Supporting Information

Diastereoselective Formation of Homochiral Flexible Perylene Bisimide Cyclophanes and their Hybrids with Fullerenes

Iris Solymosi,^{[a]#} Swathi Krishna,^{[b]#} Edurne Nuin,^[c] Harald Maid,^[a] Barbara Scholz,^[a] Dirk M. Guldi,^[b] M. Eugenia Pérez-Ojeda^{*[a]} and Andreas Hirsch^{*[a]}

[a]	I. Solymosi, H. Maid, B. Scholz, Dr. M. E. Pérez-Ojeda, Prof. Dr. A. Hirsch Department of Chemistry and Pharmacy Friedrich-Alexander-University Erlangen-Nuremberg	
	Nikolaus-Fiebiger-Straße 10	
	91058 Erlangen (Germany) E-mail: eugenia.perez-ojeda@fau.de, andreas.hirsch@fau.de	
[b]	S. Krishna, Prof. Dr. D. M. Guldi	
	Friedrich-Alexander-University Erlangen-Nuremberg	
	Egerlandstraße 3 91058 Erlangen (Germany)	
	E-mail: dirk.guldi@fau.de	
[C]	Dr. E. Nuin Instituto de Ciencia Molecular (ICMol)	
	Universidad de Valencia Catedrático, losé Beltrán 2	
ш	Paterna 46980 (Spain)	
#	I nese authors contributed equally	
Tab	le of contents	
1.	Materials and Methods	S1
2.	Synthesis	S3
3.	HPLC chromatograms	S12
4.	Temperature-dependent ¹ H NMR spectra	S15
5.	Calculation of the activation energy ΔG^{\dagger}	S21
6.	NMR spectra	S22
7.	MS spectra	S30
8.	UV-Vis absorption spectroscopy	S34
9.	Fluorescence spectroscopy	S38
10.	Temperature-dependent absorption and fluorescence spectra	S41
11.	Spectroelectrochemistry	S42
12.	Transient absorption measurements	S43
13.	Global analysis of transient absorption spectra	S50
14.	Singlet oxygen quantum yield measurements	S66
15.	3D Fluorescence heat map	S68
16.	Literature	

1. Materials and Methods

General: All chemicals and HPLC solvents were purchased from chemical suppliers and were used as received without further purification. C_{60} (99.0%) was purchased from IoLiTec nanomaterials. All analytical-reagent grade solvents were purified by distillation with a rotary evaporator. Reactions were monitored by thin layer chromatography on silica gel 60 F254 0.2 mm on aluminium foil (Merck). Detection of the compounds was accomplished by means of a UV-lamp (254 nm or 366 nm). For column chromatography silica gel 60 M (230 - 400 mesh ASTM, 0.04 - 0.063 mm) from Marcherey-Nagel & Co. KG was used. Size exclusion chromatography was performed with polystyrene gel of the type S-X1 with a dry mesh size of 28-74 μ , marketed by Bio-Rad Laboratories.

UV/Vis-NIR Spectroscopy:

UV-vis absorption spectroscopy was performed using UV WinLab software on PerkinElmer Lambda 2 dual beam absorption spectrophotometer, with a scan rate of 480 nm/min. The samples were measured in a 10 mm×10 mm quartz cuvette.

Fluorescence Spectroscopy:

Steady-state emission spectra were obtained using Horiba Jobin Yvon FluoroMax-3 emission spectrometer, with a slit width of 3 nm and an integration time of 0.1 s in the wavelength range of 525 – 850 nm. The data were processed in FluorEssence software. The samples were measured in a 10 mm×10 mm quartz cuvette. Quantum yields of the samples were calculated following the relative method using Rhodamine B in ethanol ($\phi = 0.70$) as reference. ${}^{1}O_{2}$ quantum yield measurements were performed on FluoroLog3 spectrometer (Horiba) with Symphony II detector in the NIR detection range. The samples were purged with oxygen for 20 -30 mins. Quantum yields were calculated using C₆₀ in air-equilibrated toluene ($\Phi_{\Delta}^{ref} = 0.98 \pm 0.05$) as reference.

Spectroelectrochemistry:

Spectroelectrochemistry was performed using a PGSTAT101 Autolab potentiostat and AvaSpec spectrometer. A three-electrode setup comprising a Pt-gauze as working electrode, a Pt-wire as counter electrode and a silver wire as a reference electrode was used. 0.1 M tetrabutylammonium hexafluorophosphate was used as supporting electrolyte. The data were recorded with NOVA 1.10 software.

Transient absorption spectroscopy:

Femtosecond and nanosecond transient absorption spectroscopy measurements were performed using the pump/probe systems HELIOS (0 to 5500 ps) and EOS (1 ns to 350 µs) from Ultrafast Systems.

S1

The laser source was CPA2101 and 2110 Ti:Sapphire amplifier (775 nm output, 1 kHz repetition rate, 150 fs pulse width; 500 nJ excitation laser energy) from Clark-MXR Inc. The desired excitation pulse of 550 nm was generated with NOPA. The white light for the femtosecond experiments was generated using a Sapphire crystal. The white light for the nanosecond transient measurements came from a supercontinuum laser source (2 kHz repetition rate, 1 ns pulsewidth). Samples were taken in 2 x 10 mm optical glass cuvettes and purged with argon for 20 min. Optical densities (OD) of the samples were around 0.4 at the excitation wavelength. Global analyses of the resulting data were performed with the GloTarAn software.^[1]

FTIR-ATR Spectroscopy: The FTIR-ATR spectra were obtained on a Bruker Tensor 27, Pike MIRacleTM ATR, Pike Technologies as well as on a ThermoFisher Scientific Nicolet iS5. The spectra were measured as pure solids or liquids and absorptions are given in wavenumbers \tilde{v} (cm⁻¹).

Analytical HPLC: Analytical HPLC was carried out in a LC20-AT prominence liquid chromatograph, SHIMADZU CORPORATION, Analytical Instruments Division, Kyoto, Japan using a Nucleosil Column (EC250/4 Nucleosil 100-5) from Macherey-Nagel and 150 uL injection volume. Before the injection, small aliquots of the reaction mixture (0.2 mL) were filtered through silica to avoid the possible blocking of the employed column due to the polymers formed in the reaction mixture. All chromatograms were processed with SHIMADZU LabSolution software and exported as ASCII files. The chromatograms are depicted at a wavelength of $\lambda = 280$ nm or $\lambda = 530$ nm and the following solvent gradient was used: CH₂Cl₂:ethyl acetate:MeOH 1:0:0 \rightarrow 75:20:5.

NMR Spectroscopy: NMR spectra were recorded on a BRUKER Avance 600 (¹H: 600 MHz, ¹³C: 151 MHz), BRUKER Avance 500 (¹H: 500 MHz, ¹³C: 125 MHz), BRUKER Avance 400 (¹H: 400 MHz, ¹³C: 101 MHz) spectrometers. Chemical shifts are given in ppm, referenced to residual solvent signals and reported relative to external SiMe₄. Chloroform-d1 (99.8%) and 1,1,2,2-tetrachloroethane-d2 (99.5%) were purchased from Sigma Aldrich and were used as received without further purification. The resonance multiplicities are indicated as s (singlet), d (doublet), t (triplet) and m (multiplet).

Mass spectrometry: Spectra were recorded on BRUKER microTOF II focus (BRUKER Daltonik GmbH) and SHIMADZU Axima Confidence maXis 4G instruments (Nitrogen UV laser, 50 Hz, 337 nm). MALDI-TOF HRMS were recorded on a Bruker UltrafleXtreme TOF/TOF and trans-2-[3-(4-tert-butylphenyl)-2-methyl-propenylidene]malonitrile (DCTB) and 2,5-dihydroxy-benzoic acid (DHB) were used as matrices. The APPI mass spectra were obtained on Bruker maXis 4G TOF-mass spectrometer. ESI mass spectra were recorded on BRUKER microTOF II focus ESI-TOF spectrometer.

2. Synthesis

Synthesis of cyclophane P2

Experiment F: Pyridine anhydrous (18.7 mg, 19.2 μ L, 237 μ mol, 4 eq.) was added to a solution of compound **1** (130 mg, 118 μ mol, 2 eq.) and tetrathiafulvalene (12.5 mg, 61.1 μ mol, 97% purity, 1 eq.) in CH₂Cl₂ anhydrous (225 mL). To the stirred reaction mixture, malonyl dichloride (17.2 mg, 11.9 μ L, 122 μ mol, 97% purity, 2 eq.) in CH₂Cl₂ anhydrous (5 mL) was added with an automatic syringe pump within 3 h. After 29 h, 47 h and 51 h the previously described addition of malonyl dichloride was repeated three times. In total the solution was stirred at rt for 3 d. Afterwards, the solvent was removed under vacuum without drying completely and the crude product solution was separated by size exclusion chromatography (Biobeads S-X1, dry mesh size: 28-74 μ , CH₂Cl₂). The fractions containing compound **P2** (as indicated by TLC) were purified by column chromatography (SiO₂, CH₂Cl₂:ethyl acetate, 1:0 -> 99:1). The mixed fractions containing compound **P2** (11.2 mg, 4.80 μ mol, 8.1%) as dark purple solid.

TLC (Hexane:ethyl acetate, 3:1): R_f = 0.22.

¹H NMR (500 MHz, C₂D₂Cl₄, 90 °C): δ = 7.84 (s, 8H, CH_{PBI}), 7.16 – 7.10 (m, 16H, CH_{phenoxy}), 6.75 – 6.66 (m, 16H, CH_{phenoxy}), 4.19 – 4.08 (m, 8H, CH₂), 4.07 – 3.90 (m, 8H, CH₂), 3.21 (bs, 4H, OCCH₂CO), 2.01 – 1.82 (m, 8H, CH₂), 1.26 ppm (s, 72H, CH₃).

¹³C NMR (126 MHz, C₂D₂Cl₄, 90 °C): δ = 166.30 (4C, O-*C*=*O*), 163.08 (8C, N-*C*=O), 155.91 (8C, *C*-O), 153.33 (8C, *C*_{phenoxy}-O), 147.56 (8C, *C*_{phenoxy}), 132.77 (4C, *C*_{PBI}), 126.60 (16C, H*C*_{phenoxy}), 122.24 (8C, *C*_{PBI}), 120.69 (8C, *C*_{PBI}), 120.19 (8C, H*C*_{PBI}), 119.55 (16C, H*C*_{phenoxy}), 119.44 (4C, *C*_{PBI}), 63.65 (4C, *C*H₂), 42.12 (2C, O=CCH₂C=O), 38.04 (4C, *C*H₂), 34.48 (8C, *C*(CH₃)₃), 31.70 (24C, *C*H₃), 27.46 ppm (4C, *C*H₂).

HRMS (APPI): *m/z* calcd for [C₁₄₆H₁₄₀N₄O₂₄]⁺ 2332.9852, found: 2332.9897.

IR (ATR, rt): \tilde{v} = 2958, 2924, 2853, 1732, 1694, 1659, 1584, 1505, 1459, 1292, 1260, 1217, 1152, 1091, 1016, 799, 745, 700 cm⁻¹.

UV-vis (CH₂Cl₂): ε (λ _{max}) = 18143 (536), 15833 (576) M⁻¹·cm⁻¹ (nm).

Synthesis of cyclophane P3

Pyridine anhydrous (28.8 mg, 29.5 μ L, 364 μ mol, 2 eq.) was added to a solution of compound **1** (200 mg, 182 μ mol, 1 eq.) in CH₂Cl₂ anhydrous (250 mL). Malonyl dichloride (25.6 mg, 17.7 μ L, 182 μ mol, 1 eq.) in CH₂Cl₂ anhydrous (24 mL) was added dropwise with a dropping funnel. The solution was stirred at rt for 5 d. Afterwards, the solvent was removed under vacuum without drying completely and the crude product solution was separated by size exclusion chromatography (Biobeads S-X1, dry mesh size: 28-74 μ , CH₂Cl₂). The fractions containing **P3** (as indicated by TLC) were purified by column chromatography (SiO₂, CH₂Cl₂:ethyl acetate:methanol, 1:0:0 -> 6:0:1) to yield compound **P3** (7.29 mg, 2.08 μ mol, 3.4%) as purple solid.

TLC (Hexane:ethyl acetate, 3:1): $R_f = 0.17$.

¹H NMR (500 MHz, C₂D₂Cl₄, 60 °C): δ = 8.11 (s, 12H, CH_{PBI}), 7.14 – 7.10 (m, 24H, CH_{phenoxy}), 6.77 – 6.72 (m, 24H, CH_{phenoxy}), 4.11 – 4.05 (m, 24H, CH₂), 3.20 (s, 6H, OCCH₂CO), 1.98 – 1.91 (m, 12H, CH₂), 1.18 ppm (s, 108H, CH₃).

¹³C NMR (126 MHz, C₂D₂Cl₄, 60 °C): δ = 166.55 (6C, O-*C*=*O*), 163.55 (12C, N-*C*=O), 156.20 (12C, *C*-O), 153.07 (12C, *C*_{phenoxy}-O), 147.62 (12C, *C*_{phenoxy}), 133.14 (6C, *C*_{PBI}), 126.81 (24C, H*C*_{phenoxy}), 122.45 (12C, *C*_{PBI}), 120.97 (12C, *C*_{PBI}), 120.24 (12C, *C*_{PBI}), 119.66 (6C, *C*_{PBI}), 119.50 (24C, H*C*_{phenoxy}), 63.83 (6C, *C*H₂), 41.55 (3C, O=CCH₂C=O), 37.86 (6C, *C*H₂), 34.47 (12C, *C*(CH₃)₃), 31.68 (36C, *C*H₃), 27.60 ppm (6C, *C*H₂). HRMS (MALDI-TOF, dctb): m/z calcd for [C₂₁₉H₂₁₀N₆O₃₆]⁺ 3499.4781, found: 3499.4762.

IR (ATR, rt): $\tilde{\nu}$ = 2965, 2364, 2343, 1753, 1699, 1662, 1589, 1505, 1440, 1412, 1288, 1217, 1174, 697, 668, 643, 633 cm⁻¹.

UV-vis (CH₂Cl₂): ε (λ_{max}) = 75823 (539), 104860 (579) M⁻¹·cm⁻¹ (nm).

Synthesis of cyclophane P4

The reaction conditions and the purification by size exclusion and column chromatography are as described for compound **P3**. The fraction containing most of compound **P4** (as indicated by TLC) was further purified by preparative TLC (CH_2Cl_2 :ethyl acetate 98:2) and subsequently purified by column chromatography (SiO₂, hexane:ethyl acetate: CH_2Cl_2 , 4:1:0 -> 0:1:9) to yield **P4** (2.70 mg, 578 nmol, 1.3%) as purple solid.

TLC (Hexane:ethyl acetate, 3:1): R_f = 0.10.

¹H NMR (400 MHz, CDCl₃, rt): δ = 8.08 (s, 16H, CH_{PBI}), 7.19 – 7.15 (m, 32H, CH_{phenoxy}), 6.78 – 6.72 (m, 32H, CH_{phenoxy}), 4.19 – 4.09 (m, 32H, CH₂), 3.31 (bs, 8H, OCCH₂CO), 1.99 – 1.94 (m, 16H, CH₂), 1.26 ppm (s, 144H, CH₃).

DEPTQ NMR (151 MHz, CDCl₃, rt): δ = 166.55 (8C, O-*C*=*O*), 163.33 (16C, N-*C*=O), 155.95 (16C, *C*-O), 153.03 (16C, *C*_{phenoxy}-O), 147.30 (16C, *C*_{phenoxy}), 132.88 (8C, *C*_{PBI}), 126.71 (32C, H*C*_{phenoxy}), 122.24 (16C, *C*_{PBI}), 120.68 (16C, *C*_{PBI}), 120.10 (16C, H*C*_{PBI}), 119.48 (8C, *C*_{PBI}), 119.37 (32C, H*C*_{phenoxy}), 63.49 (8C, *C*H₂), 41.54 (4C, O=CCH₂C=O), 37.66 (8C, *C*H₂), 34.48 (16C, *C*(CH₃)₃), 31.59 (48C, *C*H₃), 27.33 ppm (8C, *C*H₂). **HRMS (MALDI-TOF, dctb**): *m/z* calcd for [C₂₉₂H₂₈₀N₈O₄₈]⁺ 4665.9710, found: 4665.9701.

IR (ATR, rt): \tilde{v} = 2957, 2920, 2851, 1738, 1697, 1657, 1587, 1503, 1409, 1338, 1288, 1217, 1171, 1015, 887, 837, 802 cm⁻¹.

UV-vis (CH₂Cl₂): ε (λ_{max}) = 58960 (540), 71264 (580) M⁻¹·cm⁻¹ (nm).

Synthesis of model compound P1

To a solution of **1** (200 mg, 0.1819 mmol, 1 eq.) in anhydrous CH_2Cl_2 (100 mL) pyridine (122.3 mg, 1.546 mmol, 8.5 eq.) was added under inert atmosphere. The mixture was cooled in an ice bath for 10 min. Methyl malonyl chloride (99.3 mg, 728 µmol, 97% purity, 4 eq.) was added dropwise over 5 min. The reaction was warmed to rt and stirred overnight. The crude was washed with aq. HCl (40 mL), water (40 mL) and two times with brine (2x 40 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed under vacuum. The solid was rotated onto SiO₂ and purified by column chromatography three times (SiO₂, 1. CH_2Cl_2 :EA 100:0 -> 98:2, 2. CH_2Cl_2 :EA 100:0 -> 97:3, 3. CH_2Cl_2 :Hex:THF 80:40:0 -> 80:20:5) to yield PBI **P1** (140.2 mg, 108 µmol, 59%) as a purple solid.

TLC (CH₂Cl₂:ethyl acetate 98:2): R_f = 0.71.

¹H NMR (400 MHz, CDCl₃, rt): δ = 8.22 (s, 4H, CH_{PBI}), 7.25 – 7.21 (m, 8H, CH_{phenoxy}), 6.84 – 6.80 (m, 8H, CH_{phenoxy}), 4.23 (t, J= 6.4 Hz, 8H, NCH₂/OCH₂), 3.70 (s, 6H, OCH₃), 3.36 (s, 4H, COCH₂CO), 2.10 – 2.02 (m, 4H, CH₂), 1.29 ppm (s, 36H, CH₃).

¹³C NMR (101 MHz, CDCl₃, rt): δ = 167.03 (2C, O-*C*=O), 166.59 (2C, O-*C*=O), 163.54 (4C, N-*C*=O), 156.15 (4C, *C*-O), 153.00 (4C, *C*_{phenoxy}-O), 147.52 (4C, *C*_{phenoxy}), 133.06 (2C, *C*_{PBI}), 126.84 (2, 8C, H*C*_{phenoxy}), 122.41 (4C, *C*_{PBI}), 120.78 (4C, *C*_{PBI}), 120.14 (4C, H*C*_{PBI}), 119.59 (2C, *C*_{PBI}), 119.46 (8C, H*C*_{phenoxy}), 63.55 (2C, O-*C*H₂), 52.65 (2C, O-*C*H₃), 41.41 (2C, COCCO), 37.69 (2C, N-*C*H₂), 34.53 (4C, *C*(CH₃)₃), 31.60 (12C, *C*H₃), 27.41 ppm (2C, *C*H₂).

HRMS (MALDI-TOF, dctb): *m*/*z* calcd for [C₇₈H₇₈N₂O₁₆]⁺ 1298.5346, found: 1298.5364.

IR (ATR, rt): \tilde{v} = 2958, 2928, 2866, 1757, 1737, 1693, 1655, 1585, 1504, 1437, 1412, 1358, 1337, 1311, 1287, 1217, 1170 cm⁻¹.

UV-vis (DCM): ε (λ_{max}) = 24 823 (541), 40 558 (580) M⁻¹·cm⁻¹ (nm).

Synthesis of model compound P1F2_{Et}

Pentakisadduct **F**_{Et} (34.9 mg, 23.1 µmol, 3 eq.) was dissolved in CH₂Cl₂ anhydrous (15 mL) together with PBI derivative **P1** (10.0 mg, 7.70 µmol, 1 eq.) and CBr₄ (5.62 mg, 16.9 µmol, 2.2 eq.). After stirring at rt for 15 min under inert atmosphere, P₁-*t*Bu (4.09 mg, 4.35 µL, 17.5 µmol, 97% purity, 2.2 eq.) was added and the mixture was stirred for additional 30 min. Then the solvent was removed under vacuum without drying completely and the crude was plug-filtered (SiO₂, CH₂Cl₂:ethyl acetate:methanol, 1:0:0 -> 95:0:5). After purification by column chromatography (SiO₂, CH₂Cl₂:ethyl acetate, 1:0 -> 95:5) model compound **P1F2**_{Et} (20.7 mg, 4.79 µmol, 62%) was obtained as purple solid.

TLC (CH₂Cl₂:ethyl acetate, 99:1): R_f = 0.18.

¹H NMR (400 MHz, CDCl₃, rt): δ = 8.21 (s, 4H, CH_{PBI}), 7.25 – 7.21 (m, 8H, CH_{phenoxy}), 6.86 – 6.78 (m, 8H, CH_{phenoxy}), 4.32 (m, 40H, CH₂ / 4H, CH₂), 4.26 – 4.19 (m, 4H, CH₂), 3.87 (s, 6H, OCH₃), 2.16 – 2.04 (m, 4H, CH₂), 1.36 – 1.27 ppm (m, 60H, CH₃ / 36H, CH₃).

¹³C NMR (151 MHz, CDCl₃, rt): δ = 164.37 (2C, O-*C*=O), 163.99, 163.98, 163.96, 163.93, 163.91, 163.85 (22C, *C*O), 163.46 (4C, N-*C*=O), 156.10 (4C, *C*-O), 153.01 (4C, *C*_{phenoxy}-O), 147.44 (4C, *C*_{phenoxy}), 146.05, 145.99, 145.97, 145.93, 145.91, 145.84, 145.82, 145.77, 141.34, 141.32, 141.30, 141.27, 141.21, 141.00 (96C, C₆₀-sp²), 133.07 (2C, *C*_{PBI}), 126.82 (8C, H*C*_{phenoxy}), 122.43 (4C, *C*_{PBI}), 120.79 (4C, *C*_{PBI}), 120.14 (4C, H*C*_{PBI}), 119.63 (2C, *C*_{PBI}), 119.45 (8C, H*C*_{phenoxy}), 69.22, 69.21, 69.20, 69.18, 69.17 (24C, C₆₀-sp³), 64.96 (2C, O-*C*H₂), 62.99, 62.96 (20C, *C*H₂), 53.95 (2C, *C*H₃), 53.57, 45.53, 45.49, 45.29 (12C, COCCO), 37.54 (2C, NCH₂), 34.53 (4C, *C*(CH₃)₃), 31.61 (12C, *C*H₃), 27.49 (2C, *C*H₂), 14.28, 14.20 ppm (20C, *C*H₃). HRMS (MALDI-TOF, dctb): *m*/*z* calcd for [C₂₆₈H₁₇₄N₂NaO₅₆]⁺ 4338.0721, found: 4338.0825.

IR (ATR, rt): ν̃ [cm⁻¹] = 2957, 2922, 2851, 1744, 1697, 1260, 1209, 1173, 1076, 1040, 1015, 802, 729, 714 cm⁻¹.

UV-vis (CH₂Cl₂): ε (λ _{max}) = 23374 (541), 38138 (580) M⁻¹·cm⁻¹ (nm).

Synthesis of functional hybrid P2F2_{Et}

Cyclophane **P2** (5.00 mg, 2.14 µmol, 1 eq.), pentakisadduct **F**_{Et} (9.71 mg, 6.42 µmol, 3 eq.) and CBr₄ (1.56 mg, 4.71 µmol, 2.2 eq.) were dissolved in CH₂Cl₂ anhydrous (4.20 mL) under inert atmosphere. The solution was stirred for 10 min at rt. P₁-*t*Bu (1.14 mg, 1.21 µL, 4.86 µmol, 97% purity, 2.2 eq.) was added and the mixture was stirred at rt. After 40 min more pentakisadduct **F**_{Et} (4.86 mg, 3.21 µmol, 1.5 eq.) was added. After stirring overnight CBr₄ (780 µg, 2.36 µmol, 1.1 eq.) and P₁-*t*Bu (570 µg, 1.21 µL, 2.43 µmol, 97% purity, 1.1 eq.) dissolved in CH₂Cl₂ anhydrous (1.00 mL) were added to complete the reaction. The solution was directly purified by column chromatography (SiO₂, CH₂Cl₂:ethyl acetate, 1:0 -> 90:10) to obtain cyclophane fullerene adduct **P2F2**_{Et} (8.00 mg, 1.49 µmol, 70%) as purple solid.

TLC (CH₂Cl₂:ethyl acetate, 99.8:0.2): R_f = 0.12.

¹H NMR (400 MHz, $C_2D_2Cl_4$, 90 °C): δ = 7.82 (s, 8H, CH_{PBI}), 7.15 – 7.10 (m, 16H, $CH_{phenoxy}$), 6.77 – 6.64 (m, 16H, $CH_{phenoxy}$), 4.43 – 4.25 (m, 8H, CH_2 / 40H, CH_2), 4.15 – 4.03 (m, 8H, CH_2), 2.13 – 1.95 (m, 8H, CH_2), 1.31 – 1.25 ppm (m, 72H, CH_3 / 60H, CH_3).

¹³C NMR (101 MHz, C₂D₂Cl₄, 90 °C): δ = 163.95, 163.92, 163.87, 163.83 (24C, *C*O), 162.98 (8C, N-*C*=O), 153.45 (8C, *C*_{phenoxy}-O), 147.54 (8C, *C*_{phenoxy}), 146.03, 145.98, 145.94, 145.92, 145.89, 145.84, 141.49, 141.45, 141.41, 141.40, 141.39, 141.35 (96C, C₆₀-sp²), 132.65 (4C, *C*_{PBI}), 126.57 (16C, H*C*_{phenoxy}), 122.22 (8C, *C*_{PBI}), 120.57 (8C, *C*_{PBI}), 120.40 (8C, H*C*_{PBI}), 119.61 (16C, H*C*_{phenoxy}), 119.37 (4C, *C*_{PBI}), 69.78, 69.56 (24C, C₆₀-sp³), 64.88 (4C, O-*C*H₂), 63.22, 63.21 (20C, *C*H₂), 46.12, 46.07 (12C, COCCO), 34.48 (8C, *C*(CH₃)₃), 31.70 (24C, *C*H₃), 27.48 (4C, *C*H₂), 14.21 ppm (20C, *C*H₃).

HRMS (MALDI-TOF, dctb): *m*/*z* calcd for [C₃₃₆H₂₃₆N₄O₆₄]⁺ 5349.5330, found: 5349.5487.

IR (ATR, rt): *ν̃* = 2959, 2926, 2867, 2854, 1743, 1698, 1660, 1589, 1505, 1263, 1206, 1171, 1076, 1012, 713, 528 cm⁻¹.

UV-vis (CH₂Cl₂): ε (λ_{max}) = 82483 (537), 62564 (575) M⁻¹·cm⁻¹ (nm).

Synthesis of functional hybrid P2F2_{TEG}

Cyclophane P2 (5.00 mg, 2.14 µmol, 1 eq.), pentakisadduct F_{TEG} (20.1 mg, 6.42 µmol, 3 eq.) and CBr₄ (1.56 mg, 4.71 μmol, 2.2 eq.) were dissolved in CH₂Cl₂ anhydrous (4.20 mL). P₁-tBu (1.14 mg, 1.21 μL, 4.86 μmol, 97% purity, 2.2 eq.) was added and the mixture was stirred at rt under inert atmosphere. After 21 h, CBr₄ (780 μg, 2.36 μmol, 1.1 eq.) and P₁-tBu (570 μg, 605 nL, 2.43 μmol, 97% purity, 1.1 eq.) were added to the mixture and stirred for additional 4 d. The process was repeated together with pentakisadduct F_{TEG} (10.1 mg, 3.21 µmol, 1.5 eq.) and the reaction mixture was stirred for another 6 d. The crude mixture was directly purified by column chromatography (SiO₂, CH₂Cl₂:toluene:methanol, 100:60:15). The mixed fractions containing $P2F2_{TEG}$ were further purified by four fold column chromatography (SiO₂, 1. CH₂Cl₂:toluene:methanol, 100:60:12 100:60:15, 2. -> CH₂Cl₂:toluene:methanol, 100:60:8 -> 90:70:25, 3. CH₂Cl₂:toluene:methanol, 90:70:15 -> 100:60:20, 4. CH₂Cl₂:toluene:methanol, 100:60:8 -> 100:60:12). The combined pure fractions yielded cyclophane fullerene adduct P2F2_{TEG} (5.00 mg, 582 nmol, 27%) as purple viscous oil.

TLC (CH₂Cl₂:toluene:methanol, 100:60:12): R_f = 0.12

¹H NMR (500 MHz, C₂D₂Cl₄, 110 °C): δ = 7.82 (s, 8H, CH_{PBI}), 7.21 – 7.06 (m, 16H, CH_{phenoxy}), 6.83 – 6.60 (m, 16H, CH_{phenoxy}), 4.51 – 4.23 (m, 8H, CH₂ / 40H, COOCH₂), 4.16 – 4.06 (m, 8H, CH₂), 3.84 – 3.37 (m, 280H, OCH₂), 3.36 – 3.23 (m, 60H, OCH₃), 2.14 – 2.04 (m, 8H, CH₂), 1.28 ppm (s, 72H, CH₃).

DEPTQ NMR (126 MHz, C₂D₂Cl₄, 110 °C): δ = 163.72, 163.68, 163.65, 163.58 (24C, *C*O), 162.93 (8C, N-*C*=O), 155.81 (8C, *C*-O), 153.50 (8C, *C*_{phenoxy}-O), 147.59 (8C, *C*_{phenoxy}), 146.03, 145.99, 145.97, 145.92, 141.33 (96C, C₆₀-sp²), 132.67 (4C, *C*_{PBI}), 126.54 (16C, H*C*_{phenoxy}), 122.31 (8C, *C*_{PBI}), 120.59 (8C, *C*_{PBI}), 120.40 (8C, HC_{PBI}), 119.62 (16C, HC_{phenoxy}), 119.41 (4C, C_{PBI}), 72.28, 70.93, 70.89, 70.83, 70.81, 70.64, 68.76 (140C, OCH₂), 69.54 (24C, C₆₀-sp³), 66.21 (20C, OCH₂), 58.89 (20C, OCH₃), 53.60, 46.01, 45.99 (12C, COCCO), 34.47 (8C, C(CH₃)₃), 31.68 ppm (24C, CH₃).

HRMS (ESI): *m/z* calcd for [C₄₇₆H₅₁₆N₄Na₄O₁₄₄]⁴⁺ 2170.8187, found: 2170.8206.

IR (ATR, rt): \tilde{v} = 2953, 2920, 2868, 2853, 1742, 1698, 1505, 1350, 1282, 1258, 1214, 1171, 1093, 1025, 1016, 942, 872, 841, 803, 714, 551, 528 cm⁻¹.

UV-vis (CH₂Cl₂): ε (λ_{max}) = 76456 (537), 57932 (575) M⁻¹·cm⁻¹ (nm).

Synthesis of side product P2F1_{TEG}

Cyclophane **P2** (5.00 mg, 2.14 μ mol, 1 eq.), pentakisadduct F_{TEG} (20.1 mg, 6.42 μ mol, 3 eq.) and CBr₄ (1.56 mg, 4.71 μ mol, 2.2 eq.) were dissolved in CH₂Cl₂ anhydrous (4.20 mL). P₁-*t*Bu (1.14 mg, 1.21 μ L, 4.86 μ mol, 97% purity, 2.2 eq.) was added and the mixture was stirred at rt under inert atmosphere. After 80 min, another portion of CBr₄ (2.2 eq.) and P₁-*t*Bu (2.2 eq.) were added and the mixture was stirred for additional 100 min. The crude solution was directly purified by column chromatography (SiO₂, CH₂Cl₂:toluene:methanol, 100:60:12 -> 100:60:20) to obtain compound **P2F1**_{TEG} (4.50 mg, 800 nmol, 37%) as purple viscous oil.

TLC (CH₂Cl₂:toluene:methanol, 100:60:12): R_f = 0.19

¹H NMR (500 MHz, $C_2D_2Cl_4$, 110 °C): δ = 7.84 (s, 4H, CH_{PBI}), 7.80 (s, 4H, CH_{PBI}), 7.18 – 7.10 (m, 16H, $CH_{phenoxy}$), 6.76 – 6.65 (m, 16H, $CH_{phenoxy}$), 4.50 – 4.28 (m, 8H, CH_2 / 20H, $COOCH_2$), 4.16 – 4.05 (m, 8H,

CH₂), 3.75 − 3.43 (m, 140H, OCH₂), 3.34 − 3.25 (m, 30H, OCH₃), 2.12 − 1.98 (m, 8H, CH₂), 1.28 ppm (s, 72H, CH₃).

DEPTQ NMR (126 MHz, C₂D₂Cl₄, 100 °C): δ = 163.70, 163.67, 163.32, 163.30, 162.99, 162.94 (14C, *C*O), 155.84, 155.82 (8C, *C*-O), 153.45, 153.41 (8C, *C*_{phenoxy}-O), 147.62, 147.60, 147.58 (8C, *C*_{phenoxy}), 146.10, 146.04, 146.00, 145.97, 145.94, 141.33, 141.31 (48C, C₆₀-sp²), 132.74, 132.65 (4C, *C*_{PBI}), 126.58 (16C, H*C*_{phenoxy}), 122.17 (8C, *C*_{PBI}), 120.66 (8C, *C*_{PBI}), 120.37 (8C, H*C*_{PBI}), 119.60 (16C, H*C*_{phenoxy}), 119.36 (4C, *C*_{PBI}), 72.26, 72.24, 70.91, 70.89, 70.87, 70.85, 70.81, 70.80, 70.77, 70.63, 70.61, 68.75 (70C, OCH₂), 69.53 (12C, C₆₀-sp³), 66.22 (10C, OCH₂), 65.09, 65.07, 65.05 (4C, *C*H₂), 58.91 (10C, OCH₃), 46.17, 45.92 (12C, COCCO), 37.49, 37.47, 37.44 (4C, *C*H₂), 34.48 (8C, *C*(CH₃)₃), 31.67 (24C, *C*H₃), 27.34, 27.32, 27.30 ppm (4C, *C*H₂).

HRMS (ESI): *m*/*z* calcd for [C₃₁₁H₃₂₆Br₂N₄Na₂O₈₄]²⁺ 2831.9756, found: 2831.9770.

IR (ATR, rt): \tilde{v} = 2953, 2919, 2868, 2853, 1742, 1698, 1659, 1591, 1343, 1284, 1266, 1212, 1172, 1104, 1038, 1025, 1013, 945, 902, 873, 839, 822, 803, 715, 554, 528 cm⁻¹.

UV-vis (CH₂Cl₂): ε (λ _{max}) = 78287 (537), 60178 (575) M⁻¹·cm⁻¹ (nm).

3. HPLC chromatograms

Figure S1. a) HPLC chromatograms of the crude mixtures of experiment A and C as well as the macrocycles P2, P3 and P4 analysed at a wavelength of 530 nm. b) Corresponding MALDI MS spectrum of $P2_{open}$. c) Chemical structure of $P2_{open}$ with a retention time of approximately 20 min.

Figure S2. Comparison of the HPLC chromatograms of P2 (top), P3 (bottom) and a mixture of both cyclophanes (middle). The retention time of pure P2 is less than the retention times of the twomembered ring in the different crude mixtures or in a mixture of only P2 and P3 (middle). It can be concluded that P2 interacts with other molecules, which leads to a delay in the retention time.

Figure S3. Comparison of the HPLC chromatograms of the crude mixture of experiment D evaluated both in the absorption region of P2 (530 nm) and TTF (280 nm).

Figure S4. HPLC chromatograms of the crude mixture of experiment E at different times analysed at a wavelength of 530 nm.

4. Temperature-dependent ¹H NMR spectra

Figure S5. ¹H NMR (600 MHz) spectrum of **P2** in $C_2D_2Cl_4$ at -5 °C, enlarged at 2.87 ppm with labelled peaks in Hz.

Figure S6. ¹H and EXSY (600 MHz) NMR spectra of **P2** in $C_2D_2Cl_4$ at 5 °C showing the selective excitation at 2.92 ppm.

Figure S7. ¹H (600 MHz) NMR spectrum of **P2** in C₂D₂Cl₄ at -15 °C showing the ratio of (P,P)/(M,M): (P,M)/(M,P) of 10:1.

Figure S8. Temperature-dependent ¹H (500 MHz) NMR spectra of P2 and P2F2_{Et} dissolved in $C_2D_2CI_4$.

Figure S9. Temperature-dependent ¹H (400 MHz) NMR spectra of P2 dissolved in CD_2CI_2 .

Figure S10. Temperature-dependent ¹H (500 MHz) NMR spectra of P2 and P3 in C₂D₂Cl₄.

Figure S11. ¹³C (600 MHz) NMR spectrum of P3 dissolved in CD₂Cl₂ recorded at -20 °C.

Figure S12. ¹³C (600 MHz) NMR spectrum of P3 dissolved in CD₂Cl₂ recorded at -38 °C.

Figure S13. ¹H and EXSY (600 MHz) NMR spectra of P3 in CD_2Cl_2 at -20 °C showing the selective excitation at 3.24 ppm.

5. Calculation of the activation energy ΔG^{\dagger}

To calculate the activation energy ΔG^{\dagger} the following equation was used^[2]:

$$\Delta G^{\dagger} = RT_C \cdot ln\left(\frac{RT_C\sqrt{2}}{\pi N_A h|\nu_A - \nu_B|}\right)$$

 ΔG^{\dagger} : activation energy for conformational interconversion; R: universal gas constant; N_A : Avogadro constant, h: Planck's constant, v: chemical shift

Table S1. Summary of the coalescence temperature and the difference in frequencies for the calculation of the activation energy.

Compound	Solvent	T _c [K]	$ v_A - v_B $ [Hz] at T [K]	∆G [‡] [kJ/mol]
P2	CD ₂ Cl ₂	273	205.45 at 233	52.77
P2	$C_2D_2CI_4$	298	291.21 at 248	56.95
P2F2 _{Et}	CD ₂ Cl ₂	292	29.27 at 253	61.33
P2F2 _{Et}	$C_2D_2CI_4$	333	283.83 at 268	64.02

6. NMR spectra

Figure S14. ¹H NMR (500 MHz, C₂D₂Cl₄, 90 °C) spectrum of macrocycle P2.

Figure S15. ¹³C NMR (126 MHz, C₂D₂Cl₄, 90 °C) spectrum of macrocycle P2.

Figure S16. ¹H NMR (500 MHz, C₂D₂Cl₄, 60 °C) spectrum of macrocycle P3.

Figure S17. ¹³C NMR (126 MHz, C₂D₂Cl₄, 60 °C) spectrum of macrocycle P3.

Figure S18. ¹H NMR (400 MHz, CDCl₃, rt) spectrum of macrocycle P4.

Figure S19. DEPTQ NMR (151 MHz, CDCl₃, rt) spectrum of macrocycle P4.

Figure S20. ¹H NMR (400 MHz, CDCl₃, rt) spectrum of precursor P1.

Figure S21. ¹³C NMR (101 MHz, CDCl₃, rt) spectrum of model precursor P1.

Figure S22. ¹H NMR (400 MHz, CDCl₃, rt) spectrum of model compound P1F2_{Et}.

Figure S23. ¹³C NMR (151 MHz, CDCl₃, rt) spectrum of model compound P1F2_{Et}.

Figure S24. ¹H NMR (400 MHz, C₂D₂Cl₄, 90 °C) spectrum of the functional hybrid P2F2_{Et}.

Figure S25. ¹³C NMR (101 MHz, C₂D₂Cl₄, 90 °C) spectrum of the functional hybrid P2F2_{Et}.

Figure S26. ¹H NMR (500 MHz, C₂D₂Cl₄, 110 °C) spectrum of the functional hybrid P2F2_{TEG}.

Figure S27. ¹³C NMR (126 MHz, $C_2D_2CI_4$, 110 °C) spectrum of the functional hybrid P2F2_{TEG}.

Figure S28. ¹H NMR (500 MHz, C₂D₂Cl₄, 110 °C) spectrum of the functional hybrid P2F1_{TEG}.

Figure S29. DEPTQ NMR (126 MHz, C₂D₂Cl₄, 110 °C) spectrum of the functional hybrid P2F1_{TEG}.

7. MS spectra

Figure S30. APPI HRMS spectrum of macrocycle P2.

Figure S31. MALDI HRMS spectrum of macrocycle P3.

Figure S32. MALDI HRMS spectrum of macrocycle P4.

Figure S 33. MALDI HRMS spectrum of precursor P1.

Figure S34. MALDI HRMS spectrum of model compound P1F2_{Et}.

Figure S35. MALDI HRMS spectrum of functional hybrid P2F2_{Et}.

Figure S36. ESI HRMS spectrum of functional hybrid P2F2_{TEG}.

Figure S37. APPI HRMS spectrum of side product P2F1_{TEG}.

8. UV-Vis absorption spectroscopy

Figure S38. Normalized absorption spectra of P1, P2, P3, and P4 in tetrahydrofuran, toluene, benzonitrile, and 1,1,2,2-tetrachloroethane measured at room temperature.

Figure S39. Absorption spectra of cyclophane P2 at different concentrations in toluene, tetrahydrofuran and benzonitrile measured at room temperature.

Figure S40. Normalized absorption spectra of $P1F2_{Et}$, $P2F2_{Et}$, and $P2F2_{TEG}$ in tetrahydrofuran, toluene, benzonitrile, and 1,1,2,2-tetrachloroethane measured at room temperature.

Table S2. The peak wavelengths (in nm) for $0^{-*}0$ and $0^{-*}1$ vibrational transitions, molar extinction coefficient at the peak positions (in M^{-1} cm⁻¹) and the $0^{-*}1 : 0^{-*}0$ transition intensity ratios for all the samples in different solvents, measured at room temperature.

		Tolu	iene	Tł	łF	Benzo	onitrile	5% THF	/water
Sample		0–*1	0–*0	0–*1	0–*0	0–*1	0–*0	0–*1	0–*0
P1	Peak position (nm)	534	575	531	570	541	580		
	ε (M ⁻¹ cm ⁻¹)	2.6×10 ⁴	4.4×10 ⁴	2.4×10 ⁴	3.8×10 ⁴	2.4×10 ⁴	3.8×10 ⁴		
	0 - *1 : 0 - *0	0.60	D:1	0.63	3:1	0.62	2 : 1		
P2	Peak position (nm)	532	572	530.5	571.5	539	578		
	ε (M ⁻¹ cm ⁻¹)	5.6×10 ⁴	5.6×10 ⁴	4.8×10 ⁴	4.7×10 ⁴	4.4×10 ⁴	4.8×10 ⁴		
	0-*1:0-*0	0.99	9:1	1.03	3:1	0.92	2:1		
P3	Peak position (nm)	535.5	574.5	534	572	541.5	579.5		
	ε (M ⁻¹ cm ⁻¹)	3.4×10 ⁴	4.8×10 ⁴	1.1×10⁵	1.5×10⁵	8.2×10 ⁴	1.2×10⁵		
0 - *1 : 0 - *0		0.71:1		0.72 : 1		0.69 : 1			
P4	Peak position (nm)	538	579.5	538	577.5	543	582		
	ε (M ⁻¹ cm ⁻¹)	2.6×10 ⁴	3.3×10 ⁴	3.4×10 ⁴	4.4×10 ⁴	4.7×10 ⁴	6.6×10 ⁴		
	0 - *1 : 0 - *0	0.77:1		0.79 : 1		0.71 : 1			
P1F2 _{Et}	Peak position (nm)	534	575	531.5	571.5	543	582.5		
	ε (M ⁻¹ cm ⁻¹)	2.1×10 ⁴	3.5×10 ⁴	2.5×10 ⁴	4.0×10 ⁴	2.2×10 ⁴	3.5×10 ⁴		
	0 - *1 : 0 - *0 0.61 : 1		1:1	0.54:1		0.62 : 1			
P2F2 _{Et}	Peak position (nm)	530.5	568.5	529	567	537.5	576		
	ε (M ⁻¹ cm ⁻¹)	6.8×10 ⁴	5.9×10 ⁴	8.0×10 ⁴	6.0×10 ⁴	6.3×10 ⁴	5.7×10 ⁴		
	0 - *1 : 0 - *0	1.16	6:1	1.33	3:1	1.1	1:1		
P2F2 _{TEG}	Peak position (nm)	531	569	530	568	538	576	537	577
	ε (M ⁻¹ cm ⁻¹)	4.6×10 ⁴	4.2×10 ⁴	5.5×10 ⁴	4.2×10 ⁴	4.2×10 ⁴	3.8×10 ⁴	4.6×10 ⁴	3.6×10 ⁴
0 - *1 : 0 - *0		1.12	2 : 1	1.30):1	1.10	D:1	1.30	: 1

9. Fluorescence spectroscopy

Figure S41. Normalized fluorescence spectra of P1, P2, P3, and P4 in tetrahydrofuran, toluene, benzonitrile, and 1,1,2,2-tetrachloroethane obtained upon photo-excitation at 510 nm at room temperature.

Figure S42. Normalized fluorescence spectra of $P1F2_{Et}$, $P2F2_{Et}$, and $P2F2_{TEG}$ in tetrahydrofuran, toluene, benzonitrile, and 1,1,2,2-tetrachloroethane obtained upon photo-excitation at 510 nm at room temperature.

Emission quantum yield	Toluene	THF	Benzonitrile	5% THF/water
P1	0.904	0.792	0.722	-
P2	0.176	0.015	0.016	-
P3	0.254	0.085	0.118	-
P4	0.183	0.058	0.104	-
P1F2 _{Et}	0.391	0.536	0.531	-
P2F2 _{Et}	0.152	0.007	0.012	-
P2F2 _{TEG}	0.234	0.025	0.027	0.007

Table S3. Fluorescence quantum yields measured in different solvents at room temperature(Rhodamine B in ethanol used as reference).

10. Temperature-dependent absorption and fluorescence spectra

Figure S43. Temperature-dependent absorptions of **P2** (a) and **P3** (b) as well as fluorescence of **P2** (c) and **P3** (d) in 1,1,2,2-tetrachloroethane.

11. Spectroelectrochemistry

Figure S44. Differential absorption spectra of **P1**, **P2**, **P3**, and **P4** in argon-saturated benzonitrile containing 0.1 M TBAPF₆ supporting electrolyte, obtained upon electrochemical oxidation and reduction using Ag wire as reference electrode.

12. Transient absorption measurements

Figure S45. Femtosecond differential absorption spectra of **P1** in argon-purged toluene (a), THF (b), and PhCN (c), at time delays between 0 and 5500 ps after 550 nm photo-excitation at rt. Nanosecond differential absorption spectra of **P1** in argon-purged toluene (d), THF (e), and PhCN (f), at time delays between 1 ns and >100 μ s after 550 nm photo-excitation at rt.

Figure S46. Femtosecond differential absorption spectra of **P2** in argon-purged toluene (a), THF (b), and PhCN (c), at time delays between 0 and 5500 ps after 550 nm photo-excitation at rt. Nanosecond differential absorption spectra of **P2** in argon-purged toluene (d), THF (e), and PhCN (f), at time delays between 1 ns and >100 μ s after 550 nm photo-excitation at rt.

Figure S47. Femtosecond differential absorption spectra of **P3** in argon-purged toluene (a), THF (b), and PhCN (c), at time delays between 0 and 5500 ps after 550 nm photo-excitation at rt. Nanosecond differential absorption spectra of **P3** in argon-purged toluene (d), THF (e), and PhCN (f), at time delays between 1 ns and >100 μ s after 550 nm photo-excitation at rt.

Figure S48. Femtosecond differential absorption spectra of **P4** in argon-purged toluene (a), THF (b), and PhCN (c), at time delays between 0 and 5500 ps after 550 nm photo-excitation at rt. Nanosecond differential absorption spectra of **P4** in argon-purged toluene (d), THF (e), and PhCN (f), at time delays between 1 ns and >100 μ s after 550 nm photo-excitation at rt.

Figure S49. Femtosecond differential absorption spectra of $P1F2_{Et}$ in argon-purged toluene (a), THF (b), and PhCN (c), at time delays between 0 and 5500 ps after 550 nm photo-excitation at rt. Nanosecond differential absorption spectra of $P1F2_{Et}$ in argon-purged toluene (d), THF (e), and PhCN (f), at time delays between 1 ns and >100 µs after 550 nm photo-excitation at rt.

Figure S50. Femtosecond differential absorption spectra of $P2F2_{Et}$ in argon-purged toluene (a), THF (b), and PhCN (c), at time delays between 0 and 5500 ps after 550 nm photo-excitation at rt. Nanosecond differential absorption spectra of $P2F2_{Et}$ in argon-purged toluene (d), THF (e), and PhCN (f), at time delays between 1 ns and >100 µs after 550 nm photo-excitation at rt.

Figure S51. Femtosecond differential absorption spectra of **P2F2_{TEG}** in argon-purged toluene (a), THF (b), and PhCN (c), at time delays between 0 and 5500 ps after 550 nm photo-excitation at rt. Nanosecond differential absorption spectra of **P2F2_{TEG}** in argon-purged toluene (d), THF (e), and PhCN (f), at time delays between 1 ns and >100 μ s after 550 nm photo-excitation at rt.

13. Global analysis of transient absorption spectra

Figure S52. Evolution associated spectra reconstructed from the sequential global analysis of fs-TA spectra of **P1** in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

Figure S53. Evolution associated spectra reconstructed from the sequential global analysis of ns-TA spectra of **P1** in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

Figure S54. Evolution associated spectra reconstructed from the sequential global analysis of fs-TA spectra of **P2** in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

Figure S55. Evolution associated spectra reconstructed from the sequential global analysis of ns-TA spectra of **P2** in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

Figure S56. Evolution associated spectra reconstructed from the sequential global analysis of fs-TA spectra of **P3** in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

Figure S57. Evolution associated spectra reconstructed from the sequential global analysis of ns-TA spectra of **P3** in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

Figure S58. Evolution associated spectra reconstructed from the sequential global analysis of fs-TA spectra of **P4** in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

Figure S59. Evolution associated spectra reconstructed from the sequential global analysis of ns-TA spectra of **P4** in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

Figure S60. Evolution associated spectra reconstructed from the sequential global analysis of fs-TA spectra of $P1F2_{Et}$ in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

Figure S61. Evolution associated spectra reconstructed from the sequential global analysis of ns-TA spectra of $P1F2_{Et}$ in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

Figure S62. Evolution associated spectra reconstructed from the sequential global analysis of fs-TA spectra of $P2F2_{Et}$ in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

Figure S63. Evolution associated spectra reconstructed from the sequential global analysis of ns-TA spectra of **P2F2**_{Et} in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e) and PhCN (f).

Figure S64. Evolution associated spectra reconstructed from the sequential global analysis of fs-TA spectra of **P2F2_{TEG}** in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

Figure S65. Evolution associated spectra reconstructed from the sequential global analysis of ns-TA spectra of **P2F2_{TEG}** in toluene (a), THF (b), PhCN (c) and the corresponding population kinetics in toluene (d), THF (e), and PhCN (f).

		¹ S _{hot} (ps)	¹ S _{rel} (ps)	¹ S _{fluor} (ns)	¹ Τ (μs)
	Tol	8.5	350.6	6.0	> 350
P1	THF	6.2	340.1	6.4	> 350
	PhCN	<mark>15.1</mark>	570.2	6.1	> 350
-	Tol	11.5	1397.9	5.5	232
P1F2 _{Et}	THF	7.9	621.0	5.4	137
	PhCN	4.4	637.3	5.4	222

Table S4. Lifetimes of different species involved in the excited state decay dynamics of **P1** and **P1F2**_{Et}, determined from the global sequential analysis of fs-TA and ns-TA measurements.

		¹ S _{hot} (ps)	¹ S _{rel} (ps)	SBCT _{hot} (ns)	SBCT _{rel} (ns)	SBCS (ns)	¹ Τ (μs)
	Tol	16.3	324.6	5.9	14.7	<u>-</u> 27	35
P2	THF	4.6	-	0.6	-	3.3	139
	PhCN	23.7	-	0.8	1 /	4.1	118
	Tol	2.2	104.3	<mark>6.1</mark>	12.3	-	47
P3	THF	2.0	27.8	1.3	-	6.2	183
	PhCN	17.7	256.1	2.0	-	12.8	167
	Tol	2.2	48.5	4.5	9.9	-	83
P4	THF	2.7	39.4	1.3	-	4.6	148
	PhCN	10.0	725.5	4.0	-	19.9	180
	Tol	17.7	987.0	3.0	12.8	-	97
P2F2 _{Et}	THF	3.8	-	2.2		6.4	155
	PhCN	26.4	-	1.2	-	4.4	165
	Tol	6.6	102.8	2.8	11.2	-	112
P2F2 _{TEG}	THF	4.4		0.8	-	2.9	143
6	PhCN	23.6	-	0.9	-	2.2	148

Table S5. Lifetimes of different species involved in the excited state decay dynamics determined from the global sequential analysis of fs-TA and ns-TA measurements for **P2**, **P3**, **P4** as well as $P2F2_{Et}$ and $P2F2_{TEG}$.

14. Singlet oxygen quantum yield measurements

Figure S66. Singlet oxygen phosphorescence of **P2**, **P3** and **P4** measured in oxygen saturated toluene and benzonitrile after 532 nm photo-excitation (OD = 0.08).

Table S6. Singlet oxygen quantum yields of P2, P3, and P4 in toluene and benzonitrile, measured
using C ₆₀ in air-equilibrated toluene as reference ($\Phi_{\Delta}^{ref} = 0.98 \pm 0.05$).

Compound	Solvent	Φ_{Δ}
P2	Tol	0.67 ± 0.08
	PhCN	0.53 ± 0.07
P3	Tol	0.37 ± 0.08
	PhCN	0.43 ± 0.07
P4	Tol	0.76 ± 0.07
	PhCN	0.44 ± 0.06

15. 3D Fluorescence heat map

Figure S67. 3D fluorescence heat map of (a) P1, (b) P1F2_{Et}, (c) P2, and (d) P2F2_{Et} in toluene at room temperature.

Figure S68. 3D fluorescence heat map along with the absorption and emission spectra of fullerene hexakisadduct in toluene at room temperature.

16. Literature

- [1] J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen, I. H. van Stokkum, *J. Stat. Softw.* **2012**, *49*, 1-22.
- [2] M. Hesse, H. Meier, B. Zeeh, *Spektroskopische Methoden in der organischen Chemie*, Georg Thieme Verlag, **2005**.