar, electron-deficient diene **3a** (5 mmol, 1.17 g), (PPh₃)₄RuCl₂ (0.0375 mmol, 45.9 mg, 0.75 mol%), dppe (0.075 mmol,

29.9 mg, 1.5 mol%), and Na₂CO₃ (0.25 mmol, 26.5 mg, 5.0 mol%) were charged. The vial was sealed and transferred into the glovebox, and charged with hydrazone solution **2a** (1.25 M THF solution, 6.0 mL, 1.5 equiv), CsF (5 mmol, 759.5 mg, 1.0 equiv), and dry THF (2.5 mL). The vial was sealed with a rubber O-ring attached screwcap under a nitrogen atmosphere. The mixture was stirred for 24 h under N₂ at 60 °C. After completion, the reaction mixture was then filtered by celite with DCM as eluent, concentrated, and purified by automated flash column chromatography (hexanes/ethyl acetate 9:1) to give the desired product **4a** as yellow crystal (1.45 g, 89% yield).

3. Optimization for the Reaction Conditions

	$Ph H^{H_2}$ + $O_{Ph} H^{H_2}$ + $Ph H^{H_2}$ + Ph + P	[Ru(<i>P</i> -cymene)Cl ₂] ₂ (1.5 mol%) dmpe (3.0 mol%) base, CsF (1.0 equiv) THF, 60 °C, 12 h	$\rightarrow \begin{array}{c} 0 \\ Ph \\ Ph \\ 4a \end{array} \begin{array}{c} Ph \\ Ph \\ 4a \end{array}$	
Entry	Base (5.0	mol%)	Yield (%)	
1	KO <i>t</i> Bu		48	
2	LiO <i>t</i> Bu		47	
3	K ₃ PO ₄		52	
4	CaCO ₃		58	
5	K ₂ CO ₃		57	
6	Cs ₂ CO ₃		55	
7	Na ₂ CO ₃		62	
8	-		15	

Table S1. Evaluation of different bases^a

^aReaction conditions: **2a** (1.25 M THF solution, 1.5 equiv), **3a** (0.2 mmol), [Ru(*p*-cymene)Cl₂]₂ (0.003 mmol, 1.5 mol%), dmpe (0.006 mmol, 3.0 mol%), base (0.01 mmol, 5.0 mol%), CsF (0.2 mmol, 1.0 equiv), dry THF (100 μL), 60 °C, 12 h, and under N₂. Yields determined by crude ¹H NMR using mesitylene as an internal standard.

Table S2. Evaluation of catalyst^a

Entry	Catalyst (1.5 mol%)	Yield (%)
1	[Ru(p-cymene)Cl ₂]2	62
2	[Ru(COD)Cl ₂]n	56
3	(PPh₃)₄RuCl₂	66
4	[Rh(nbd)Cl]2	7
5	[Rh(COD)CI]2	7
6	[Cp*RhCl ₂] ₂	20
7	[Cp*IrCl ₂] ₂	15

^aReaction conditions: **2a** (1.25 M THF solution, 1.5 equiv), **3a** (0.2 mmol), catalyst (0.003 mmol, 1.5 mol%), dmpe (0.006 mmol, 3.0 mol%), Na₂CO₃ (0.01 mmol, 5.0 mol%), CsF (0.2 mmol, 1.0 equiv), dry THF (100 μL), 60 °C, 12 h, and under N₂. Yields determined by crude ¹H NMR using mesitylene as an internal standard.

Table S3. Evaluation of ligands^a

Ph

SL7 dppp 1,3-Bis(diphenylphosphino)propane

Entry	Ligand (3.0 mol %)	Yield (%)
1	SL1	30
2	SL2	66
3	SL3	51
4	SL4	53
5	SL5	86
6	SL6	56
7	SL7	61
8	SL8	43
9	SL9	54

^aReaction conditions: **2a** (1.25 M THF solution, 1.5 equiv), **3a** (0.2 mmol), (PPh₃)₄RuCl₂ (0.003 mmol, 1.5 mol%), ligand (0.006 mmol, 3.0 mol%), Na₂CO₃ (0.01 mmol, 5.0 mol%), CsF (0.2 mmol, 1.0 equiv), dry THF (100 μL), 60 °C, 12 h, and under N₂. Yields determined by crude ¹H NMR using mesitylene as an internal standard.

$$\begin{array}{c} Ph_{P} & Me_{P} \\ Ph_{P} & Ph_{P} \\ Ph_{P} & Ph_{P} \\ Ph_{P} & Ph_{P} \\ Ph_{P} & Ph_{P} \\ \hline \\ SL1 \ dppm \\ Bis(diphenylphosphino)methane \\ \hline \\ SL2 \ dmpe \\ 1,2-Bis(dimethylphosphino)ethane \\ \hline \\ \\ Cy_{P} & Ph_{P} \\ Ph_{P}$$

SL8 dcpb 1,4-Bis(dicyclohexylphosphino)butane

Figure S1. Ligands in Tables S3.

Et P Ét

SL3 depe 1,2-Bis(diethylphosphino)ethane

SL6 dcpp 1,3-Bis(dicyclohexylphosphino)propane

SL9 dppb 1,4-Bis(diphenylphosphino)butane

7

Table S4. Evaluation of different experimental parameters^a

Entry	Variation from conditions above	Yield (%)
1	none	86
2	10 h	70
3	16 h	96
4	no CsF	n.d.
5	CsF (0.50 equiv)	75
6	CsF (1.50 equiv)	78
7	40 °C	60
8	80 °C	72
9	diethyl ether	60
10	1,4-dioxane	65
11	2-methyltetrahydrofuran	70

^aReaction conditions: **2a** (1.25 M THF solution, 1.5 equiv), **3a** (0.2 mmol), (PPh₃)₄RuCl₂ (0.003 mmol, 1.5 mol%), dmpe (0.006 mmol, 3.0 mol%), Na₂CO₃ (0.01 mmol, 5.0 mol%), CsF (0.2 mmol, 1.0 equiv), dry THF (100 μL), 60 °C, 12 h, and under N₂. Yields determined by crude ¹H NMR using mesitylene as an internal standard.

Table S5. Evaluation of asymmetric reaction conditions^a

	$Ph H^{2} + Ph Ph Ph H^{2}$	(PPh ₃) ₄ RuCl ₂ (0.75 mol%) chiral ligand (1.5 mol%) Na ₂ CO ₃ (5.0 mol%), CsF (1.0 equiv) THF, 60 °C, 16 h	O Ph Ph 4aa	
Entry	Chiral ligand		ee (%)	Yield (%)
1	SCL1		0	51
2	SCL2		0	43
3	SCL3		0	54
4	SCL4		0	28
5	SCL5		0	46
6	SCL6		0	55
7	SCL7		0	91
8	SCL8		0	52
9	SCL9		19	59
10 ^b	SCL9		44	55
11 ^c	SCL9		98	28

^aReaction conditions: **2a** (1.25 M THF solution, 1.5 equiv), **3a** (0.2 mmol), (PPh₃)₄RuCl₂ (0.0015 mmol, 0.75 mol%), CL (0.003 mmol, 1.5 mol%), Na₂CO₃ (0.01 mmol, 5.0 mol%), CsF (0.2 mmol, 1.0 equiv), dry THF (100 μ L), 60 °C, 16 h, and under N₂. Yields determined by crude ¹H NMR using mesitylene as an internal standard.^b40 °C. °0 °C, 48 h, **2a** (1.25 M THF solution, 2.0 equiv), SCL9 3.0 mol%.

Figure S2. Chiral ligands in Table S5.

4. Synthesis of Starting Materials

The general procedures are demonstrated by the synthesis of (E,E)-cinnamylideneacetophenone, and other conjugated ketones are synthesized in similar methods with the appropriate substitution of acetophenone or cinnamaldehyde. The starting materials **3I** and **3m** are synthesized following a different method according to reported literature.³

Synthesis of (*E*,*E*)-cinnamylideneacetophenone (**3a**): The methods used were according to reported literature.^{1,2} To a 50 mL round-bottom flask charged with a magnetic stir bar, acetophenone (4.0 mmol, 466.6 μ L), 20 mL methanol, and sodium hydroxide (6 mmol, 240 mg, 1.5 equiv) were slowly added and cooled to 0 °C. After cooling the solution to 0 °C, cinnamaldehyde (4.8 mmol, 604.1 μ L, 1.2 equiv) was added dropwise under constant stirring. The mixture was brought to room temperature and stirred for an additional 20 h. After completion of the reaction, the mixture was quenched by water and dilute hydrochloric acid (1 M). The obtained precipitate was filtered, washed with cooled methanol, and purified by silica gel chromatography. The purity of the product was determined by ¹H NMR and recrystallized from ethanol if needed. The **3a** was isolated as yellow crystals (80% yield) and shown to match analytical data to those previously reported.^{1.2}

5. Chemoselective Competition Experiment

A competition experiment was designed with a 1:1:1 mixture of (*E*,*E*)-cinnamylideneacetophenone (**3a**), (*E*)-chalcone (**3ab**), and benzophenone (**3ac**). In a flame-dried or oven-dried V-shaped microwave reaction vial (2 mL) equipped with a Teflon-coated magnetic stirring bar, **3a** (0.1 mmol, 23.4 mg, 1.0 equiv), **3ab** (0.1 mmol, 20.8 mg, 1.0 equiv), **3ac** (0.1 mmol, 18.2 mg, 1.0 equiv), (PPh₃)₄RuCl₂ (0.0015 mmol, 1.8 mg, 1.5 mol%), dppe (0.003 mmol, 1.2 mg, 3.0 mol%), and Na₂CO₃ (0.005 mmol, 0.5 mg, 5.0 mol%) were charged. The vial was transferred into the glovebox and charged with hydrazone solution (1.25M, 80 µL, 1.0 equiv), CsF (0.1 mmol, 15.2 mg, 1.0 equiv), and 100 µL of dry THF and then sealed with a PTEF-faced silicone septum under N₂ atmosphere. The reaction system was then heated to 60 °C in an oil bath. After completion, the solution was filtered by celite, concentrated, and the yield was determined by ¹H NMR with dibromomethane as the internal standard (**4a** 70%, **4ab** 24%, and **4ac** n.d.), we observed high chemoselectivity for the 1,6-addition.

6. Deuterium-Labelling Studies

The deuterated hydrazone **2a-d** was synthesized according to the literature.⁴ Hydrazone **2-d** (90% D): ¹H NMR (500 MHz, CDCl₃) δ 7.75 (s, 1H), 7.56 – 7.54 (m, 2H), 7.37 – 7.33 (m, 2H), 7.32 – 7.28 (m, 1H), 5.49 (br, 0.20H). ²H NMR (77 MHz, CDCl₃) δ 5.45

The other operations were following the general procedures at 0.1 mmol scale. **4a-d** (31.2 mg, 96%). Isolated by preparative TLC. Percent deuterium (% D) incorporation was depicted as the amount of deuterium in place of the combined hydrogen atoms at that site. **4a-d**: ¹H **NMR** (500 MHz, CDCl₃): 7.89 – 7.85 (m, 2H), 7.56 – 7.53 (m, 1H), 7.48 – 7.44 (m, 2H), 7.30 – 7.27 (m, 5H), 7.22 – 7.17 (m, 5H), 6.33 – 6.29 (m, 1H), 6.18 – 6.13 (m, 1H), 3.26 (dt, J = 8.1, 6.7 Hz, 1H), 3.10 – 3.04 (m, 1.70H), 2.90 – 2.83 (m, 0.50H). **HRMS** (ESI +ve, m/z) Calculated for C₂₄H₂₀D₂ONa [M+Na]⁺ 351.1688; found: 351.1685. Deuterium incorporation was determined by ¹H NMR.

The deuterated hydrazone **2a-d**₅ was synthesized according to the literature.⁴ Hydrazone **2-d**₅ (99% D): ¹H NMR (500 MHz, CDCl₃) δ 7.90 (s, 0.01H), 7.75 (s, 1H), 7.59 (s, 0.01H), 7.36 (s, 0.01H), 5.52 (br, 2H). ²H NMR (77 MHz, CDCl₃) δ 7.89, 7.56, 7.38.

The other operations were following the general procedures at 0.1 mmol scale. **4a-ds** (31.8 mg, 96%). Isolated by preparative TLC. Percent deuterium (% D) incorporation was depicted as the amount of deuterium in place of the combined hydrogen atoms at that site. **4a-ds**: ¹**H NMR** (500 MHz, CDCl₃): 7.87 (dd, J = 8.4, 1.3 Hz, 2H), 7.55 – 7.51 (m, 1H), 7.44 – 7.41 (m, 2H), 7.26 – 7.25 (m, 4H), 7.19 – 7.16 (m, 1H), 6.29 (dd, J = 15.9, 8.0 Hz, 1H), 6.15 (dt, J = 15.9, 7.2 Hz, 1H), 3.26 (dt, J = 8.1, 6.7 Hz, 1H), 3.06 (d, J = 7.2 Hz, 2H), 2.86 (d, J = 6.7 Hz, 2H). **HRMS** (ESI +ve, m/2) Calculated for C₂₄H₁₇D₅ONa [M+Na]⁺ 354.1877; found: 354.1883. Deuterium incorporation was determined by ¹H NMR.

7. ¹³C-Labelling Study

Hydrazone **2a-**¹³**C** : ¹**H NMR** (500 MHz, CDCl₃) δ 7.75 (d, *J* = 156 Hz , 1H), 7.59 – 7.53 (m, 2H), 7.37 – 7.33 (m, 2H), 7.32 – 7.27 (m, 1H), 5.52 (br, 2H).

The other operations were following the general procedures at 0.1 mmol scale. **4a**-¹³**C** (31.2 mg, 96%). Isolated by preparative TLC. **4a**-¹³**C**: ¹**H NMR** (500 MHz, CDCl₃): 7.88 (dd, J = 8.4, 1.3 Hz, 2H), 7.56 – 7.52 (m, 1H), 7.45 – 7.42 (m, 2H), 7.35 – 7.27 (m, 5H), 7.24 – 7.16 (m, 5H), 6.29 (dd, J = 15.9, 8.1 Hz, 1H), 6.19 – 6.15 (m, 1H), 3.26 (dt, J = 8.1, 6.7 Hz, 1H), 3.09 (d, J = 7.2 Hz, 2H), 3.00 – 2.72 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.2, 139.4, 137.4, 137.2, 132.9, 132.7, 130.2, 129.4, 129.4, 128.5, 128.4, 128.4, 128.3, 128.0, 127.1, 126.2, 126.1, 42.9, 41.4, 40.4. **HRMS** (ESI +ve, *m/z*) Calculated for C₂₃¹³CH₂₂ONa [M+Na]⁺ 350.1596; found: 350.1603.

Ph

¹³C ∳_Ph

0 Ph

8. Product and Starting Material Characterization

8.1 1,6-conjugate addition electrophilic substrates

(2*E*,4*E*)-1,5-diphenylpenta-2,4-dien-1-one (**3a**) Appearance: Yellow solid

 $^{1}\textbf{H NMR} (500 \text{ MHz}, \text{CDCl}_{3}) \\ \delta 8.03 - 7.98 \text{ (m, 2H)}, \\ 7.65 - 7.57 \text{ (m, 2H)}, \\ 7.53 - 7.49 \text{ (m, 4H)}, \\ 7.41 - 7.33 \text{ (m, 3H)}, \\ 7.13 - 7.08 \text{ (m, 1H)}, \\ 7.07 - 7.03 \text{ (m, 2H)}.$

3a

¹³**C NMR** (126 MHz, CDCl₃) δ 190.5, 144.8, 141.9, 138.2, 136.1, 132.6, 129.2, 128.8, 128.6, 128.4, 127.3, 126.9, 125.4. **HRMS** (APCI +ve, m/z) Calculated for C₁₇H₁₅O [M+H]⁺ 235.1117; found: 235.1119.

(2E,4E)-1-(4-fluorophenyl)-5-phenylpenta-2,4-dien-1-one (**3b**) Appearance: Yellow solid ¹**H NMR** (500 MHz, CDCl₃) δ 8.07 – 8.00 (m, 2H), 7.66 – 7.61 (m, 1H), 7.53 – 7.51 (m, 2H), 7.42 – 7.34 (m, 3H), 7.21 – 7.15 (m, 2H), 7.11 – 7.03 (m, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 188.8, 165.5 (d, J = 254.1 Hz), 145.1, 142.2, 136.1, 134.5 (d, J = 3.0 Hz), 131.0 (d, J = 9.1 Hz), 129.3, 128.9, 127.4, 126.8, 124.9, 115.7 (d, J = 22.3 Hz). HRMS (ESI +ve, m/z) Calculated for C₁₇H₁₃FONa [M+Na]⁺ 275.0847; found: 275.0843.

(2*E*,4*E*)-1-(4-chlorophenyl)-5-phenylpenta-2,4-dien-1-one (**3c**)

Appearance: Yellow solid

 $^{1}\textbf{H NMR} (500 \text{ MHz}, \text{CDCl}_{3}) \\ \delta 8.00 - 7.90 \text{ (m, 2H)}, \\ 7.85 - 7.74 \text{ (m, 1H)}, \\ 7.66 - 7.61 \text{ (m, 1H)}, \\ 7.55 - 7.51 \text{ (m, 2H)}, \\ 7.42 - 7.37 \text{ (m, 4H)}, \\ 7.06 - 7.05 \text{ (m, 2H)}, \\ 6.63 - 6.44 \text{ (m, 1H)}.$

¹³**C NMR** (126 MHz, CDCl₃) δ 189.1, 145.3, 142.4, 139.0, 136.5, 136.0, 129.8, 129.3, 128.9, 128.9, 127.3, 126.7, 124.8. **HRMS** (APCI +ve, *m/z*) Calculated for C₁₇H₁₄ClO [M+H]⁺ 269.0725; found: 269.0728.

(2E, 4E)-1-(4-bromophenyl)-5-phenylpenta-2,4-dien-1-one (3d)

Appearance: Yellow solid

¹H NMR (500 MHz, CDCl₃) δ 7.9 – 7.83 (m, 2H), 7.72 – 7.70 (m, 1H), 7.67 – 7.65 (m, 2H), 7.57 – 7.53 (m, 2H), 7.43 – 7.37 (m, 4H), 7.08 – 7.05 (m, 1H), 6.58 – 6.51 (m, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 189.3, 145.4, 142.4, 136.9, 136.0, 131.9, 129.9, 129.3, 128.9, 127.7, 127.3, 126.7, 124.7. **HRMS** (APCI +ve, *m/z*) Calculated for C₁₇H₁₄BrO [M+H]⁺ 313.0223; found: 313.0220.

(2E,4E)-1-(4-iodophenyl)-5-phenylpenta-2,4-dien-1-one (3e)

Appearance: Yellow solid

¹H NMR (500 MHz, CDCl₃) δ 7.92 – 7.84 (m, 2H), 7.74 – 7.69 (m, 2H), 7.66 – 7.61 (m, 1H), 7.56 – 7.52 (m, 2H), 7.47 – 7.29 (m, 4H), 7.08 – 7.01 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 189.6, 145.4, 142.4, 137.9, 137.5, 136.0, 129.8, 129.3, 128.9, 127.3, 126.8, 124.7, 100.4. **HRMS** (ESI +ve, *m/z*) Calculated for C₁₇H₁₃IONa [M+Na]⁺ 382.9903; found: 382.9902.

(2E,4E)-1-(2,6-dichlorophenyl)-5-phenylpenta-2,4-dien-1-one (3f)

Appearance: Yellow solid

(2*E*,4*E*)-1-(4-phenoxyphenyl)-5-phenylpenta-2,4-dien-1-one (**3g**) Appearance: Yellow solid

¹H NMR (500 MHz, CDCl₃) δ 8.09 – 7.95 (m, 2H), 7.66 – 7.61 (m, 1H), 7.59 – 7.47 (m, 2H), 7.47 – 7.32 (m, 5H), 7.25 – 7.22 (m, 1H), 7.22 – 6.90 (m, 7H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 188.8, 161.7, 155.6, 144.4, 141.7, 136.2, 132.8, 130.7, 130.1, 129.2, 128.9, 127.3, 127.0, 125.1, 124.6, 120.1, 117.4.

HRMS (APCI +ve, *m/z*) Calculated for C₂₃H₁₉O₂ [M+H]⁺ 327.1380; found: 327.1367.

(2E, 4E)-5-phenyl-1-(4-(piperidin-1-yl)phenyl)penta-2,4-dien-1-one (3h)

Appearance: Yellow solid

¹H NMR (500 MHz, CDCl₃) δ 7.99 – 7.94 (m, 2H), 7.63 – 7.58 (m, 1H), 7.53 – 7.51 (m, 2H), 7.41 – 7.32 (m, 3H), 7.19 – 6.88 (m, 5H), 3.42 - 3.40 (m, 4H), 1.69 - 1.61 (m, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 187.8, 154.3, 142.8, 140.5, 136.4, 130.6, 128.8, 128.8, 127.3, 127.3, 127.1, 125.6, 113.3, 48.6, 25.4, 24.3.

HRMS (APCI +ve, *m/z*) Calculated for C₂₂H₂₄NO [M+H]⁺ 318.1780; found: 318.1790.

(2*E*,4*E*)-5-(4-methoxyphenyl)-1-phenylpenta-2,4-dien-1-one (**3i**)

Appearance: Yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 8.02 – 7.97 (m, 2H), 7.65 – 7.56 (m, 2H), 7.52 – 7.45 (m, 4H), 7.09 – 6.90 (m, 5H), 3.84 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 190.5, 160.6, 145.4, 141.8, 138.4, 132.5, 128.9, 128.8, 128.5, 128.3, 124.8, 124.2, 114.3, 55.3.

HRMS (ESI +ve, *m/z*) Calculated for C₁₈H₁₆ONa [M+Na]⁺ 271.1093; found: 271.1105.

(2E,4E)-5-phenyl-1-(thiophen-2-yl)penta-2,4-dien-1-one (3j)

Appearance: Yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.70 – 7.64 (m, 2H), 7.55 – 7.51 (m, 2H), 7.43 – 7.34 (m, 3H), 7.21 – 7.19 (m, 1H), 7.09-7.00 (m, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 182.1, 145.7, 144.0, 142.1, 136.1, 133.6, 131.5, 129.2, 128.8, 128.2, 127.3, 126.7, 125.0. **HRMS** (APCI +ve, *m/z*) calculated for C₁₅H₁₃OS [M+H]⁺ 241,0682m; found: 241.0672.

(2*E*,4*E*)-4-methyl-1,5-diphenylpenta-2,4-dien-1-one (**3k**) Appearance: Yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 8.03 – 8.02 (m, 2H), 7.68 (d, *J* = 15.3 Hz, 1H), 7.62 – 7.59 (m, 1H), 7.54 – 7.51 (m, 2H), 7.44 – 7.40 (m, 4H), 7.35 – 7.32 (m, 1H), 7.09 (d, *J* = 15.3 Hz, 1H), 7.00 (s, 1H), 2.20 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 190.8, 150.2, 140.5, 138.5, 136.7, 134.7, 132.6, 129.5, 128.5, 128.4, 128.4, 127.9, 121.5, 13.9.

HRMS (ESI +ve, *m/z*) calculated for C₁₈H₁₆ONa [M+Na]⁺ 271.1093; found: 271.1105.

(2*E*,4*E*)-1-phenylhexa-2,4-dien-1-one (**3I**)

Appearance: Yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.97 – 7.95 (m, 2H), 7.57 – 7.53 (m, 1H), 7.49 – 7.45 (m, 2H), 7.43 – 7.38 (m, 1H), 6.87 (d, *J* = 15.1 Hz, 1H), 6.37 – 6.23 (m, 2H), 1.90 (d, *J* = 6.4 Hz, 3H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl_3) δ 191.0, 145.3, 141.1, 138.3, 132.5, 130.6, 128.5, 128.4, 123.4, 18.9.

HRMS (ESI +ve, *m/z*) calculated for C₁₂H₁₂ONa [M+Na]⁺ 195.0780; found: 195.0784.

(2*E*,4*E*)-1-phenylhepta-2,4-dien-1-one (**3m**)

Appearance: Yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.57 – 7.52 (m, 1H), 7.49 – 7.37 (m, 3H), 6.89 (d, J = 14.9 Hz, 1H), 6.35 – 6.23 (m, 2H), 2.28 – 2.21 (m, 2H), 1.08 (t, J = 7.4 Hz, 3H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl_3) δ 191.0, 147.9, 145.5, 138.3, 132.5, 128.5, 128.4, 128.2, 123.6, 26.3, 12.9.

HRMS (ESI +ve, *m/z*) Calculated for C₁₃H₁₄ONa [M+Na]⁺ 209.0937; found: 209.0940.

(2*E*,4*E*)-1-cyclopropylhexa-2,4-dien-1-one (**3n**) Appearance: Yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.53 – 7.47 (m, 2H), 7.45 – 7.32 (m, 4H), 7.02 – 6.87 (m, 2H), 6.45 (d, *J* = 15.4 Hz, 1H),

2.20 (tt, J = 7.8, 4.5 Hz, 1H), 1.18 – 1.13 (m, 2H), 0.99 – 0.95 (m, 2H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl_3) δ 200.1, 142.0, 141.2, 136.1, 129.8, 129.1, 128.9, 127.2, 126.9, 19.55, 11.2.

HRMS (ESI +ve, *m/z*) calculated for C₁₄H₁₄ONa [M+Na]⁺ 221.0937; found: 221.0944.

8.2 1,6-conjugate addition products

(*E*)-1,5,6-triphenylhex-3-en-1-one (**4a**) (96%, 62.5 mg)

Appearance: Yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.88 – 7.86 (m, 2H), 7.56 – 7.52 (m, 1H), 7.46 – 7.41 (m, 2H), 7.29 – 7.26 (m, 5H), 7.24 – 7.12 (m, 5H), 6.28 (dd, *J* = 15.9, 8.1 Hz, 1H), 6.16 (dt, *J* = 15.9, 7.2 Hz, 1H), 3.26 (dt, *J* = 8.1, 6.7 Hz, 1H), 3.08 (d, *J* = 7.2 Hz, 2H), 2.86 (d, *J* = 6.7 Hz 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.1, 139.6, 137.4, 137.2, 132.9, 132.7, 130.2, 129.4, 128.5, 128.4, 128.3, 128.0, 127.1, 126.2, 126.1, 42.9, 41.3, 40.3.

TLC R_f = 0.55 in hexanes/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₄H₂₂ONa [M+Na]⁺ 349.1563; found: 349.1574.

(*E*)-1,5-diphenyl-6-(p-tolyl)hex-3-en-1-one (**5**) (76%, 51.6 mg)

Appearance: Yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 – 7.87 (m, 2H), 7.75 – 7.73 (m, 2H), 7.56 – 7.52 (m, 1H), 7.46 – 7.42 (m, 2H), 7.29 – 7.27 (m, 1H), 7.20 – 7.16 (m, 1H), 7.13 – 7.04 (m, 5H), 6.41 – 6.33 (m, 1H), 6.20 – 6.13 (m, 1H), 3.25 (dt, *J* = 8.0, 7.0 Hz, 1H), 3.08 (d, *J* = 6.7 Hz, 2H), 2.87 – 2.78 (m, 2H), 2.32 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.2, 141.6, 137.4, 137.3, 136.4, 135.6, 131.5, 129.3, 129.0, 128.5, 128.5, 128.4, 128.0, 127.0, 126.1, 42.8, 40.9, 40.3, 21.6.

TLC Rf = 0.57 in hexanes/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₅H₂₄ONa [M+Na]⁺ 363.1719; found: 363.1729.

(*E*)-1,5-diphenyl-6-(m-tolyl)hex-3-en-1-one (**6**) (68%, 46.2 mg)

Appearance: Yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 – 7.87 (m, 2H), 7.56 – 7.52 (m, 1H), 7.45 – 7.40 (m, 2H), 7.30 – 7.27 (m, 3H), 7.20 – 7.14 (m, 3H), 7.04 – 7.01 (m, 3H), 6.41 – 6.33 (m, 1H), 6.24 – 6.16 (m, 1H), 3.26 (dt, J = 8.1, 6.8 Hz, 1H), 3.08 (d, J = 6.8 Hz, 2H), 2.87 – 2.78 (m, 2H), 2.31 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.2, 139.5, 138.5, 137.8, 137.4, 137.3, 132.1, 128.8, 128.7, 128.5, 128.4, 128.2, 128.0, 127.0, 126.9, 126.4, 126.1, 42.8, 41.3, 40.3, 21.4.

TLC R_f = 0.57 in hexanes/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₅H₂₄ONa [M+Na]⁺ 363.1719; found: 363.1723.

(*E*)-1,5-diphenyl-6-(o-tolyl)hex-3-en-1-one (7) (56%, 38.0 mg)

Appearance: Yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.57 – 7.53 (m, 1H), 7.45 – 7.43 (m, 2H), 7.26 – 7.23 (m, 4H), 7.17 – 7.09 (m, 5H), 6.36 – 6.28 (m, 1H), 6.20 – 6.09 (m, 1H), 3.25 (dt, *J* = 8.1, 6.8 Hz, 1H), 3.14 (d, *J* = 6.7, 2H), 2.89 – 2.82 (m, 2H), 2.36 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.1, 138.5, 137.9, 137.3, 137.2, 136.4, 133.1, 130.9, 128.5, 128.4, 128.2, 128.0, 127.4, 127.1, 126.3, 126.1, 125.7, 43.2, 39.4, 38.7, 19.6.

TLC $R_f = 0.57$ in hexanes/ethyl acetate 20:1 **HRMS** (ESI +ve, *m/z*) Calculated for $C_{25}H_{24}ONa$ [M+Na]⁺ 363.1719; found: 363.1721.

(*E*)-6-(3-isopropylphenyl)-1,5-diphenylhex-3-en-1-one (**8**) (50%, 36.8 mg)

appearance: Light yellow solid

¹**H NMR** δ 7.87 – 7.85 (m, 2H), 7.55 – 7.52 (m, 1H), 7.44 – 7.41 (m, 2H), 7.29 – 7.24 (m, 4H), 7.20 – 7.14 (m, 5H), 6.40 – 6.33 (m, 1H), 6.24 – 6.17 (m, 1H), 3.25 (dt, *J* = 8.0, 7.2 Hz, 1H), 3.06 (d, *J* = 7.0 Hz, 2H), 2.91 – 2.85 (m, 2H), 2.81 – 2.76 (m, 1H), 1.23 (d, *J* = 6.9 Hz, 6H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 199.2, 146.7, 137.4, 137.3, 136.8, 132.9, 132.9, 130.0, 129.3, 128.5, 128.4, 128.0, 127.0, 126.3, 126.1, 42.8, 40.9, 40.3, 33.7, 24.0.

HRMS (ESI +ve, *m/z*) calculated for C₂₇H₂₈ONa [M+Na]⁺ 391.2032; found: 391.2039.

(E)-6-(4-methoxyphenyl)-1,5-diphenylhex-3-en-1-one (9) (62%, 44.2 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (dd, J = 8.4, 1.3 Hz, 2H), 7.56 – 7.52 (m, 1H), 7.45 – 7.42 (m, 2H), 7.28 – 7.27 (m, 4H), 7.20 – 7.16 (m, 1H), 7.13 – 7.11 (m, 2H), 6.84 – 6.81 (m, 2H), 6.38 – 6.31 (m, 1H), 6.22 – 6.14 (m, 1H), 3.78 (s, 3H), 3.22 (dt, J = 8.1, 7.1 Hz, 1H), 3.08 (d, J = 7.1 Hz, 2H), 2.84 – 2.77 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.2, 158.0, 137.4, 137.3, 132.9, 132.8, 131.6, 130.3, 130.1, 128.5, 128.4, 128.0, 127.0, 126.1, 113.7, 55.2, 42.8, 40.5, 40.5.

TLC R_f = 0.57 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₅H₂₅O₂ [M+H]⁺ 357.1849; found: 357.1846.

(*E*)-1,5-diphenyl-6-(3,4,5-trimethoxyphenyl)hex-3-en-1-one (**10**) (57%, 47.4 mg)

Appearance: Bright yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (dd, J = 8.4, 1.4 Hz, 2H), 7.57 – 7.53 (m, 1H), 7.47 – 7.41 (m, 2H), 7.37 – 7.26 (m, 4H), 7.21 – 7.16 (m, 1H), 6.40 (s, 2H), 6.38 – 6.34 (m, 1H), 6.21 (dt, J = 15.9, 7.1 Hz, 1H), 3.82 (s, 3H), 3.76 (s, 6H), 3.27 (dt, J = 7.9, 6.9 Hz, 1H), 3.09 (d, J = 7.1 Hz, 2H), 2.81 – 2.79 (m, 2H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 199.1, 152.9, 137.3, 137.2, 136.3, 135.2, 133.0, 132.7, 130.2, 128.6, 128.5, 128.0, 127.2, 126.0, 106.3, 60.8, 56.0, 42.6, 41.5, 40.1.

TLC R_f = 0.57 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₇H₂₉O₄ [M+H]⁺ 417.2060; found: 417.2059.

(*E*)-6-(4-(benzyloxy)phenyl)-1,5-diphenylhex-3-en-1-one (**11**) (56%, 48.4 mg) Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.64 – 7.49 (m, 3H), 7.45 – 7.40 (m, 5H), 7.36 – 7.27 (m, 4H), 7.20 – 7.17 (m, 1H), 7.14 – 7.10 (m, 2H), 6.91 – 6.87 (m, 2H), 6.40 – 6.31 (m, 2H), 6.23 – 6.14 (m, 2H), 5.04 (s, 2H), 3.22 (dt, *J* = 8.1, 7.0 Hz, 1H), 3.08 (d, *J* = 6.8 Hz, 2H), 2.84 – 2.76 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.2, 157.3, 144.8, 141.9, 137.4, 137.3, 137.1, 132.9, 132.8, 131.9, 130.4, 130.2, 128.5, 128.4, 128.0, 127.9, 127.5, 127.0, 126.1, 114.7, 70.0, 42.8, 40.5.

TLC R_f = 0.66 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₃₁H₂₉O₂ [M+H]⁺ 433.2162; found: 433.2156.

12

(E)-6-(benzo[d][1,3]dioxol-5-yl)-1,5-diphenylhex-3-en-1-one (12) (62%, 45.9 mg)

¹**H NMR** (500 MHz,) δ 7.89 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.56 – 7.53 (m, 1H), 7.46 – 7.42 (m, 2H), 7.27 (m, 4H), 7.20 – 7.16 (m, 1H), 6.72 – 6.70 (m, 2H), 6.65 (dd, *J* = 7.9, 1.7 Hz, 1H), 6.38 – 6.32 (m, 1H), 6.21 – 6.13 (m, 1H), 5.92 (s, 2H), 3.20 (dt, *J* = 8.1, 7.0 Hz, 1H), 3.07 (d, *J* = 7.4 Hz, 2H), 2.77 (d, *J* = 7.1 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.1, 147.5, 145.9, 137.3, 137.2, 133.4, 132.9, 132.6, 130.2, 128.5, 128.4, 128.0, 127.1, 126.1, 122.3, 109.6, 108.0, 100.8, 42.8, 41.1, 40.5.

HRMS (ESI +ve, *m/z*) calculated for C₂₅H₂₂O₃Na [M+Na]⁺ 393.1461; found: 393.1461.

(*E*)-6-(2,3-dihydro-1H-inden-5-yl)-1,5-diphenylhex-3-en-1-one (**13**) (66%, 48.3 mg) Appearance: Light vellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.88 – 7.86 (m, 2H), 7.55 – 7.52 (m, 1H), 7.44 – 7.41 (m, 2H), 7.31 – 7.27 (m, 4H), 7.20 – 7.08 (m, 4H), 6.40 – 6.33 (m, 1H), 6.26 – 6.17 (m, 1H), 3.25 (dt, J = 7.4, 6.9 Hz, 1H), 3.07 (d, J = 7.4, 2H), 2.98 – 2.94 (m, 4H), 2.87 – 2.84 (m, 2H), 2.15 – 2.07 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.3, 145.0, 144.4, 142.0, 137.5, 137.3, 137.2, 133.1, 132.9, 128.5, 128.4, 128.0, 127.2, 126.1, 125.4, 124.6, 42.8, 41.2, 40.4, 33.0, 32.5, 25.4.

TLC R_f = 0.45 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, m/z) Calculated for C₂₇H₂₇O [M+H]⁺ 367.1900; found: 367.1904.

(*E*)-6-([1,1'-biphenyl]-4-yl)-1,5-diphenylhex-3-en-1-one (**14**) (88%, 70.7 mg) Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 – 7.88 (m, 2H), 7.59 – 7.51 (m, 5H), 7.45 – 7.40 (m, 5H), 7.34 – 7.28 (m, 6H), 7.20 – 7.17 (m, 1H), 6.40 – 6.34 (m, 1H), 6.21 (dt, J = 15.9, 7.1 Hz, 1H), 3.30 (dt, J = 7.2, 6.7 Hz, 1H), 3.12 (d, J = 7.1 Hz, 2H), 2.91 – 2.89 (d, J = 6.7 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.1, 140.9, 139.1, 138.7, 137.3, 137.2, 133.0, 132.6, 130.3, 129.8, 128.7, 128.5, 128.4, 128.0, 127.1, 127.0, 127.0, 127.0, 126.1, 42.9, 41.0, 40.2.

TLC R_f = 0.47 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₃₀H₂₇O [M+H]⁺ 403.2056; found: 403.2055.

(*E*)-1,5-diphenyl-6-(4-(trifluoromethyl)phenyl)hex-3-en-1-one (**15**) (33%, 26.1 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.60 – 7.39 (m, 6H), 7.35 – 7.32 (m, 2H), 7.29 – 7.27 (m, 3H), 7.22 – 7.18 (m, 1H), 6.31 (dd, *J* = 15.9, 6.6 Hz, 1H), 6.20 – 6.12 (m, 1H), 3.29 (dt, *J* = 7.9, 6.6 Hz, 1H), 3.12 (d, *J* = 6.6 Hz, 2H), 2.98 – 2.85 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.7, 143.8, 137.2, 137.1, 133.1, 131.9, 130.7, 129.7, 128.8, 128.6 (q, *J* = 20.5 Hz), 128.5, 128.4, 128.0, 127.3, 126.1 (q, *J* = 238.4 Hz), 125.1 (q, *J* = 3.7 Hz), 42.9, 41.0, 40.1.

TLC $R_f = 0.70$ in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₅H₂₂F₃O [M+H]⁺ 395.1617; found: 395.1634.

16

(*E*)-6-(4-fluorophenyl)-1,5-diphenylhex-3-en-1-one (**16**) (69%, 47.3 mg) Appearance: Light vellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (dd, J = 8.3, 1.4 Hz, 2H), 7.86 – 7.82 (m, 1H), 7.58 – 7.53 (m, 1H), 7.48 – 7.43 (m, 2H), 7.31 – 7.27 (m, 2H), 7.21 – 7.15 (m, 4H), 6.96 – 6.94 (m, 2H), 6.33 – 6.29 (m, 1H), 6.21 – 6.12 (m, 1H), 3.23 (dt, J = 8.7, 6.8 Hz, 1H), 3.09 (d, J = 6.6 Hz, 2H), 2.88 – 2.79 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.9, 161.0 (d, *J* = 246.5 Hz), 139.3, 137.2 (d, *J* = 5.0 Hz), 135.2 (d, *J* = 3.3 Hz),, 133.0, 132.3, 130.5, 128.6, 128.4, 128.3, 128.0, 127.2, 126.1, 115.0 (d, *J* = 20.9 Hz), 42.8, 40.5, 40.4.

TLC $R_f = 0.60$ in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₄H₂₂FO [M+H]⁺ 345.1649; found: 345.1647.

(E)-6-(2-fluorophenyl)-1,5-diphenylhex-3-en-1-one (17) (87%, 59.8 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.91 – 7.89 (m, 2H), 7.56 – 7.53 (m, 1H), 7.46 – 7.43 (m, 2H), 7.25 – 7.12 (m, 4H), 7.07 – 6.98 (m, 2H), 6.37 – 6.30 (m, 1H), 6.21 – 6.14 (m, 1H), 3.30 (dt, *J* = 7.4, 6.4 Hz, 1H), 3.14 (d, *J* = 7.1 Hz, 2H), 2.92 (d, *J* = 6.4 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.9, 161.3 (d, *J* = 252.5 Hz), 139.2, 137.3 (d, *J* = 14.6 Hz), 132.9, 132.3, 131.6 (d, *J* = 4.7 Hz), 130.5, 128.5, 128.4, 128.0 (d, *J* = 8.3 Hz), 127.9, 127.1, 126.5, 126.1, 123.9 (d, *J* = 4.3 Hz), 115.3 (d, *J* = 22.5 Hz), 43.1, 39.7, 34.2.

TLC R_f = 0.60 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₄H₂₂FO [M+H]⁺ 345.1649; found: 345.1647.

(*E*)-6-(4-chlorophenyl)-1,5-diphenylhex-3-en-1-one (**18**) (88%, 63.4 mg) Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.91 – 7.89 (m, 2H), 7.57 – 7.54 (m, 1H), 7.47 – 7.40 (m, 3H), 7.25 – 7.24 (m, 4H), 7.23 – 7.05 (m, 4H), 6.36 – 6.28 (m, 1H), 6.18 – 6.11 (m, 1H), 3.28 – 3.20 (m, 1H), 3.09 (d, *J* = 6.8 Hz, 2H), 2.88 – 2.77 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.9, 138.1, 137.2, 133.1, 132.2, 131.9, 130.6, 129.7, 129.1, 128.6, 128.4, 128.4, 128.0, 127.2, 126.1, 42.8, 40.6, 40.2.

TLC R_f = 0.65 in hexane/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₅H₂₁CIONa [M+Na]⁺ 383.1173; found: 383.1165.

(E)-6-(3-chlorophenyl)-1,5-diphenylhex-3-en-1-one (19) (69%, 49.7 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.91 – 7.88 (m, 2H), 7.57 – 7.53 (m, 1H), 7.46 – 7.42 (m, 2H), 7.32 – 7.27 (m, 3H), 7.23 – 7.18 (m, 4H), 7.12 – 7.02 (m, 2H), 6.36 – 6.31 (m, 1H), 6.18 – 6.11 (m, 1H), 3.26 (dt, J = 8.2, 6.9 Hz, 1H), 3.09 (d, J = 6.7 Hz, 2H), 2.88 – 2.78 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.8, 141.7, 137.2, 137.2, 134.1, 133.1, 132.1, 130.6, 129.5, 129.4, 128.6, 128.4, 128.0, 127.6, 127.2, 126.4, 126.1, 42.9, 40.9, 40.1.

TLC R_f = 0.65 in hexane/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₅H₂₁CIONa [M+Na]⁺ 383.1173; found: 383.1179.

(*E*)-6-(2-chlorophenyl)-1,5-diphenylhex-3-en-1-one (**20**) (73%, 52.5 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (dd, J = 7.7, 2.1 Hz, 2H), 7.56 – 7.53 (m, 1H), 7.46 – 7.43 (m, 2H), 7.34 (dd, J = 7.6, 1.7 Hz, 1H), 7.25 – 7.11 (m, 8H), 6.32 – 6.26 (m, 1H), 6.21 – 6.15 (m, 1H), 3.36 (dt, J = 7.7, 6.7 Hz, 1H), 3.14 (d, J = 6.2 Hz, 2H), 3.05 – 2.96 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.9, 137.4, 137.3, 137.2, 134.3, 133.0, 132.2, 131.5, 130.5, 129.5, 128.5, 128.4, 128.1, 127.7, 127.1, 126.6, 126.2, 43.2, 39.5, 38.6.

TLC R_f = 0.65 in hexane/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₅H₂₁CIONa [M+Na]⁺ 383.1173; found: 383.1173.

(*E*)-6-(2,3-dichlorophenyl)-1,5-diphenylhex-3-en-1-one (**21**) (46%, 36.3 mg) Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (dd, J = 8.4, 1.3 Hz, 2H), 7.57 – 7.54 (m, 1H), 7.46 – 7.43 (m, 2H), 7.32 – 7.30 (m, 1H), 7.26 – 7.24 (m, 4H), 7.20 – 7.07 (m, 3H), 6.32 – 6.26 (m, 1H), 6.20 – 6.13 (m, 1H), 3.36 (dt, J = 7.7, 7.1 Hz, 1H), 3.17 – 2.97 (m, 4H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.7, 139.9, 137.1, 137.1, 133.2, 133.0, 132.5, 131.8, 130.8, 129.6, 128.6, 128.5, 128.4, 128.1, 127.2, 126.9, 126.2, 43.3, 39.5, 39.3.

TLC R_f = 0.65 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₄H₂₁Cl₂O [M+H]⁺ 395.0964; found: 395.0967.

(*E*)-6-(4-bromophenyl)-1,5-diphenylhex-3-en-1-one (**22**) (86%, 69.5 mg)

Appearance: Bright yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (dd, J = 8.3, 1.3 Hz, 2H), 7.58 – 7.54 (m, 1H), 7.47 – 7.43 (m, 2H), 7.40 – 7.37 (m, 2H), 7.28 – 7.26 (m, 3H), 7.25 – 7.18 (m, 2H), 7.10 – 7.07 (m, 2H), 6.35 – 6.29 (m, 1H), 6.18 – 6.11 (m, 1H), 3.24 (dt, J = 8.2, 7.0 Hz, 1H), 3.09 (m, J = 6.7 Hz, 2H), 2.89 – 2.75 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.8, 138.6, 137.2, 133.1, 132.1, 131.3, 131.1, 130.6, 128.6, 128.5, 128.0, 127.2, 126.1, 125.5, 120.0, 42.8, 40.7, 40.1.

TLC R_f = 0.70 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₄H₂₂BrO [M+H]⁺ 405.0848; found: 405.0848.

(E)-6-(2-bromophenyl)-1,5-diphenylhex-3-en-1-one (23) (93%, 74.9 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (dd, J = 8.4, 1.3 Hz, 2H), 7.56 – 7.48 (m, 3H), 7.46 – 7.42 (m, 2H), 7.25 – 7.15 (m, 6H), 7.07 – 7.03 (m, 1H), 6.34 – 6.26 (m, 1H), 6.21 – 6.16 (m, 1H), 3.37 (dt, J = 7.3, 6.6 Hz, 1H), 3.15 (d, J = 6.3 Hz, 2H), 3.06 – 2.96 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.9, 139.2, 137.3, 137.1, 132.9, 132.9, 132.1, 131.6, 130.5, 128.5, 128.4, 128.1, 127.9, 127.2, 127.1, 126.2, 120.3, 43.2, 41.1, 39.6.

TLC R_f = 0.70 in hexane/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₄H₂₁BrONa [M+Na]⁺ 427.0668; found: 427.0652.

(*E*)-6-(2-iodophenyl)-1,5-diphenylhex-3-en-1-one (**24**) (78%, 70.5 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (dd, J = 8.3, 1.3 Hz, 2H), 7.82 – 7.80 (m, 1H), 7.56 – 7.53 (m, 1H), 7.46 – 7.43 (m, 2H), 7.26 – 7.22 (m, 6H), 7.19 – 7.16 (m, 1H), 6.89 – 6.86 (m, 1H), 6.27 – 6.15 (m, 2H), 3.33 (dt, J = 7.8, 6.8 Hz, 1H), 3.16 (d, J = 7.4 Hz, 2H), 3.05 – 2.95 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.9, 142.4, 139.6, 137.2, 137.1, 133.0, 131.9, 130.7, 130.6, 128.8, 128.6, 128.4, 128.1, 128.1, 127.1, 126.2, 101.4, 45.6, 43.2, 39.9.

TLC $R_f = 0.70$ in hexane/ethyl acetate 20:1 **HRMS** (APCI +ve, *m/z*) Calculated for C₂₄H₂₂IO [M+H]⁺ 453.0710; found: 453.0713.

(E)-6-(4-(dimethylamino)phenyl)-1,5-diphenylhex-3-en-1-one (25) (70%, 51.7 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (dd, J = 8.4, 1.4 Hz, 2H), 7.54 – 7.51 (m, 1H), 7.44 – 7.41 (m, 2H), 7.31 – 7.27 (m, 3H), 7.26–7.25 (m, 1H), 7.19 – 7.16 (m, 1H), 7.10 – 7.07 (m, 2H), 6.70 – 6.68 (m, 2H), 6.39 – 6.33 (m, 1H), 6.25 – 6.17 (m, 1H), 3.21 (dt, J = 8.4, 6.4 Hz, 1H), 3.08 (d, J = 7.8 Hz, 2H), 2.91 (s, 6H), 2.84 – 2.71 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.4, 148.8, 140.6, 137.5, 137.3, 133.2, 132.8, 130.0, 129.9, 128.5, 128.4, 128.1, 126.9, 126.1, 112.8, 42.8, 40.8, 40.5, 40.4.

TLC R_f = 0.59 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₆H₂₈NO [M+H]⁺ 370.1093; found: 370.1091.

(*E*)-6-(3-nitrophenyl)-1,5-diphenylhex-3-en-1-one (**26**) (40%, 29.6 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 8.10 – 8.04 (m, 2H), 7.92 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.59 – 7.54 (m, 2H), 7.48 – 7.42 (m, 3H), 7.25 – 7.23 (m, 4H), 7.21 – 7.16 (m, 1H), 6.35 – 6.25 (m, 1H), 6.17 – 6.09 (m, 1H), 3.33 (dt, *J* = 7.5, 6.2 Hz, 1H), 3.16 (d, *J* = 6.9 Hz, 2H), 3.11 – 2.86 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.5, 148.2, 141.8, 137.0, 136.9, 135.6, 133.2, 131.4, 131.3, 129.1, 128.7, 128.5, 128.0, 127.4, 126.1, 124.1, 121.4, 43.1, 40.8, 40.2.

TLC $R_f = 0.45$ in hexane/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₄H₂₁NO₃Na [M+Na]⁺ 394.1414; found: 394.1409.

(*E*)-1,5-diphenyl-6-(thiophen-2-yl)hex-3-en-1-one (**27**) (31%, 20.6 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (dd, J = 8.4, 1.4 Hz, 2H), 7.56 – 7.53 (m, 1H), 7.50 – 7.42 (m, 2H), 7.31 – 7.28 (m, 4H), 7.21 – 7.17 (m, 1H), 7.14 – 7.10 (m, 3H), 6.48 – 6.39 (m, 1H), 6.27 – 6.18 (m, 1H), 3.29 (dt, J = 8.1, 6.1 Hz, 1H), 3.15 – 3.09 (m, 4H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.8, 141.8, 137.2, 133.0, 132.4, 130.8, 130.0, 128.6, 128.4, 128.0, 127.8, 127.2, 126.7, 126.2, 123.8, 42.7, 40.3, 35.2.

TLC R_f = 0.65 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₂H₂₁OS [M+H]⁺ 333.1307; found: 333.1305.

(*E*)-1,5-diphenyl-6-(thiophen-3-yl)hex-3-en-1-one (28) (27%, 17.9 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (dd, J = 8.3, 1.3 Hz, 2H), 7.56 – 7.53 (m, 1H), 7.46 – 7.42 (m, 2H), 7.30 – 7.28 (m, 3H), 7.25 – 7.24 (m, 2H), 7.20 – 7.17 (m, 1H), 6.99 – 6.97 (m, 2H), 6.42 – 6.34 (m, 1H), 6.22 – 6.15 (m, 1H), 3.29 (dt, J = 7.1, 6.2 Hz, 1H), 3.09 (d, J = 7.4 Hz, 2H), 2.90 (d, J = 6.9 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.0, 139.8, 137.3, 137.2, 133.0, 132.7, 130.3, 128.8, 128.6, 128.4, 128.0, 127.1, 126.1, 125.3, 121.7, 42.9, 39.6, 35.6.

TLC Rf = 0.65 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₂H₂₁OS [M+H]⁺ 333.1307; found: 333.1303.

(*E*)-6-(3-bromothiophen-2-yl)-1,5-diphenylhex-3-en-1-one (**29**) (33%, 27.0 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.93 – 7.91 (m, 2H), 7.57 – 7.54 (m, 1H), 7.47 – 7.43 (m, 2H), 7.31 – 7.26 (m, 3H), 7.21 – 7.17 (m, 1H), 7.15 – 7.12 (m, 1H), 7.11 – 7.08 (m, 1H), 6.90 – 6.89 (m, 1H), 6.45 – 6.37 (m, 1H), 6.22 – 6.16 (m, 1H), 3.36 (dt, J = 7.4, 6.8 Hz, 1H), 3.18 (d, J = 7.4 Hz, 2H), 3.11 – 3.05 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.5, 137.2, 137.1, 136.6, 133.0, 131.6, 131.1, 129.8, 128.6, 128.4, 128.1, 127.2, 126.2, 124.0, 110.1, 42.9, 40.0, 34.2.

TLC R_f = 0.68 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₂H₂₀BrOS [M+H]⁺ 411.1304; found: 411.1300.

30

 $(\textit{E})\mbox{-}6\mbox{-}(benzo[b]\mbox{thiophen-2-yl})\mbox{-}1,5\mbox{-}diphenylhex-3\mbox{-}en\mbox{-}1\mbox{-}one\mbox{-}(\textbf{30})\mbox{-}(67\%,\mbox{-}51.2\mbox{-}mg)$

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.93 – 7.91 (m, 2H), 7.78 – 7.76 (m, 1H), 7.67 – 7.65 (m, 1H), 7.57 – 7.53 (m, 1H), 7.46 – 7.40 (m, 2H), 7.33 – 7.28 (m, 7H), 7.22 – 7.19 (m, 1H), 6.51 – 6.46 (m, 1H), 6.31 – 6.22 (m, 1H), 3.42 (dt, *J* = 8.0, 6.8 Hz, 1H), 3.20 – 3.13 (m, 4H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.7, 143.1, 140.0, 139.7, 137.2, 137.1, 133.0, 132.0, 130.9, 128.6, 128.5, 128.1, 127.3, 126.2, 124.1, 123.6, 122.9, 122.4, 122.1, 42.7, 39.8, 36.1.

TLC R_f = 0.66 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₆H₂₃OS [M+H]⁺ 383.1307; found: 383.1301.

(*E*)-1,5-diphenyl-6-(pyridin-4-yl)hex-3-en-1-one (**31**) (86%, 56.2 mg) Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 8.51 – 8.50 (m, 2H), 7.93 – 7.91 (m, 2H), 7.60 – 7.56 (m, 1H), 7.50 – 7.45 (m, 2H), 7.41 – 7.27 (m, 2H), 7.25 – 7.18 (m, 5H), 6.35 – 6.28 (m, 1H), 6.16 – 6.08 (m, 1H), 3.32 – 3.28 (m, 1H), 3.16 (d, *J* = 7.5 Hz, 2H), 3.00 – 2.78 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.4, 150.0 148.2, 137.0, 136.7, 133.3, 131.3, 131.1, 128.7, 128.5, 128.0, 127.5, 126.1, 125.2, 43.0, 40.6, 39.5.

TLC R_f = 0.59 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₃H₂₂NO [M+H]⁺ 328.1823; found: 328.1803.

(E)-1,5-diphenyl-6-(pyridin-2-yl)hex-3-en-1-one (32) (76%, 49.7 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 8.54 – 8.52 (m, 1H), 7.92 – 7.90 (m, 2H), 7.61 – 7.58 (m, 1H), 7.55 – 7.52 (m, 1H), 7.45 – 7.42 (m, 2H), 7.25 – 7.21 (m, 5H), 7.18 – 7.15 (m, 1H), 7.13 – 7.10 (m, 1H), 6.36 – 6.31 (m, 1H), 6.25 – 6.18 (m, 1H), 3.49 (dt, J = 8.6, 7.0 Hz, 1H), 3.24 – 3.07 (m, 4H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.9, 159.7, 149.0, 137.3, 137.2, 136.5, 132.9, 132.3, 130.5, 128.5, 128.4, 128.1, 127.1, 126.1, 123.9, 121.4, 43.3, 43.3, 39.4.

TLC R_f = 0.59 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₃H₂₂NO [M+H]⁺ 328.1823; found: 328.1803.

33

(E)-1,5-diphenyl-6-(quinolin-2-yl)hex-3-en-1-one (**33**) (45%, 33.9 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 8.08 – 7.98 (m, 2H), 7.92 – 7.90 (m, 2H), 7.78 – 7.76 (m, 1H), 7.69 – 7.66 (m, 1H), 7.54 – 7.36 (m, 6H), 7.24 – 7.22 (m, 3H), 7.19 – 7.14 (m, 1H), 6.44 – 6.36 (m, 1H), 6.30 – 6.25 (m, 1H), 3.65 (dt, J = 8.9, 7.1 Hz, 1H), 3.31 – 3.13 (m, 4H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.0, 160.4, 147.8, 137.2, 137.2, 136.3, 132.9, 132.4, 130.4, 129.4, 128.8, 128.5, 128.4, 128.1, 127.5, 127.1, 126.8, 126.2, 125.9, 122.1, 44.2, 43.3, 39.1.

TLC $R_f = 0.59$ in hexane/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₇H₂₃NONa [M+Na]⁺ 400.1672; found: 400.1675.

(*E*)-7-ethyl-1,5-diphenylundec-3-en-1-one (**34**) (27%, 18.8 mg) Appearance: Light yellow solid

¹**H** NMR (500 MHz, CDCl₃) δ 7.98 (dd, J = 8.3, 1.4 Hz, 2H), 7.70 – 7.65 (m, 3H), 7.48 – 7.43 (m, 4H), 7.32 – 7.28 (s, 1H), 6.19 – 6.14 (m, 1H), 6.05 – 6.02 (dt, J = 16.0, 6.0 Hz, 1H), 3.14 (d, J = 7.8 Hz, 2H), 2.81 – 2.76 (m, 1H), 1.29 – 1.25 (m, 11H), 0.89 – 0.86 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 200.1, 139.7, 136.6, 133.6, 132.1, 128.7, 128.5, 128.4, 128.1, 127.7, 126.5, 45.2, 44.4, 39.2, 36.0, 33.1, 31.7, 29.3, 22.4, 14.0, 10.9.

TLC R_f = 0.30 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₅H₃₃O [M+H]⁺ 349.2212; found: 349.2218.

(E)-6-cyclohexyl-1,5-diphenylhex-3-en-1-one (35) (34%, 22.6 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.99 – 7.97 (m, 2H), 7.76 – 7.64 (m, 3H), 7.49 – 7.43 (m, 4H), 7.34 – 7.30 (m, 1H), 6.25 – 6.17 (m, 1H), 5.96 – 5.91 (m, 1H), 3.20 (d, J = 7.5 Hz, 2H), 2.73 – 2.62 (m, 1H), 1.51 – 1.45 (m, 2H), 1.31 – 1.16 (m, 11H).

¹³**C NMR** (126 MHz, CDCl₃) δ 200.1, 140.3, 136.6, 133.7, 132.1, 128.7, 128.6, 128.4, 128.1, 127.7, 126.5, 45.2, 42.7, 38.1, 33.4, 25.7, 25.3, 25.0.

TLC R_f = 0.32 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₄H₂₉O [M+H]⁺ 333.2056; found: 333.2060.

(E)-1-(4-fluorophenyl)-5,6-diphenylhex-3-en-1-one (36) (49%, 33.7 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 – 7.87 (m, 2H), 7.52 – 7.46 (m, 2H), 7.30 – 7.27 (m, 4H), 7.21 – 7.17 (m, 4H), 7.12 – 7.07 (m, 2H), 6.37 – 6.31 (m, 1H), 6.19 – 6.13 (m, 1H), 3.26 (d, *J* = 7.7, 6.3 Hz, 1H), 3.05 (d, *J* = 7.4 Hz, 2H), 2.90 – 2.81 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 197.4, 165.7 (d, *J* = 250.9 Hz), 139.5, 137.3, 134.1, 132.5, 130.7 (d, *J* = 9.3 Hz), 130.3, 128.8, 128.5, 128.4, 128.3, 126.3, 126.2, 115.5 (d, *J* = 22.5 Hz), 42.7, 41.3, 40.3.

TLC R_f = 0.60 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₄H₂₂FO [M+H]⁺ 345.1649; found: 345.1647.

37

(*E*)-1-(4-chlorophenyl)-5,6-diphenylhex-3-en-1-one (**37**) (46%, 33.1 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.81 – 7.79 (m, 2H), 7.48 – 7.44 (m, 2H), 7.41 – 7.39 (m, 2H), 7.30 – 7.27 (m, 4H), 7.22 – 7.17 (m, 4H), 6.37 – 6.31 (m, 1H), 6.21 – 6.13 (m, 1H), 3.25 (dt, *J* = 7.3, 6.7 Hz, 1H), 3.03 (d, *J* = 7.5 Hz, 2H), 2.90 – 2.80 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 197.8, 139.4, 137.2, 135.5, 134.1, 132.4, 129.5, 129.4, 128.8, 128.5, 128.4, 128.3, 127.2, 126.2, 126.1, 42.8, 41.3, 40.4.

TLC Rf = 0.65 in hexane/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₄H₂₁CIONa [M+Na]⁺ 383.1173; found: 383.1179.

(*E*)-1-(4-bromophenyl)-5,6-diphenylhex-3-en-1-one (**38**) (46%, 37.2 mg) Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (dd, *J* = 7.4, 2.0 Hz, 2H), 7.76 – 7.73 (m, 2H), 7.60 – 7.58 (m, 2H), 7.52 – 7.47 (m, 2H), 7.32 – 7.29 (m, 2H), 7.24 – 7.19 (m, 4H), 6.39 – 6.33 (m, 1H), 6.23 – 6.15 (m, 1H), 3.26 (dt, *J* = 8.2, 6.5 Hz, 1H), 3.05 (d, *J* = 7.8 Hz, 2H), 2.92 – 2.83 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.0, 139.4, 135.9, 132.4, 131.8, 130.4, 129.6, 129.4, 128.8, 128.5, 128.4, 128.3, 127.2, 126.3, 126.1, 42.8, 41.3, 40.4.

TLC R_f = 0.70 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₄H₂₂BrO [M+H]⁺ 405.0848; found: 405.0848.

(*E*)-1-(4-iodophenyl)-5,6-diphenylhex-3-en-1-one (**39**) (46%, 41.6 mg) Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.82 – 7.78 (m, 2H), 7.57 – 7.55 (m, 2H), 7.48 – 7.44 (m, 6H), 7.30 – 7.27 (m, 2H), 7.21 – 7.18 (m, 2H), 6.36 – 6.29 (m, 1H), 6.18 – 6.12 (m, 1H), 3.23 (dt, J = 8.1, 7.1 Hz, 1H), 3.03 (d, J = 7.6 Hz, 2H), 2.89 – 2.80 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 198.4, 139.4, 137.8, 136.4, 134.1, 132.4, 131.2, 130.4, 128.8, 128.5, 128.4, 128.3, 127.2, 126.1, 100.9, 42.7, 41.3, 40.4.

TLC R_f = 0.70 in hexane/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₄H₂₁IONa [M+Na]⁺ 475.0529; found: 475.0525.

40

(E)-1-(2,6-dichlorophenyl)-5,6-diphenylhex-3-en-1-one (40) (71%, 56.0 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.31 – 7.28 (m, 1H), 7.27 – 7.20 (m, 12H), 6.34 (dd, *J* = 15.9, 8.0 Hz, 1H), 6.15 (dt, *J* = 15.9, 7.1 Hz, 1H), 3.33 – 3.25 (m, 1H), 3.01 (d, *J* = 7.0 Hz, 2H), 2.98 – 2.80 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 200.7, 139.6, 139.5, 137.4, 132.2, 130.5, 130.5, 130.4, 129.4, 128.4, 128.3, 128.1, 127.1, 126.2, 126.1, 48.0, 41.1, 38.9.

TLC R_f = 0.65 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₄H₂₁Cl₂O [M+H]⁺ 395.0964; found: 395.0967.

(*E*)-1-(4-phenoxyphenyl)-5,6-diphenylhex-3-en-1-one (**41**) (48%, 40.1 mg) Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.88 – 7.85 (m, 2H), 7.41 – 7.37 (m, 2H), 7.29 – 7.27 (m, 5H), 7.22 – 7.16 (m, 6H), 7.07 – 7.04 (m, 2H), 6.98 – 6.95 (m, 2H), 6.37 – 6.31 (m, 1H), 6.17 (dt, *J* = 15.9, 6.9 Hz, 1H), 3.26 (dt, *J* = 8.3, 7.2 Hz, 1H), 3.03 (d, *J* = 6.9 Hz, 2H), 2.86 (d, *J* = 7.2 Hz, 2H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 197.6, 161.8, 155.5, 139.6, 137.4, 132.7, 131.9, 130.3, 130.2, 130.0, 129.4, 128.4, 128.3, 127.1, 126.2, 126.1, 124.5, 120.1, 117.3, 42.6, 41.4, 40.4.

TLC R_f = 0.66 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₃₀H₂₇O₂ [M+H]⁺ 419.2005; found: 419.2003.

(*E*)-5,6-diphenyl-1-(4-(piperidin-1-yl)phenyl)hex-3-en-1-one (**42**) (52%, 42.5 mg) Appearance: Light yellow solid ¹**H NMR** (500 MHz, CDCl₃) δ 7.81 – 7.79 (m, 2H), 7.28 – 7.27 (m, 1H), 7.25 – 7.13 (m, 9H), 6.84 – 6.81 (m, 2H), 6.34 – 6.29 (m, 1H), 6.20 – 6.15 (m, 1H), 3.37 – 3.33 (m, 4H), 3.25 (dt, *J* = 7.3, 6.2 Hz, 1H), 2.98 (d, *J* = 7.5 Hz, 2H), 2.88 – 2.80 (m, 2H), 1.67 – 1.64 (m, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 197.1, 154.3, 139.8, 137.6, 133.2, 130.2, 129.8, 129.5, 128.3, 128.2, 126.9, 126.6, 126.1, 126.0, 113.2, 48.6, 42.2, 41.4, 40.6, 25.3, 24.3.

TLC R_f = 0.60 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₉H₃₂NO [M+H]⁺ 410.2478; found: 410.2477.

(*E*)-5-(4-methoxyphenyl)-1,6-diphenylhex-3-en-1-one (**43**) (78%, 55.5 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (dd, J = 8.4, 1.4 Hz, 2H), 7.55 – 7.49 (m, 2H), 7.45 – 7.40 (m, 2H), 7.30 – 7.27 (m, 2H), 7.22 – 7.19 (m, 4H), 6.83 – 6.79 (m, 2H), 6.26 (dd, J = 15.9, 8.0 Hz, 1H), 6.02 (dt, J = 15.9, 7.1 Hz, 1H), 3.78 (s, 3H), 3.24 (dt, J = 8.0, 7.0 Hz, 1H), 3.06 (d, J = 7.1 Hz, 2H), 2.85 – 2.83 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.2, 158.8, 139.7, 137.3, 132.9, 130.5, 130.2, 129.5, 129.4, 128.5, 128.3, 128.0, 127.2, 126.1, 113.8, 55.2, 43.0, 41.5, 40.3.

TLC R_f = 0.60 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₅H₂₅O₂ [M+H]⁺ 357.1852; found: 357.1849.

(*E*)-5,6-diphenyl-1-(thiophen-2-yl)hex-3-en-1-one (**44**) (42%, 27.9 mg) Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.63 – 7.60 (m, 2H), 7.29 – 7.27 (m, 6H), 7.22 – 7.17 (m, 4H), 7.11 – 7.09 (m, 1H), 6.35 (dd, J = 15.9, 8.0 Hz, 1H), 6.16 (dt, J = 15.9, 7.1 Hz, 1H), 3.30 – 3.22 (m, 1H), 3.01 (d, J = 7.1 Hz, 2H), 2.86 (d, J = 7.2 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 191.9, 144.7, 139.4, 137.3, 133.6, 132.4, 131.8, 130.4, 129.4, 128.4, 128.3, 128.0, 127.1, 126.2, 126.1, 43.7, 41.3, 40.7.

TLC R_f = 0.60 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m*/z) Calculated for C₂₂H₂₁OS [M+H]⁺ 333.1307; found: 333.13059.

(*E*)-4-methyl-1,5,6-triphenylhex-3-en-1-one (**45**) (74%, 50.3 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.56 – 7.53 (m, 1H), 7.47 – 7.43 (m, 2H), 7.30 – 7.27 (m, 2H), 7.26 – 7.13 (m, 6H), 7.06 – 7.03 (m, 2H), 6.12 (t, *J* = 6.8 Hz, 1H), 3.22 – 3.08 (m, 3H), 2.88 (d, *J* = 6.9 Hz, 2H), 1.86 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.4, 140.0, 139.0, 138.0, 137.3, 132.9, 129.2, 128.8, 128.5, 128.2, 128.0, 127.9, 126.9, 126.1, 126.0, 47.0, 42.1, 40.1, 15.3.

TLC R_f = 0.60 in hexane/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₅H₂₄ONa [M+Na]⁺ 363.1719; found: 363.1709.

(*E*)-5-methyl-1,6-diphenylhex-3-en-1-one (**46**) (63%, 33.1 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) 7.89 – 7.87 (m, 2H), 7.59 – 7.55 (m, 1H), 7.48 – 7.45 (m, 2H), 7.33 – 7.31 (m, 2H), 7.24 – 7.21 (m, 3H), 5.65 – 5.56 (m, 2H), 3.28 (d, *J* = 7.8 Hz, 2H), 3.10 – 3.03 (m, 1H), 2.78 – 2.75 (m, 2H), 1.60 (d, *J* = 5.0 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.6, 140.0, 137.4, 133.5, 132.8, 129.4, 128.5, 128.2, 128.1, 126.0, 125.5, 43.1, 41.6, 40.1, 17.9.

TLC Rf = 0.50 in hexane/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₁₉H₂₀ONa [M+Na]⁺ 287.1406; found: 287.1407.

(E)-5-benzyl-1-phenylhept-3-en-1-one (47) (58%, 32.2 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.86 – 7.84 (m, 2H), 7.55 – 7.51 (m, 1H), 7.44 – 7.41 (m, 2H), 7.28 – 7.27 (m, 2H), 7.20 – 7.16 (m, 3H), 5.69 – 5.68 (m, 2H), 3.24 (d, *J* = 7.2 Hz, 2H), 3.04 – 2.97 (m, 1H), 2.73 (d, *J* = 7.0 Hz, 2H), 1.94 – 1.88 (m, 2H), 0.85 (t, *J* = 7.3 Hz, 3H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 199.7, 140.0, 137.5, 132.8, 132.8, 131.2, 129.5, 128.5, 128.2, 128.1, 126.0, 43.2, 41.7, 40.2, 25.5, 13.7.

TLC R_f = 0.50 in hexane/ethyl acetate 20:1

HRMS (ESI +ve, *m/z*) Calculated for C₂₀H₂₂ONa [M+Na]⁺ 301.1562; found: 301.1566.

48

(*E*)-1-cyclopropyl-5-methyl-6-phenylhex-3-en-1-one (**48**) (44%, 25.1 mg)

Appearance: Light yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.34 – 7.27 (m, 6H), 7.21 – 7.18 (m, 4H), 6.13 (dd, J = 15.9, 8.0 Hz, 1H), 5.93 (dt, J = 15.9, 7.2 Hz, 1H), 3.12 (dt, J = 7.2, 6.6 Hz, 1H), 2.78 (d, J = 7.3 Hz, 2H), 2.68 – 2.66 (m, 2H), 1.92 – 1.88 (m, 1H), 1.00 – 0.97 (m, 2H), 0.84 – 0.81 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 209.7, 139.6, 137.4, 132.7, 130.2, 129.4, 128.5, 128.3, 127.1, 126.1, 126.1, 48.1, 41.4, 40.3, 21.0, 10.8.

TLC R_f = 0.50 in hexane/ethyl acetate 20:1

HRMS (APCI +ve, *m/z*) Calculated for C₂₁H₂₃O [M+H]⁺ 291.1743; found: 291.1740.

9. ¹H and ¹³C NMR Spectra

9.1 1,6-conjugate addition electrophilic substrates

9.2 1,6-conjugate addition products.

Ph

O Ph CH₃

Ph

10. HPLC Chromatograph

HPLC instrument: Agilent Technologies 1260 Infinity instrument equipped with a quaternary pump Column: Chiralpak OD-H, Daicel Corporation (250 mmL × 4.6 mm, 5µm) Eluent: Pentane/IPA (98:2) Flow rate: 0.7 mL/min λ = 260 nm

Height

[mAU]

117.70588

Area

8

49.3672

50.6328

Area

[mAU*s]

-1-

Racemic sample (4a):

Enriched sample (4aa):

11. References

- 1. K. Lee and D. Y. Oh, *Synthesis*, 1991, 213-214.
- 2. C. M. M. Santos, A. M. S. Silva, J. A. S. Cavaleiro, A. Lévai and T. Patonay, *E. J. Org. Chem.*, 2007, 2877-2887.
- 3. D. Trubitsõn, J. Martõnova, K. Erkman, A. Metsala, J. Saame, K. Kõster, I. Järving, I. Leito and T. Kanger, *Synthesis*, 2020, **52**, 1047-1059.
- 4. L. Lv, D. Zhu, Z. Qiu, J. Li and C.-J. Li, ACS Catal., 2019, **9**, 9199-9205.