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EXPERIMENTAL DETAILS 
Materials Preparation. Silver LTA zeolite (Ag12(AlO2)12(SiO2)12O48·27 H2O; AgA, Si/Al = 1) was prepared 

via ion-exchange1 of commercial zeolite A (Zeochem, Na-4A). Zeolite A (10 g) was mixed with 200 mL of 
0.1 M Ag(NO3) and heated at 95 ℃ while stirring for 1 h. Upon cooling, the sample was filtered in air and 
washed ×3 with deionized water; the filtrate was confirmed to be free of silver ions. The final product was 
collected and placed in a 95 ℃ furnace for 4 h. The AgA sample was then cooled and stored, in a sealed 
vial, in a dark cabinet until characterization. 

DRIAD-X measurements. Simultaneous X-ray, Infrared data was collected at beamline 11-ID-B of the 
Advanced Photon Source (APS) at Argonne National Laboratory. The AgA sample was loaded into the 
sample cup of a Harrick Instruments High Temperature Reaction Chamber, modified to allow 
simultaneous diffuse reflectance infrared and angular dispersive X-ray (DRIAD-X) measurements (Figure 
S1).1 The sample environment was mounted to a Bruker Vertex 80 spectrometer within a Praying Mantis 
optic, modified to allow transmission of incident/scattering X-rays. The X-ray beam (0.2 mm (V) × 0.5 mm 
(H), λ = 0.1370 Å) was aligned to probe a sample volume just below the surface of the sample, coincident 
with the probe region of the IR beam. X-ray data was collected using an amorphous-Si Perkin-Elmer 
detector, with acquisition of a no-X-ray “dark frame” every 20 images.2 Diffuse reflectance infrared Fourier 
transform spectroscopy (DRIFTS) spectra were collected in the range 7000–400 cm−1 with a spectral 
resolution of 2 cm−1 using a linearized, high sensitivity MCT (mercury, cadmium, telluride) detector. 

Variable temperature X-ray total scattering and DRIFTS data were collected under inert (He) and 
reducing (4% H2 in He) atmospheres, heating at a rate of ca. 3.5 ℃ min–1 to a maximum temperature of 
ca. 320 ℃. X-ray and Infrared data acquisitions were initiated simultaneously prior to heating, with 
synchronized data collected at 1 min intervals. Sample surface temperature was calibrated with a second 
thermocouple touching the top surface of the sample.  

 
Figure S1. Schematics of the DRIAD-X experimental geometry. The IR and X-ray beams probes a volume 

near the top of the sample. The gas flows through the sample cup from this top surface. 

Data reduction. The two-dimensional X-ray scattering images were reduced to one-dimensional data 
within Fit2D.3 Data were normalized to the scattering intensity observed in the high-Q region to account 
for fluctuations in the incident beam. The detector geometry was calibrated based on a scattering image 
collected for KBr powder.  
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PEARSON CORRELATION ANALYSIS 
The Pearson correlation coefficient (r) represents the linear relationship between two sets of data: r = 1, 
positive correlation (e.g. identical data); r = 0, no correlation (e.g. random data); r = −1, negative 
correlation (e.g. identical data with opposing signs). Below, Pearson correlation was calculated between 
each dataset as a function of temperature for XRD, PDF, and IR data using the python package Pandas.4 
The distinct transitions in color demonstrate the chemical transitions observed during the reaction. 

 

Figure S2. Maps of Pearson correlation coefficient 

 

  



S4 
 

X-RAY SCATTERING ANALYSIS 
X-ray scattering data measured as a function of temperature are shown in Figure S3.  

 

Figure S3. Variable temperature X-ray diffraction data collected under reducing (left) and inert 
atmosphere (right). 

XRD data was analyzed in TOPAS5 with lattice parameters and peak intensities estimated using Le Bail 
fits based on the reported structure of LTA. A split-pseudo-Voigt function (“PV_Left_Right” in TOPAS) was 
fit to the diffuse feature at low angle to quantify the scattering intensity. A 8-coefficients Chebyshev 
polynomial function was used to fit the background. The diffraction data for the initial Ag-exchanged LTA 
could be fit as a cubic phase (Pm-3m) with refined lattice parameter a = 12.20 Å. This is consistent with 
the known structure for LTA. (Note: for simplicity we applied the disordered Al/Si model with lattice a = 
12.20 Å rather than the Al/Si ordered model with lattice a = 24.4 Å). 

Structure envelopes (SEs) were calculated at selected temperatures, based on the measured peak 
intensities, as described previously.6 The structure envelope is a low-resolution surface that divides 
regions of high electron density (occupied by the framework and Ag guests) and regions of low electron 
density (reflecting unoccupied pore space). The envelope analysis used 12 reflections ({001} to {213}). 
Difference envelope density (DED) maps reflecting the redistribution of electron density within the pores 
were obtained by subtracting the SE obtained under different conditions. As the X-ray scattering intensity 
data were normalized based on the high Q-region, no further normalizations were applied as part of the 
DED analysis. 

In a reducing atmosphere: The lattice dimension of the LTA initially contracts slightly (<0.07 %) with 
heating, but then expands sharply (by 0.56% to a = 12.27 Å) during the first transition. With further 
heating, the lattice contracts slightly (<0.1%), before contracting sharply during the second transition, 
approaching the original dimension. With heating beyond the second transition, the lattice expands 
slightly. 

A small angle scattering feature appears during the first transition. This diffuse X-ray scattering intensity 
appears at lower angles than the first diffraction peak of the LTA framework (Q < 0.4 Å−1). Such small angle 
scattering features reflect nanoscale structure within the system and is a signature of Ag cluster or 
nanoparticle formation. The intensity of small-angle scattering is correlated to the concentration of 
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nanoscale features. The Q-value at which this feature is observed reflects the size of the nanoscale 
features, according to the relation d = 2π/Q, and will be centered at lower angle for large nanoparticles 
compared to small clusters. However, as the small angle scattering feature is partially obscured by the X-
ray beam stop at low angle, changes in the position of the feature cannot be directly quantified. Instead, 
increase in the particle size is indirectly reflected in a reduction in the intensity in the accessible low angle 
scattering. 

The intensity of the small angle scattering feature that reflects Ag clusters and nanoparticles formation 
increases during the second transition, then decreases with further heating. A new series of diffraction 
peaks, consistent with polycrystalline face-centered cubic (FCC) Ag0 metal, emerge at the onset of the 
second transition. The diffraction peaks are broad, which indicates disorder and/or limited particle size of 
the Ag0. Discontinuities in the intensity of the Ag0 peaks coincide with the collection of detector dark 
images; these do not reflect real changes in the Ag0 population. 

 

Figure S4. The changes in the LTA lattice dimensions and intensity of the small angle scattering feature 
and Ag0 diffraction peaks in reducing (top) and inert (bottom) atmospheres. The transition regions are 
shaded. 

In an inert atmosphere: The trends in the LTA lattice dimensions mirror those seen under reducing 
atmosphere, albeit with the second transition being shifted to higher temperature and being incomplete 
within the temperature range evaluated. In contrast to observations under reducing atmosphere, the 
small angle scattering intensity is not observed during in the first transition, appearing only in the second 
transition. The growth of the small angle scattering feature is observed at slightly lower temperature (by 
ca. 50 °C) than the appearance and growth of diffraction peaks from an FCC Ag0 phase. 
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X-RAY PDF ANALYSIS  
X-ray PDFs were extracted with XPDFsuite7 (Qmax = 17.8 Å−1) subtracting the background contribution of 

the sample environment cell. The PDFs contain contributions from all atom-atom pairs within the sample, 
including those from the zeolite lattice and the supported Ag material. The complete temperature-
dependent PDFs and selected PDFs are shown in Figure S5 and Figure S6. 

 

Figure S5. Variable temperature PDF data collected under reducing (left) and inert atmosphere (right). 

 

 

Figure S6. Selected temperature PDF data collected under reducing and inert atmosphere.  
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The PDF for the initial AgA includes atom-atom distances associated with the aluminosilicate lattice, 
such as the Si/Al-O bond at 1.6 Å. Atomic correlations involving the more strongly scattering Ag atoms, 
dominate the data. Peaks at 2.4 Å and 3.4 Å correspond to Ag-O (water and framework) and Ag···Si/Al 
distances, respectively. Structural models were refined against the PDF data within PDFgui8 (Figure S7). 
The PDF of AgA at room temperature was fit by the reported crystallographic model of LTA, with lattice 
parameter a = 12.22 Å. The largest misfit in the data, between 5.5-6.3 Å, is most likely due to water within 
the pores that is not included in the model. Changes in critical features in the PDF data during heating in 
reducing and inert atmospheres are described in detail below. 

 

Figure S7. Fits of to selected PDF data for a) the initial sample collected at 24 °C; b) the intermediate state 
at 125 ℃ under inert atmosphere; c) the intermediate state at 125 ℃ under H2 flow. In c) the residual to 
the fit reflects the contribution from the Ag clusters 

 

In the reducing atmosphere: The PDF data show few discernable changes below the first transition.  
A structural transformation is observed during the first transition, with changes to the PDFs that 

propagate to high r. This indicates an ordered rearrangement of atoms in the LTA crystal structure. The 
changes in local structural are characterized by shift of the peak at 2.4 Å to shorter distance (with a slight 
intensity reduction). This reflects a contraction of Ag+···O distances and loss of coordinated water 
(supported by DRIFTS, vide infra). The peak at 3.4 Å, corresponding to the Ag···Al/Si distance, sharpens 
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and shifts to shorter distance, reflecting a narrower distribution of these correlations. A new peak is 
observed at ca. 2.78 Å, characteristic of Ag-Ag bonds in reduced Ag0. 

The PDFs in the intermediate state, following the first transition, were fitted with an LTA model having 
an expanded lattice parameter (a = 12.27 Å). The most significant structural change is displacement of Ag+ 
cations that are centered over the 6-ring at (x,x,x) where x ~0.2. This corresponds to a shift from x = 0.218 
in the initial Ag-exchanged LTA, to x = 0.203 in the intermediate state. The Ag+ cations, which initially 
protrude from the plane of the 6-ring O atoms by 0.55 Å, shift into the 6-ring plane (see Figure 4). The 
Ag+···O distance for Ag that is trigonally coordinated by the 6-ring contracts from 2.34 Å to 2.27 Å. There 
is an accompanying relaxation of the surrounding zeolite framework.  

Features associated with small Ag0 species were evident in the residual to the fit of the intermediate 
LTA model, at 2.78 Å, 3.10 Å and 3.85 Å (Figure S7). These are only evident at short distance (<6 Å), 
indicating that the Ag0 species exist as sub-nanometer clusters. The low intensity of the features from 
these Ag0 clusters, compared to the LTA phase, indicate that these are present at a low concentration. 

Strong, sharp peaks consistent with large FCC Ag0 nanoparticles emerge during the second transition. 
These are characterized by peaks at 2.86 Å, 4.06 Å and 4.99 Å, which correspond to the neighbor, next-
nearest neighbor and second-nearest neighbor Ag-Ag distances, respectively, with higher-order neighbor 
distances observed to high r. Refinement of an FCC structural model against the data indicate that these 
have an average particle size of ca. 4 nm. These strongly scattering Ag nanoparticles dominate the PDF 
data following the second transition, making it difficult to reliably model contribution from the LTA, 
although the residual to the fit includes unmodeled features including the final LTA zeolite state. The 
contribution from the FCC Ag0 nanoparticles increases intensity with continued heating beyond the 
transition reflecting an increase in their population. 

Fits to the PDF data at selected temperatures suggest that the observed changes can be described by 
the change in the populations of different species: the initial, intermediate, and final LTA, and the Ag0 
clusters and nanoparticles (Figure S8). That the evolution in the PDF data can be described by a linear 
combination of discrete species, indicates that the transitions between different states are first order. 

 

Figure S8. Component PDFs used in a linear combination fit to the data. These were calculated based on 
refined structural models (LTAinitial, LTAint, Agnp) and derived from residuals to fits (LTAfinal, Agclusters).  
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A linear combination analysis (LCA) of the temperature-dependent PDF data, using the PDFs for 
individual components, was applied to quantify how the population of the distinct species evolve during 
heating (Figure S9). The specific components used for the analysis included the modelled PDFs for the 
initial LTA phase, the intermediate LTA phase, the 4 nm Ag0 nanoparticles and the residuals to the PDF fits 
corresponding to the Ag0 clusters and final LTA (here, the residual to the Ag0 fit at high temperature).  

The LCA fitting shows that the transformation between the initial and intermediate, and intermediate 
and final LTA states occur during the first and second transitions, respectively. The population of small Ag 
clusters emerges during the first transition. The population of the small Ag clusters initially grows at the 
onset of the second transition, then decreases with heating beyond the transition. The large Ag 
nanoparticle population emerges during the second transition and continues to increase in population, 
with heating beyond the transition, as the Ag cluster population decreases. 

 

Figure S9. The relative abundance of components during heating under reducing atmosphere from an LCA 
fitting to the PDF data. The different states of the LTA (bottom) support and Ag aggregates (top) are shown 
in separate panels. 
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In the inert atmosphere: The transformations of the LTA lattice in the inert atmosphere are comparable 
to those seen under reducing atmosphere, albeit with the second transition being shifted to higher 
temperature and being incomplete within the temperature range evaluated. The intermediate AgA phase 
described under reducing atmosphere, with Ag+ cations shifted into the plane of the 6-ring, is observed. 
In contrast to observations made under the reducing atmosphere, the formation of the intermediate LTA 
state is not accompanied by the formation of a second phase of Ag0 clusters. Instead, small Ag0 clusters 
are apparent at the onset of the second transition, preceding the formation of features characteristic of 
FCC Ag0 nanoparticles.  

The weightings from the LCA analysis (Figure S10), using the same PDF components as used under 
reducing atmosphere, reveal trends in species populations that were not directly apparent from 
inspection of the temperature-dependent PDFs. Notably, the same component phases are observed in 
the inert atmosphere as in the reducing atmosphere, however, these are formed at different 
temperatures and with different relative abundance. An increase in the Ag cluster population precedes 
the Ag nanoparticle formation. 

 

Figure S10. The relative abundance of components during heating under inert atmosphere from a LCA 
fitting to the PDF data. The different states of the LTA (bottom) support and Ag aggregates (top) are shown 
in separate panels. The data are shown on the same scale as Figure S7.  
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DRIFTS ANALYSIS 
The baseline subtracted temperature dependent DRIFTS spectra are shown in Figure S11. The 

vibrational modes associated with different bands are summarized in Table S1. 

 

Figure S11. Variable temperature DRIFTS data collected under reducing (left) and inert atmospheres 
(right). 

Table S1. DRIFTS observed peak assignments 

Peak / cm−1 Assignment 
595 Ring blocks9  
750 T-O-T symmetric stretch9 
1080−1240 T-O-T/O-T-O asymmetric stretch9 
1640 Molecular H2O (free/weakly bound to Ag+ cations and 

bound to Br ønsted acid sites)10−11  
3200 Acidic OH group12   
3400 Molecular H2O (free/weakly bound and bound to 

aluminosilicate lattice)11 
3570, 3605, 
3640 

Si-OH11−13   

3680 Al-OH group14−15   
5150 Molecular H2O (free/weakly bound, combined bending 

and stretching)10−12 
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The intensity and position of DRIFTS features were quantified within Fityk.16 Key features observed in 
the DRIFTS spectra include the OH stretching and H2O bending modes from confined and weakly-bound 
H2O, surface OH groups (i.e. Brønsted acid sites) and the T-O bonds within the LTA framework itself (see 
Figure 9). The bands were tentatively identified with the aid of previous assignments21-26 resolving 
ambiguities by correlating the changes in the Ag species and zeolite distortions from the X-ray data. DRIFTS 
spectra for the initial AgA, contains peaks associated with molecular water at 1640 cm−1 (H2O bending 
mode), 3000-3700 cm−1 (OH stretching mode), and 5207 cm−1 (combination H2O bending + OH stretching 
mode). The broad feature, associated with OH-stretching modes (3000-3700 cm−1), is characteristic of 
hydrogen-bonding interactions, with distinct bands initially centered at 3400 and 3250 cm−1 due to 
asymmetric and symmetric stretches respectively. OH-stretching bands from surface acid sites would also 
have peaks in this range (ca. 3580-3680 cm−1),21-25 however these are not present in the initial system. 
Well-defined bands between 1050 and 1250 cm−1 are associated with vibrations within the aluminosilicate 
lattice, specifically asymmetric O-T-O and T-O-T stretching modes. In the initial AgA, the strongest band in 
this range is observed at 1140 cm−1 (O-T-O internal asymmetric stretch) with a second band at 1090 cm−1.  

A comparison of the temperature-dependent DRIFTS spectra at selected temperatures in reducing and 
inert atmosphere is shown in Figure S12. During heating, the intensity of bands associated with the 
original H2O/OH modes progressively disappear while new bands emerge. The changes in peak intensities 
effectively track the changes in concentration of distinct sites within the pores (H2O) and on the surface 
of the zeolite (OH) during dehydration and Ag reduction. Shifts in the energy of bands, predominately T-
O framework stretches, reflect a change in the stretching frequency and strength of those bonds due to 
changes in the local environment. An increase in the spectral “baseline” reflects a reduction in the sample 
reflectivity (i.e. a darkening or color change) owing to the formation of Ag aggregates (nanoparticles and 
clusters).  

 

Figure 12 Selected temperature-dependent DRIFTS data under reducing (dashed) and inert (continuous) 
atmospheres. 
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In reducing atmosphere: Upon heating in reducing atmosphere, distinct changes to the DRIFTS features 
are observed (Figure S13). The sharp peak at 1640 cm−1 (H2O bending), initially shifts to lower 
wavenumber (1630 cm−1) and slightly increases intensity, but rapidly reduces to half the original intensity 
and returns to the original wavenumber during the first transition. With further heating, the intensity 
continues to reduce before being eliminated during the second transition. The intensity reflects the H2O 
within the lattice. The small peak at 5250 cm−1 (H2O combined bending-stretching), which reflects 
confined, unbound water progressively loses intensity during heating and is eliminated following the first 
transition. The broad feature between 3000-3700 cm−1 (OH stretching), progressively reduces intensity 
with heating, with a four-fold decrease in the original intensity during the first transition whereupon the 
broad band at 3400 cm−1 shifts to higher wavenumbers. This feature is eliminated following the second 
transition. A sharp peak at 3680 cm−1, characteristic of acidic OH groups25 (Si-OH-Al), forms during the first 
transition. The sharpness of this feature suggests that the acidic OH does not participate in hydrogen-
bonding. The feature at 3680 cm−1 gradually reduces in intensity and is eliminated before the onset of the 
second transition. Two sharp peaks at 3640 cm−1 and 3600 cm−1, also associated with acidic OH groups (Si-
OH-Al), appear during the second transition. The baseline of the spectra increases as the sample 
reflectivity decreases, owing to formation of Ag aggregates. The changes in baseline were quantified 
based on the average intensity at ca. 5500 cm−1, where no stretching/bending modes are evident. There 
is a slight increase in baseline during the first transition and a large increase in the baseline during the 
second transition. 

Well-defined peaks at 1050 and 1250 cm−1, which are associated with vibrations of the aluminosilicate 
framework, shift to higher wavenumber during the first transition to 1180 and 1110 cm−1, respectively. 
During the second transition, band at 1180 cm−1 again blue shifts to 1225 cm−1, while the peak at 1110 
cm−1 red shifts to 1070 cm−1.  

 

Figure S13. The relative intensity of features in the IR data under reducing atmosphere. The intensity of 
the 3680 cm−1 peak is multiplied by a factor of 10 for clarity. 

In the inert atmosphere: Upon heating in inert atmosphere a series of changes to the DRIFTS features 
are evident (Figure S14). The initial bands associated molecular water - H2O bending (1640 cm−1), OH 
stretches (3000-3700 cm−1), and combined bending-stretching mode (5250 cm−1) - follow the same trends 
observed in reducing atmosphere, however with second transition shifted to higher temperature. The 
sharp feature at 3680 cm−1, due to acidic OH groups, that was seen between the first and second transition 
under reducing atmosphere, is not evident in the inert atmosphere. A small peak emerges at ca. 3600 
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cm−1 during the second transition that can be attributed to acidic OH groups. In contrast to observations 
under reducing atmosphere, the baseline does not increase during the first transition, but only increases 
during the second transition.  
The well-defined bands between 1050 and 1250 cm−1, that are associated with vibrations of the 
aluminosilicate framework, show the same shifts in energy as seen during the first and second transitions 
under reducing atmosphere. 

 

Figure S14. The relative intensity of features in the IR data under reducing atmosphere. 

 

Peaks associated with O-T-O/T-O-T vibrations are observed at 595 cm−1 (ring block vibrations), 750 cm−1 
(T-O-T symmetric stretch), and between 1080 cm−1 and 1240 cm−1 (T-O-T/O-T-O asymmetric stretches). 
The energy of these bands shift during the transitions (Figure S15). In reducing atmosphere, the 
asymmetric T-O stretch at 1150 cm−1 blueshifts to a plateau of 1180 cm−1 at 80 ℃ and then increases 
between 135 ℃ and 180 ℃ to another plateau of 1230 cm−1. Similarly, between 145 ℃ and 180 ℃, the 
peak at 1120 cm−1 both reduces intensity and shifts to 1080 cm−1. Increase in temperature above 145 ℃, 
leads to the presence of a peak at T-O-T symmetric stretch at 750 cm−1. In inert atmosphere, the 
asymmetric T-O stretch at 1150 cm−1 blueshifts to a plateau of 1180 cm−1 at 80 ℃ and remains in that 
position for the remainder of the reaction. Similarly, the peak at 1120 cm−1 redshifts to 1105 cm−1. Above 
260 ℃, a T-O-T symmetric stretch peak is observed at 700 cm−1.  

 

Figure S15. Variable temperature trends in T-O peak positions in DRIFTS data collected under reducing 
(left) and inert atmospheres (right). 
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MULTI-MODAL NON-NEGATIVE MATRIX FACTORIZATION 
Correlating multimodal data using NMF.  Values derived from the PDF, XRD and DRIFTS analyses were 
normalized between 0 and 1 and assembled into a matrix containing columns of parameters that vary 
during the Ag nanoparticle formation: 5 parameters from the PDF analyses (the weightings of 5 
components from a linear combination analysis); 3 parameters from the XRD analysis (a, intensity of a Ag0 
peak, and the area of the small-angle scattering feature); and parameters from the DRIFTS (baseline and 
water/hydroxyl group peaks, 11 parameters for reducing atmosphere, 9 parameters for inert 
atmosphere). The NMF analysis was implemented using the SciPy python package.17 
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