Electronic Supplementary Information

Table of contents

Table of contents S2
General information S3
Figure S1. Reaction setup with cooling by running water S5
Figure S2: Large-scale photoreactor ($25 \mathrm{~W}, 365 \mathrm{~nm}$ LEDs) S5
Table S1: Reaction condition optimization for the dearomatization of S1 S6
Scheme S1: Structures of substrates used for examining the scope of photo-induced S7 dearomatization reaction
Scheme S2: The use of $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}_{2}\right)_{2}(\mathrm{dttbpy})\right] \mathrm{PF}_{6}$ as photocatalyst in S8 photocyclization of N -(2-chlorobenzoyl)-5-bromoindole.
Quantum yield determination for photochemical reaction S8
Figure S3: Emission spectrum of S1 in 2-MeTHF at 77 K and photos showing the afterglow S9
Figure S4: Time-resolved emission spectra of $\mathbf{S 3}$ in the solid state. S10
Figure S5: Time-resolved emission spectra of $\mathbf{S 3}$ in the solid state. S10
Figure S6: ns-TA spectra of $\mathbf{S 3}$ in degassed MeCN S11
Figure S7: ${ }^{1} \mathrm{H}$ NMR spectra showing the incorporation of deuterium at C 2 position S12
EPR experiments S13
Figure S8: EPR spectra of control experiments S13
Figure S9: X-band EPR spectrum of the reaction mixture after irradiation for 3 hours S13
Figure S10: X-band EPR spectrum of the reaction mixture after irradiation for 3 hours, then trapped with DMPO S14
Figure S11: UV-Vis absorption spectra of S1, DIPEA and the mixture at room temperature S16
Figure S12: Emission output of LEDs S16
Scheme S3: Synthesis of substrates S17
General procedure for metal- and photocatalyst-free photo-induced S34
dearomatization reaction of indole derivatives
Modification of complex molecules S45
Scheme S4: Synthesis of compound 26 S45
Scheme S5: Synthesis of compound 28 S47
Scheme S6: Synthesis of glioperazine C analogues. S49
Scheme S7: Synthesis of compound 32 S53
Large-scale reaction and its applications S56
Figure S13: X-ray crystal structure of compound cis-34 S58
Figure S14: X-ray crystal structure of compound 37 S61
Mechanistic experiments S65
Computational details S72
Figure S15: Calculated frontier molecular orbitals of $\mathbf{S 1}$ at T_{1} State S72
Table S2: Mulliken charge distribution of $\mathbf{S 1}$ in the ground state $\left(\mathrm{S}_{0}\right)$ and T_{1} state S72
Figure S16: Energy profile for the proposed reaction pathway. S73
X-ray crystallographic details S85
NMR Spectra S99
References S188

General information.

All chemicals, unless otherwise noted, were purchased from commercial sources and used without further purification. All solvents for reactions and measurement were purified by standard methods. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded respectively on Bruker 400 M or 500 M spectrometers. ${ }^{19}$ F NMR spectra were recorded respectively on Bruker 400 M spectrometers. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 ppm . Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: $\mathrm{s}=\operatorname{singlet,} \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. All reactions were monitored by TLC or ${ }^{1} \mathrm{H}$ NMR spectroscopy. Flash column chromatography was carried out using 300-400 mesh silica-gel at medium pressure.

High resolution mass spectra were recorded using a Q Exactive mass spectrometer (Thermo

Fisher Scientific, USA. Gas chromatography-mass spectrometry (GC-MS) analyses were performed with an Agilent Technologies 7890A Network GC System equipped with an Agilent Technologies 5975C Network Mass Selective Detector (MSD).

All absorption spectra were recorded on a Hewlett-Packard 8453 diode array spectrophotometer. Steady-state emission spectra were recorded on a Horiba Fluorolog-3 spectrophotometer. Solutions for photophysical studies were degassed by using a high vacuum line in a twocompartment cell with five freeze-pump-thaw cycles. Low temperature (77 K) emission spectra for glassy state and solid state samples were recorded in quartz tubes (4 mm internal diameter) placed in a liquid nitrogen Dewar flask with quartz windows. Nanosecond time-resolved emission measurements were performed on a LP920-KS Laser Flash Photolysis Spectrometer (Edinburgh Instruments Ltd., Livingston, UK). The excitation source was the 355 nm output (third harmonic) of a Nd:YAG laser (Spectra-Physics Quanta-Ray Lab-130 Pulsed Nd:YAG Laser). The signals were processed by a PC plug-in controller with L900 software. Cyclic voltammetry was conducted on a Princeton Applied Research PMC-1000 Potentiostat. The working electrode was glassy carbon; the reference electrode was $\mathrm{Ag} / \mathrm{AgCl}$; the counter electrode was a platinum wire. Scan rate: $100 \mathrm{mV} / \mathrm{s}$. All potentials were reported versus $\mathrm{Ag} / \mathrm{AgCl}$. Unless stated otherwise, irradiation was performed using 410 nm or 365 nm LEDs (3 $\mathrm{W} \times 4$) under argon atmosphere. The illumination instruments were purchased from Shenzhen PURI Materials Technologies Co., LTD (Model: PR-PCR2-365nm, PR-PCR2-410nm). The photon flux received by the reaction tube containing 5 mL of solution in the 365 nm LED photoreactor is estimated to be 3.91×10^{-6} einstein s^{-1}. Large-scale 365 nm LEDs photoreactor (Model: PR-PCRL1-365 nm) was also purchased from Shenzhen Purui Material Technology Co., Ltd.

Photoreactor: ($3 \mathrm{~W} \times 4$, 410 or 365 nm LEDs)

Figure S1. Reaction setup with cooling by running water.

Figure S2: Large-scale photoreactor ($25 \mathrm{~W}, 365 \mathrm{~nm}$ LEDs)

Reported compounds:

(2-Chlorophenyl)(1H-indol-1-yl)methanone (S1), ${ }^{1}$ (2-bromophenyl)(1H-indol-1-yl)methanone (S1'), ${ }^{2} \quad(1 \mathrm{H}-i n d o l-1-y l)(2-i o d o p h e n y l) m e t h a n o n e \quad\left(S 1^{\prime \prime}\right),{ }^{3}$ tert-butyl (2-(1H-indol-3yl)ethyl)carbamate, ${ }^{4}$ (2-iodophenyl)(3-methyl-1H-indol-1-yl)methanone (S17), ${ }^{5}$ 5-(allyloxy)1 H -indole, ${ }^{6}$ (2-chlorophenyl)(2-methyl-1H-indol-1-yl)methanone ($\mathbf{S 1 8}$), ${ }^{7}$ 1-(2-chlorobenzyl)-1H-indole (42). ${ }^{8}$

Table S1: Reaction condition optimization for the dearomatization of $\mathbf{S 1}{ }^{[a]}$

		X eq Ad MeCN, 3 410 nm tim	${ }^{\circ} \mathrm{C}$ 1		
Entry	Additive	X	Solvent	Time / h	Yield (\%)
1	DIPEA	2.5	MeCN	2	21
2	DIPEA	2.5	MeCN	4	46
3	DIPEA	2.5	MeCN	6	60
4	DIPEA	2.5	DMF	8	47
5	DIPEA	2.5	DMSO	8	40
6	DIPEA	2.5	Acetone	8	30
7	DIPEA	2.5	THF	8	6
8	DIPEA	2.5	$\mathrm{DCE}^{[\mathrm{b}]}$	8	10
9	DIPEA	2.5	Ethyl acetate	8	0
10	DIPEA	2.5	Toluene	8	0
11	DIPEA	2.5	MeOH	8	20
12	DIPEA	0.5	MeCN	8	21
13	DIPEA	1.0	MeCN	8	33
14	TMEDA	2.5	MeCN	8	$20^{[\mathrm{c}]}$
15	$\mathrm{Et}_{3} \mathrm{~N}$	2.5	MeCN	8	$31^{[\mathrm{c}]}$
16	DABCO	2.5	MeCN	8	$0^{[\mathrm{c}]}$
17	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2.5	MeCN	8	$0^{[\mathrm{c}]}$
18	DIPEA	2.5	MeCN	12	$59^{[\mathrm{c}]} ; 54^{[\mathrm{d}]}$
	$\operatorname{Ir}(\mathrm{ppy}){ }_{3}{ }^{\text {[e] }}$	0.01			
19	DIPEA	2.5	MeCN	12	$50^{[\mathrm{cc}]} ; 84^{[\mathrm{d}]}$
$\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dttbpy})\right] \mathrm{PF}_{6}{ }^{[\mathrm{f}]}$		${ }^{\text {[f] }} 0.01$			

[a] S1 (0.2 mmol), DIPEA (0.5 mmol) and acetonitrile $(2.0 \mathrm{~mL})$, irradiation under 410 nm LEDs at $30-35{ }^{\circ} \mathrm{C}$ for 2-12 hours. Yields were determined by ${ }^{1} \mathrm{H}$ NMR using dibromomethane or 1,3,5-trimethoxybenzene as internal standard. [b] DCE: 1,2-dichloroethane. [c] Under 365 nm LEDs irradiation. [d] Under 450 LEDs irradiation. [e] Hppy = 2-phenylpyridine. [f] $\operatorname{HdF}\left(\mathrm{CF}_{3}\right)$ ppy $=2$-(2,4-difluorophenyl)-5-(trifluoromethyl)pyridine; dtbbpy $=4,4$ '-di-tert-butyl-2,2'-bipyridine.

Unsuccessful substrates:

S34

S36

Scheme S1: Structures of substrates used for examining the scope of photo-induced dearomatization reaction.

Scheme S2: The use of $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \text { ppy }\right)_{2}(\mathrm{dttbpy})\right] \mathrm{PF}_{6}$ as photocatalyst in photocyclization of N -(2-chlorobenzoyl)-5-bromoindole. Hydrodebrominated product was also obtained.

Quantum yield determination for photochemical reaction

Determination of light intensity:

The 365 nm LED (FWHM = 8 nm) was used for photochemical quantum yield measurements. The photon flux was determined by ferrioxalate actinometry as follows: 5 mL of 0.15 M solution of potassium ferrioxalate (in $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$) was placed in a reaction tube and irradiated with stirring. After irradiation, $20 \mu \mathrm{~L}$ of the solution was treated subsequently with $200 \mu \mathrm{~L}$ of 1,10 -phenathroline solution (5 mM in water) and $10 \mu \mathrm{~L}$ of buffer solution (0.6 M in NaOAc and 0.18 M in $\mathrm{H}_{2} \mathrm{SO}_{4}$). The solution was rested in the dark for 10 min , and then made up to 2 mL with water. The absorbance at 510 nm was measured (due to absorption of $\left[\mathrm{Fe}^{\mathrm{II}}(\text { phen })_{3}\right]^{2+}$). A non-irradiated sample was similarly prepared to analyze the amount of Fe (II) present in the stock 0.15 M ferrioxalate solution. The increase in absorbance of the solution after $3 \mathrm{~s}, 6 \mathrm{~s}$ and 9 s of light irradiation are 0.344 , 0.629 and 0.946 , respectively, which gives an average increase of absorbance of 0.104 per second. The amount of photo-generated $\mathrm{Fe}(\mathrm{II})$ ions per second was calculated using equation (1) to be $4.72 \mu \mathrm{~mol}$.

$$
\begin{equation*}
\text { mol of } \mathrm{Fe}(\mathrm{II})=\frac{\mathrm{V} \times \Delta \mathrm{A} \times \mathrm{DF}}{\mathrm{~b} \times \varepsilon} \tag{1}
\end{equation*}
$$

where V is the volume of absorbance measurement $\left(0.005 \mathrm{dm}^{3}\right), \Delta \mathrm{A}$ is the difference in absorbance at 510 nm between the irradiated and non-irradiated samples (0.104), DF is the dilution factor (100 times), b is the path length $(1 \mathrm{~cm})$, and ε is the molar absorptivity $(\varepsilon=$ $11,010 \mathrm{~cm}^{-1} \mathrm{M}^{-1}$).

The photon flux was calculated using equation (2) to be 3.91×10^{-6} einstein s^{-1}.

$$
\begin{equation*}
\text { photon flux }=\frac{\operatorname{mol~of~} \mathrm{Fe}(\mathrm{II})}{\Phi \times \mathrm{t} \times \mathrm{f}} \tag{2}
\end{equation*}
$$

where Φ is the quantum yield for the ferrioxalate actinometer (assumed to be 1.21 based on the reported value at $365 \mathrm{~nm} .{ }^{9}$ t is time of irradiation (1 s), and f is the fraction of light absorbed at 365 nm ($>99.9 \%$) by the 0.15 M potassium ferrioxalate solution.

Determination of photochemical reaction quantum yield

The reaction mixture (typical reaction condition in Table 2: N-(2-chlorobenzoyl)indole (0.5 $\mathrm{mmol})$, N, N-diisopropylethylamine (1.25 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ at room temperature under argon was prepared in a reaction tube and the absorbance at 365 nm is 0.26 (i.e. $\sim 45 \%$ light absorbed). The reaction tube was then irradiated with 365 nm LED with stirring. After 40 minutes, $89.2 \mu \mathrm{~mol}$ of product were formed (determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy), corresponding to a quantum yield of 2.1%.

Figure S3: Left: emission spectrum of $\mathbf{S 1}$ in 2-MeTHF at 77 K . (concentration of $\mathbf{S} 1=1 \times 10^{-4}$ M; excitation at 325 nm); Right: photos showing the afterglow recorded within a few seconds after laser pulse excitation. (photos taken with iPhone 6s)

Figure S4: Time-resolved emission spectra of $\mathbf{S 3}$ in the solid state at room temperature. Excitation at 355 nm .

Figure S5. Time-resolved emission spectra of S3 in the solid state at room temperature. Gate width $=30 \mathrm{~ns}$ (left) and 40 ms (right).

Figure S6: ns-TA spectra of $\mathbf{S 3}$ in degassed MeCN (excitation at 266 nm).

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra showing the incorporation of deuterium at C 2 position (at ~ 5.6 ppm) upon treatment with NaBH_{4} or DIPEA in the presence of deuterated protic solvent.

EPR Experiments

Figure S8: EPR spectra of control experiments. Upper: N-benzoyl indole S1, irradiated for 3 hours; Bottom: DIPEA, irradiated for 3 hours. Recorded at room temperature. Freq.: 9.841 GHz; Mod. Amp.: 1 G.

In a 10 mL test tube with a magnetic stirring bar, indole derivative $\mathbf{S 1}(0.2 \mathrm{mmol})$ or DIPEA $(87 \mu \mathrm{~L})$ was dissolved in $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The test tube was sealed with a septum. The mixture was purged with argon for ten minutes. Then the mixture was irradiated at $30-35{ }^{\circ} \mathrm{C}$ with 365 nm LEDs for 3 h . The sample was obtained with a capillary which was inserted into the mixture to obtain a 3 cm long sample solution under the protection of argon balloon. The upper and lower ends of the capillary were sealed with grease. The capillary was put into a small EPR tube, analyzed by EPR spectrometer at room temperature.

Figure S9: X-band EPR spectrum of the reaction mixture of indole derivative S1 and DIPEA in MeCN, upon 365 nm LEDs irradiation for 3 hours, recorded at room temperature. Freq.: 9.841 GHz ; Mod. Amp.: 1 G.

In a 10 mL test tube with a magnetic stirring bar, indole derivative (0.5 mmol), DIPEA ($0.218 \mathrm{~mL}, 2.5$ equiv) were dissolved in $\operatorname{MeCN}(5.0 \mathrm{~mL})$. The test tube was sealed with a
septum. The mixture was purged with argon for ten minutes. Then the mixture was irradiated at $30-35{ }^{\circ} \mathrm{C}$ with 365 nm LEDs for 3 h . The sample was obtained with a capillary which was inserted into the mixture to obtain a 3 cm long sample solution under the protection of argon balloon. The upper and lower ends of the capillary were sealed with grease. The capillary was put into a small EPR tube, analyzed by EPR spectrometer at room temperature.

No signal could be detected when substrate $\mathbf{S 1}$ or DIPEA alone was irradiated for 3 hours (Figure S8). Irradiation of a mixture of $\mathbf{S 1}$ and DIPEA for 3 hours gave a set of triplet signal as shown in Figure S9. The signal could be approximately fitted with $\mathrm{g}=2.0060, \mathrm{~A}_{\mathrm{N}}=15.2 \mathrm{G}, \mathrm{A}_{\mathrm{H} 1}$ $=4.1 \mathrm{G}$ and $\mathrm{A}_{\mathrm{H} 2}=3.7 \mathrm{G}$. The g value is higher than those of typical aliphatic amine cation radicals, ${ }^{10,11}$ and is comparable to those of nitroxide radicals. ${ }^{11}$ The DIPEA radical cation ${ }^{12}$ and its deprotonated derivatives has been reported to be very short-lived, especially in basic solutions. ${ }^{13}$

The splitting of the signal mainly arises from one ${ }^{14} \mathrm{~N}(I=1)$ nucleus with $\mathrm{A}=15.2 \mathrm{G}$ and two ${ }^{1} \mathrm{H}(S=1 / 2)$ nuclei, probably at the $\alpha-\mathrm{C}$ atom(s), with $\mathrm{A}=4.1$ and 3.7 G . It should be noted that contributions from ${ }^{1} \mathrm{H}$ nuclei with smaller A values might also be present, while the associated splittings are, however, not resolved in the recorded spectrum. Possible radical species giving rise to this signal is a tertiary or secondary aliphatic nitroxide radical, which is temporarily accumulated in a decaying process of DIPEA upon photo-oxidation.

Figure S10: X-band EPR spectrum of the reaction mixture of indole derivative S1 and DIPEA in MeCN, upon 365 nm LEDs irradiation for 3 hours, then trapped with DMPO, recorded at room temperature. Freq.: 9.841 GHz ; Mod. Amp.: 1 G.

In a 10 mL test tube with a magnetic stirring bar, indole derivative (0.2 mmol), DIPEA (87 $\mu \mathrm{L}, 2.5$ equiv) were dissolved in $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The test tube was sealed with a septum. The mixture was purged with argon for ten minutes. Then the mixture was irradiated at $30-35^{\circ} \mathrm{C}$
with 365 nm LEDs for 3 h .1 mL sample solution was taken out and mixed with DMPO ($10 \mu \mathrm{~L}$) under argon atmosphere. The sample was obtained with a capillary which was inserted into the mixture to obtain a 3 cm long sample solution under the protection of argon balloon. The upper and lower ends of the capillary were sealed with grease. The capillary was put into a small EPR tube, analyzed by EPR spectrometer at room temperature.

The major signal could be fitted with parameters: $\mathrm{g}=2.0061, \mathrm{~A}_{\mathrm{N}}=14.0 \mathrm{G}$ and $\mathrm{A}_{\mathrm{H}}=11.1 \mathrm{G}$ with a line width of 4 G . The fitting parameters do not correspond to an aryl/alkyl radical, in which case a signal generally spanning a spectral width of ~ 60 gauss or higher would be expected. Instead, they are comparable to typical DMPO-trapped $\mathrm{O}_{2}{ }^{\circ}$ or $\cdot \mathrm{OOH} / \mathrm{R}$ radicals, ${ }^{14}$ which might be generated in a trace amount and not significantly interfering with the rapidly preceding intramolecular radical cyclization processes. Hydroxide radical $(\cdot \mathrm{OH})$ might also be present in an even lower concentration, giving the minor overlapping side features in the spectrum. However, broadening of the signals prohibits more detailed analysis of the spectrum.

UV-vis absorption

Figure S11. UV-vis absorption spectra of S1, DIPEA and their mixture in MeCN at room temperature.

Figure S12. Emission output of 365 (left) and 410 (right) nm LEDs.

Experimental Procedure

Scheme S3a: Synthesis of substrates.

$R=$
Br, S2, 98\%
$R=B r, \mathbf{S 1 1}, 90 \%$

CN, S12, 90\%
S14, 59\%
CI, S3, 79\%
F, S4, 74\%
OMe, S5, 85\%

S10, 75\%

S17, 95\%

S27, 80\%

S18, 80\%

S29, 56\%

S15, 80\%

S16, 80\%
F, S24, 94\%

$$
\mathrm{NO}_{2}, \mathbf{S 2 6}, 40 \%
$$

S30, 78\%

S25, 27\%

S31, 88\%

General Procedure 1: Synthesis of \boldsymbol{N}-(2-halidebenzoyl)indole ${ }^{14}$

A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 2-chlorobenzoyl chloride (1.5 equiv) was added dropwise to a solution of the indole derivative (1 equiv), NaOH (2.5 equiv) and tetrabutylammonium bromide (TBAB, 0.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h . Then the mixture was warmed to room temperature. At this time another 0.5 equivalent of 2chlorobenzoyl chloride was added. The mixture was stirred at room temperature for 2.5 h . Water was added to quench the reaction and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$).

General Procedure 2: Synthesis of \boldsymbol{N}-(2-chlorobenzoyl)indole using $\mathbf{N a H}$

Scheme S3b: Synthesis of substrates using NaH

In a 50 mL Schlenk tube with a magnetic stirring bar, indole (1 equiv) was added. The Schlenk tube was evacuated and back-filled with argon for three times. Then anhydrous DMF $(10 \mathrm{~mL})$ was added and cooled down to $0^{\circ} \mathrm{C}$. To this solution, a 60% dispersion of NaH in mineral oil (1.5 equiv) was added and stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h . A solution of the corresponding benzoyl chloride (1.5 equiv) in DMF (5 mL) was added dropwise. Then the mixture was warmed to room temperature and stirred for 24 h . Water was added to quench the reaction and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$).

(2-Chlorophenyl)(1H-indol-1-yl)methanone (S1) ${ }^{1}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{br}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 3 \mathrm{H})$, 7.44 (m, 2 H), 7.37 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (br, 1 H$), 6.63(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

(2-Bromophenyl)(1H-indol-1-yl)methanone (S1') ${ }^{2}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{br}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 1 \mathrm{H})$, $7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{br}, 6.99,1 \mathrm{H}), 6.64(\mathrm{~d}$, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
(1H-Indol-1-yl)(2-iodophenyl)methanone (S1' $)^{3}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{br}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.98$ (br, 1 H$), 6.64(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
(5-Bromo-1H-indol-1-yl)(2-chlorophenyl)methanone (S2)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{br}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 4 \mathrm{H})$, $7.47-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{br}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.91,134.36,134.15,132.80,131.96,131.24,130.21,128.93,128.10,127.83,127.26,123.75$, 117.88 , 117.70, 108.91 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClBrNO}+\mathrm{H}\right]^{+}: 333.9629$, Found: 333.9636.
(5-Chloro-1H-indol-1-yl)(2-chlorophenyl)methanone (S3)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{br}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 3 \mathrm{H})$, $7.49-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.88,134.41,133.79,132.29,131.91,131.29,130.20,129.96$, 128.91, 127.92, 127.22, 125.43, 120.66, 117.51, 109.01 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}+\mathrm{H}\right]^{+}: 290.0134$, Found: 290.0140.
(2-Chlorophenyl)(5-fluoro-1H-indol-1-yl)methanone (S4)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{br}, 1 \mathrm{H}){ }^{19} \mathrm{~F}$ NMR decoupling (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-118.26 ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.76,160.10(\mathrm{~d}, J=241.2 \mathrm{~Hz}$), 134.52, $132.14(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 131.82,131.29,130.17,128.90,128.19,127.18,117.59(\mathrm{~d}, J=8.9 \mathrm{~Hz})$, $112.93(\mathrm{~d}, J=24.8 \mathrm{~Hz}), 109.41(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 106.70(\mathrm{~d}, J=24.0 \mathrm{~Hz}) \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClFNO}+\mathrm{H}\right]^{+}: 274.0429$, Found: 274.0434.

(2-Chlorophenyl)(5-methoxy-1H-indol-1-yl)methanone (S5)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{br}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{br}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 165.60,157.04,134.82,132.13,131.64,131.28,130.11,128.89$, 127.35, 127.13, 117.33, 113.49, 109.73, 103.94, 55.72 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}: 286.0629$, Found: 286.0634 .

1-(2-Chlorobenzoyl)-1H-indol-5-yl acetate (S6)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{br}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.98,165.84,147.44,134.54,133.19,131.85,131.82$, $131.25,130.17,128.88,127.85,127.20,118.96,117.22,113.66,109.61,21.20 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClNO}_{3}+\mathrm{H}\right]^{+}: 314.0578$, Found: 314.0584.
(5-(Benzyloxy)-1H-indol-1-yl)(2-chlorophenyl)methanone (S8)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{br}, 1 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{br}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.55,155.12,136.07,133.75$, $131.02,130.57,130.24,129.22,129.05,127.83,127.57,126.92,126.44,126.30,126.05,116.33$, 113.22, 108.67, 104.22, 69.50 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}: 362.0942$, Found: 362.0948.

(5-(Allyloxy)-1H-indol-1-yl)(2-chlorophenyl)methanone (S9)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{br}, 1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{br}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.15-6.08(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=10.5,1.7 \mathrm{~Hz} \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}$, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.60,155.99,134.80,133.42,132.08$, $131.64,131.27,130.22,130.11,128.89,127.36,127.13,117.69,117.32,114.17,109.73,105.13$, 69.37 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}: 312.0786$, Found: 312.0791.
(2-Chlorophenyl)(7-methyl-1H-indol-1-yl)methanone (S10)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 2$ H), $7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.13$, 135.05, 134.83, 132.43, 132.35, $132.23,130.56,130.31,128.20,127.96,127.10,126.71,124.56,118.65,109.18,22.36 \mathrm{ppm}$. HRMS (ESI) Calcd for [$\left.\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClNO}+\mathrm{H}\right]^{+}: 270.0680$, Found: 270.0684.
(4-Bromo-1H-indol-1-yl)(2-chlorophenyl)methanone (S11)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{br}, 1 \mathrm{H}), 7.66-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{br}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.07,134.74,133.35,130.92,130.65,130.24,129.19,127.87,126.26,126.21,126.17,125.30$, 114.51, 113.67, 108.42 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClBrNO}+\mathrm{H}\right]^{+}: 333.9629$, Found: 333.9635.

1-(2-Chlorobenzoyl)-1H-indole-4-carbonitrile (S12)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H})$, $7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 166.09,135.27,133.87,132.92,132.29,131.30,130.34,129.26$, 129.00, 128.69, 127.37, 125.30, 121.07, 117.55, 107.68, 104.01 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}+\mathrm{H}\right]^{+}:$281.0476, Found: 281.0481 .

Methyl 2-(1-(2-chlorobenzoyl)-1H-indol-3-yl)acetate (S14)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{br}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 3 \mathrm{H})$, $7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{br}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 171.12,165.75,135.65,134.75,131.77,131.73,131.28,130.74$, $130.18,128.92,127.17,125.66,125.06,124.41,119.15,115.67,52.23,30.83 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClNO}_{3}+\mathrm{H}\right]^{+}: 328.0735$, Found: 328.0741.

tert-Butyl (2-(1-(2-chlorobenzoyl)-1H-indol-3-yl)ethyl)carbamate (S15)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{br}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.49$ $-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{br}, 1 \mathrm{H}), 4.68(\mathrm{br}, 1 \mathrm{H})$, $3.43-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $165.67,155.87,135.84,134.91,131.69,131.17,131.07,130.15,128.87,127.23,125.57,124.31$, 123.80, 120.44, 119.05, 116.73, 79.34, 39.97, 28.39, 25.53 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 399.1470$, Found: 399.1464.
(S)-Methyl N-(tert-butoxycarbonyl)-1-(2-chlorobenzoyl)-L-tryptophanate (S16)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{br}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}$, $1 \mathrm{H}), 7.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{br}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), \delta 3.23(\mathrm{dd}, J=14.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=14.4,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.10,165.64,154.97,135.61,134.84$, $131.75,131.19,130.12,128.91,127.22,125.65,124.68,124.35,119.04,117.83,116.64,80.02$, 53.47, 52.36, 28.30, 27.75 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{5}+\mathrm{H}\right]^{+}$: 457.1525, Found: 457.1518.

(2-Iodophenyl)(3-methyl-1H-indol-1-yl)methanone (S17) ${ }^{5}$

${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{br}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{br}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

(2-Chlorophenyl)(2-methyl-1H-indol-1-yl)methanone (S18) ${ }^{7}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{br}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{br}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

(2-Chloro-6-fluorophenyl)(1H-indol-1-yl)methanone (S20)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ $(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-111.51(\mathrm{dd}, J=11.3,7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.31,159.32(\mathrm{~d}, J=$ 253.0 Hz), 135.44, $132.48(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 132.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 131.08,125.90,125.79$, $125.57,124.77,123.83(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 121.05,116.91,114.73(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 110.47 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{FClNO}+\mathrm{H}\right]^{+}: 274.0429$, Found: 274.0426.

(2,4-Dichlorophenyl)(1H-indol-1-yl)methanone (S21)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{br}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1$ H), $7.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{br}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.06,137.29$, $135.41,133.27,132.35,131.03,130.14,129.84,127.64,126.33,125.45,124.58,121.10,116.50$, 110.15 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}+\mathrm{H}\right]^{+}: 290.0134$, Found: 290.0131.
(1H-Indol-1-yl)(2,4,6-trichlorophenyl)methanone (S21')

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}$, $2 \mathrm{H}), 7.47(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.25,136.97,135.26,133.21,133.14,132.85$, 131.08, 128.43, 128.40, 125.70, 125.35, 124.91, 121.12, 116.91, 110.93 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{NO}+\mathrm{H}\right]^{+}: 323.9744$, Found: 323.9743.

(2-Chloro-4-methoxyphenyl)(1H-indol-1-yl)methanone (S23)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{br}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{td}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=3.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.09,161.74,135.52,132.76,131.06,130.37,127.04,126.93$, $125.15,124.21,120.95,116.43,115.45,113.12,109.36,55.81 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}: 286.0629$, Found: 286.0626.

(2-Chloro-4-fluorophenyl)(1H-indol-1-yl)methanone (S24)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{br}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H})$, $7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=$ 8.2, 2.4 Hz, 1 H), $6.99(\mathrm{br}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ $106.53(\mathrm{~m}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.19,163.45(\mathrm{~d}, J=254.7 \mathrm{~Hz}), 135.45,132.86(\mathrm{~d}$, $J=10.5 \mathrm{~Hz}), 131.17(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 131.05,130.56(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 126.45,125.40,124.53$, $121.09,117.79(\mathrm{~d}, J=25.0 \mathrm{~Hz}), 116.48,114.78(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 110.03 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClFNO}+\mathrm{H}\right]^{+}: 274.0429$, Found: 274.0426.

(2-Chloro-5-(trifluoromethyl)phenyl)(1H-indol-1-yl)methanone (S25)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{br}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{br}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.65$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.42,135.56,135.42,135.19(\mathrm{q}, J=1.3 \mathrm{~Hz}), 131.05,130.89$, $129.95(\mathrm{q}, ~ J=33.8 \mathrm{~Hz}), 128.43(\mathrm{q}, J=3.7 \mathrm{~Hz}), 126.05,126.03(\mathrm{q}, J=4.0 \mathrm{~Hz}), 125.62,124.79$, $123.18(\mathrm{q}, J=272.6 \mathrm{~Hz}), 121.19,116.55$, 110.63 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{NO}+\mathrm{H}\right]^{+}: 324.0398$, Found: 324.0391.

(2-Chloro-4-nitrophenyl)(1H-indol-1-yl)methanone (S26)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{br}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.4,1.7 \mathrm{~Hz}, 1$ H), $7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{br}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.88,149.19,140.31$, $135.34,132.77,131.00,129.75,125.79,125.63,125.44,125.00,122.37,121.29,116.65,111.06$ ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 300.0302$, Found: 300.0304

(3-(2-Bromoethyl)-1H-indol-1-yl)(2-chlorophenyl)methanone (S27)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{br}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 3 \mathrm{H})$, $7.49-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{br}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.71,135.79,134.82,131.81,131.25,130.64,130.22,128.92$,
127.27, $125.68,124.39,124.15,120.40,118.77,116.79,31.17,28.81$ ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrClNO}+\mathrm{H}\right]^{+}: 361.9942$, Found: 361.9939.

(2-Chlorophenyl)(5-nitro-1H-indol-1-yl)methanone (S28)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{br}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.10,144.70,138.41,133.74,132.40,131.27,131.06,130.35$, $129.56,129.05,127.44,120.49,117.17,116.62,109.89 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}: 301.0374$, Found: 301.0380.

(2-Chlorophenyl)(1H-pyrrolo[2,3-b]pyridin-1-yl)methanone (S29)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{dd}, J=4.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.70 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.16$ (dd, $J=7.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.65(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.04$, $147.98,144.83,135.41,131.57,131.43,129.73,129.25,128.98,126.94,126.07,123.48,119.42$, 107.21 ppm .

1-(2-Chlorobenzoyl)-1H-indole-3-carbaldehyde (S30)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.04(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.65 ($\mathrm{s}, 1 \mathrm{H}$), $7.62-7.57$ (m, 3 H), 7.53-7.50 (m, 2 H), 7.48 (td, $J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.79,166.17,136.68,136.26,133.48,132.60,131.41,130.50,129.19$, 127.54, 127.03, 126.56, 126.01, 123.21, 122.18, 116.35 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}: 284.0473$, Found: 284.0479.

4-Bromo-1-(2-chlorobenzoyl)-1H-indole-3-carbaldehyde (S31)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.97(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.84,166.47,137.39,133.00,132.79,132.41$, $131.42,130.58,129.90,129.17,127.55,127.37,127.11,122.72,116.01,113.55 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{BrClNO}_{2}+\mathrm{H}\right]^{+}: 361.9578$, Found: 361.9574.

(3-Chloropyridin-4-yl)(1H-indol-1-yl)methanone (S32)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{br}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{br}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.41,150.45,148.33,141.55,135.32,131.01,128.37,125.74$, 124.96, 122.28, 121.24, 116.64, 110.97 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$: 257.0476, Found: 257.0470.

In a 50 mL round-bottom flask charged with a magnetic stirring bar, the suspension of indole derivative (2-chlorophenyl)(3-formyl-1H-indol-1-yl) methanone (1 equiv) in MeOH was cooled down to $0{ }^{\circ} \mathrm{C}$ with ice bath. NaBH_{4} (4 equiv) was added slowly. Then the mixture was stirred for 1 h . TLC indicated the substrate was consumed completely. The mixture was quenched with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layer was washed with brine, dried over sodium sulfate. The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: \mathrm{EA}=3: 1$) to afford the product in 98\% yield.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{br}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.33(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{br}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H})$, $2.10(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.02,136.05,134.66,131.78,131.13,130.16$, 129.81, 128.78, 127.22, 125.76, 124.50, 123.95, 123.17, 119.48, 116.73, 57.03 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}: 286.0629$, Found: 286.0636.

In a 50 mL round-bottom flask charged with a magnetic stirring bar, to the solution of 5aminoindole (1 equiv) and triethylamine (1.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$), acetyl chloride (1.2 equiv) was added. The mixture was stirred at room temperature overnight. TLC indicated the substrate was consumed completely. The mixture was quenched with water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layer was washed with brine, dried over sodium sulfate. The solvent was removed under reduced pressure to afford the product. The product was subjected to next step without further purification.

A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 2-chlorobenzoyl chloride (1.5 equiv) was added dropwise to a solution of the above indole derivative (1 equiv), NaOH (2.5 equiv) and tetrabutylammonium bromide (TBAB, 0.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h. Then the mixture was warmed to room temperature. And another 0.5 equivalent of 2 chlorobenzoyl chloride was added. The mixture was stirred at room temperature for 2.5 h . Water was added to quench the reaction and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography (PE:EA from 4:1 to 1:1).

N-(1-(2-Chlorobenzoyl)-1H-indol-5-yl)acetamide (S7)

${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{br}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.43$ $(\mathrm{dd}, J=7.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{br}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.34,164.76,133.61,133.44$, $131.20,130.70,130.64,130.25,129.11,127.85,126.41,126.11,116.67,115.72,111.46,108.96$, 23.63 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 313.0738$, Found: 313.0738.

N-Acetyl-2-chloro- N-(1-(2-chlorobenzoyl)-1H-indol-5-yl)benzamide (S7')

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{br}, 1 \mathrm{H}), 7.68-7.37(\mathrm{~m}, 7 \mathrm{H}), 7.29(\mathrm{~s}, 3 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H})$, $6.61(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.98,170.02,165.94$, $136.54,135.15,134.52,134.31,131.96,131.89,131.26,130.73,130.23,129.69,129.57,128.91$, 128.61, 128.02, 127.23, 126.87, 125.56, 121.19, 117.48, 109.49, 26.09 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 451.0611$, Found: 451.0619 .

In a 50 mL round-bottom flask, indole derivative $\mathbf{S 6}(1.0 \mathrm{mmol})$ was dissolved in THF (25 $\mathrm{mL})$. A solution of the aqueous $\mathrm{NaOH}(2 \mathrm{M}, 4 \mathrm{~mL})$ was added. The mixture was stirred at room temperature for 3 h . TLC indicated the substrate was consumed. Water (10 mL) was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography $(\mathrm{PE}: \mathrm{EA}=10: 1-5: 1)$.

(2-Chlorophenyl)(5-hydroxy-1H-indol-1-yl)methanone (S33)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39$ (br, 1 H), $7.52(\mathrm{~s}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1$ H), $6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $165.86,153.00,134.68,132.40,131.70,131.26,130.13,128.87,127.55,127.15,117.33,113.81$, 109.71, 106.38 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}: 272.0473$, Found: 272.0478.

In a 50 mL round-bottom flask charged with a magnetic stirring bar, to the solution of (3-(2-bromoethyl)-1H-indol-1-yl)(2-chlorophenyl)methanone (1 equiv) and NaN_{3} (1.2 equiv) in DMF (10 mL). The mixture was heated to $80{ }^{\circ} \mathrm{C}$ for 12 h . TLC indicated the substrate was consumed completely. The mixture was quenched with water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layer was washed with brine, dried over sodium sulfate. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) to afford the product in 92% yield.

(3-(2-Azidoethyl)-1H-indol-1-yl)(2-chlorophenyl)methanone (S34)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{br}, 1 \mathrm{H}), 7.74-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{br}$, 1 H), $3.57(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.66$, $135.80,134.85,131.74,131.26,130.78,130.20,128.89,127.23,125.67,124.35,124.07,119.52$, 118.77, 116.80, 50.61, 24.87 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}+\mathrm{H}\right]^{+}: 325.0851$, Found: 325.0847.

In a 50 mL Schlenk tube charged with a magnetic stirring bar, indole derivative (660 mg) and $\mathrm{SnCl}_{2}-2 \mathrm{H}_{2} \mathrm{O}(2.48 \mathrm{~g}, 5 \mathrm{eq})$ were added. Then, the Schlenk tube was evacuated and backfilled with argon three times. Anhydrous ethanol $(20 \mathrm{~mL})$ was added, the mixture was heated to reflux overnight. TLC indicated the substrate was consumed completely. The solvent was poured into ice-water. 2 M NaOH was added. Filtration over Celite and the filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried with sodium sulfate. The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: \mathrm{EA}=$ $3: 1$ to $1: 1$) to obtain the product in 100% yield.

In a 50 mL round-bottom flask charged with a magnetic stirring bar, (4-amino-2-chlorophenyl)(1H-indol-1-yl)methanone (360 mg) was dissolved in DCM (20 mL), acetyl chloride (1.2 eq) and $\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{eq})$ were added. The mixture was stirred at room temperature overnight. TLC indicated the substrate was consumed completely. The reaction was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 3)$, washed with brine and dried with anhydrous sodium sulfate. The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: \mathrm{EA}=3: 1$ to $1: 1$) to obtain the product in 86% yield.

(4-Amino-2-chlorophenyl)(1H-indol-1-yl)methanone (S35)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 (dd, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.77 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.65 (dd, $J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.61 (dd, $J=3.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.10 (br, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.58,149.67,135.57,133.03,131.05,130.92,127.26$, 124.96, 123.99, 123.84, 120.88, 116.35, 115.34, 112.87, 108.90 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}+\mathrm{H}\right]^{+}: 271.0633$, Found: 271.0629 .

N-(3-Chloro-4-(1H-indole-1-carbonyl)phenyl)acetamide (S22)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{br}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{td}, J=7.6,0.9 \mathrm{~Hz}, 1$ H), $7.02(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.19,166.19,141.13,135.43,131.96,131.13,129.75,129.48,126.77,125.31$, 124.49, 121.11, 120.72, 117.93, 116.40, 109.94, 24.60 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 313.0738$, Found: 313.0732.

In a 50 mL round-bottom flask charged with a magnetic stirring bar, indole derivative 4-bromo-1-(2-chlorobenzoyl)-1H-indole-3-carbaldehyde (800 mg) was dissolved in THF (15 mL). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ with ice-bath, BH_{3}-THF ($1 \mathrm{M}, 6 \mathrm{~mL}$) was added dropwise. After 0.5 h , TLC indicated the substrate was consumed completely. The mixture was quenched with MeOH . The solvent was removed under reduced pressure. The residue was purified with flash column chromatography $(\mathrm{PE}: \mathrm{EA}=2: 1)$ to afford the product respectively in 99% yield.
(4-Bromo-3-(hydroxymethyl)-1 H-indol-1-yl)(2-chlorophenyl)methanone (S19)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{br}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.34-$ $7.26\left(\mathrm{~m}, 1 \mathrm{H}\right.$, overlapped with signal of CHCl_{3} residue), $7.04(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.83,137.53,134.26,132.00,131.24,130.27,128.87$, $128.74,128.55,127.27,126.65,126.11,123.14,116.05,113.55,57.31$ ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClBrNO}_{2}+\mathrm{H}\right]^{+}: 363.9734$, Found: 363.9730 .

General procedure for metal- and photocatalyst-free photoinduced dearomatization reaction of indole derivatives:

In a 10 mL test tube with a magnetic stirring bar, indole derivative (0.5 mmol) and DIPEA (2.5 equiv) were dissolved in $\operatorname{MeCN}(5.0 \mathrm{~mL})$. The test tube was sealed with a septum. The mixture was purged with argon for ten minutes. Then the mixture was irradiated at $30-35{ }^{\circ} \mathrm{C}$ with 365 nm or 410 nm LEDs for 10-14 h. The solvent was removed under reduced pressure. The residue was purified with flash column chromatography (PE:EA $=10: 1-1: 1$) to afford the product.

10b,11-Dihydro-6H-isoindolo[2,1-a]indol-6-one (1)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J$ $=10.3,8,7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=15.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=15.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 168.41,146.06,140.66,135.97,134.24,132.58,128.74,128.03$, 125.37, 124.88, 124.47, 122.87, 116.52, 65.46, 33.82 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}+\mathrm{H}\right]^{+}: 222.0913$, Found: 222.0912 .

2-Bromo-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=10.3$, $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=15.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=15.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.38,145.77,139.80,138.16,133.82,132.86,130.94,128.93,128.52,124.99$, 122.93, 117.68, 117.22, 65.43, 33.72 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrNO}+\mathrm{H}\right]^{+}: 300.0019$, Found: 300.0014.

2-Chloro-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (3)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=10.3$, $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=15.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=15.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.41,145.82,139.31,137.81,133.79,132.84,129.61,128.90,127.96,125.66$, 124.93, 122.93, 117.15, 65.49, 33.75 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClNO}+\mathrm{H}\right]^{+}: 256.0524$, Found:256.0519.

2-Fluoro-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (4)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, $5.63(\mathrm{dd}, J=10.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=15.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=15.3,10.4 \mathrm{~Hz}, 1$ H) ; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.20-118.26(\mathrm{~m}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.53$, $159.99(\mathrm{~d}, J=242.8 \mathrm{~Hz}), 145.88,137.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 136.80(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 133.89,132.71$, 128.86, 124.87, 122.89, $117.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 114.31(\mathrm{~d}, J=23.4 \mathrm{~Hz}), 112.98(\mathrm{~d}, J=24.3 \mathrm{~Hz})$, 65.76, $33.98(\mathrm{~d}, J=1.9 \mathrm{~Hz}) \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FNO}+\mathrm{H}\right]^{+}: 240.0819$, Found: 240.0814.

2-Methoxy-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (5)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{dd}, J=10.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{dd}, J$ $=15.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=15.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.37$, $157.07,145.93,137.62,134.30,134.24,132.38,128.71,124.74,122.80,116.85,112.30,112.13$, 65.81, 55.74, 34.10 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 252.1019$, Found:252.1014.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{dd}, J=10.3,8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.47 (dd, $J=15.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=15.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.84,168.44,147.36,145.93,138.48,137.35,133.94,132.72,128.84,124.91$, $122.89,120.93,119.22,116.77,65.72,33.90,21.10 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}: 280.0968$, Found: 280.0964.

N-(6-Oxo-10b,11-dihydro-6H-isoindolo[2,1-a]indol-2-yl)acetamide (7)

${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.53$ (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=10.3,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.48 (dd, $J=15.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06 (dd, $J=15.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.57,168.47,146.00,137.02,136.92,134.83,134.04,132.65,128.79,124.77$, 122.94, 119.47, 118.20, 116.36, 65.77, 33.95, 24.50 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ $+\mathrm{H}]^{+}: 279.1128$, Found: 279.1124.

2-(Benzyloxy)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (8)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.46-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{dd}, J=10.3,8.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.06 (s, 2 H), 3.42 (dd, $J=15.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (dd, $J=15.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.41,156.22,145.94,137.66,136.98,134.45,134.27,132.42$, 128.73, 128.62, 128.01, 127.46, 124.76, 122.81, 116.86, 113.51, 113.14, 70.56, 65.82, 34.08 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 328.1332$, Found: 328.1326 .

2-(Allyloxy)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (9)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{ddt}, J=17.3,10.5,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.60 (dd, $J=10.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.42 (dd, $J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.30 (dd, $J=10.4,1.5 \mathrm{~Hz}, 1$ H), 4.53 (d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.43 (dd, $J=15.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (dd, $J=15.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}^{\text {NMR }}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.38,156.03,145.93,137.58,134.39,134.29,133.26,132.39$, 128.72, 124.76, 122.79, 117.71, 116.83, 113.37, 113.01, 69.38, 65.80, 34.09 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 278.1176$, Found: 278.1171.

4-Methyl-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (10)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.40$ (m, 2 H), 7.02 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.46 (dd, $J=10.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=14.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=14.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.09,144.68,139.18,136.50,133.09,131.34,129.07$, 127.67, 127.61, 124.26, 123.66, 121.70, 121.36, 65.86, 33.74, 18.65 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}+\mathrm{H}\right]^{+}: 236.1070$, Found: 236.1066.

1-Bromo-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (11)

1 H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90$ (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.66-7.60$ (m, 2 H), $7.54-7.50(\mathrm{~m}, 2$ H), 7.22 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.18(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.64(\mathrm{dd}, \mathrm{J}=10.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (dd, $\mathrm{J}=15.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, \mathrm{J}=15.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 13 \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.75$, 145.95, 141.76, 136.44, 133.66, 132.96, 129.66, 128.91, 127.36, 125.00, 122.96, 119.50, 115.16, 64.45, 35.13 ppm . HRMS (ESI) Calcd for [C15H10BrNO+H]+: 300.0019, Found: 300.0015.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=$ $7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.33 (dd, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=10.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=16.2,8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.21 (dd, $J=16.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.76,145.67,141.74$, 140.24, 133.36, 133.25, 129.19, 129.11, 127.29, 125.15, 123.14, 120.45, 116.80, 109.60, 64.83, 33.51 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+}: 247.0866$, Found: 247.0862.

11-(Hydroxymethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (13)

trans :cis $=4.0: 1$
Major (trans): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=10.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=10.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{td}, J=8.9$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.91,145.99,140.63,136.33$, 133.69, 132.75, $128.69,128.44,124.64,124.47,124.30,124.15,116.50,70.39,63.59,48.46 \mathrm{ppm}$.
Minor (cis): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 1 H), 5.58 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dt}, J=8.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{br}, 1 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 1$ H), 3.21 (dd, $J=11.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.44(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.28$, $142.66,139.88,136.84,134.86,132.29,128.83,128.78,126.06,124.71,124.68,124.21,116.38$, 67.60, 62.97, 45.34 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}+\mathrm{H}\right]^{\dagger}: 252.1019$, Found:252.1015.

Methyl 2-(6-oxo-10b,11-dihydro-6H-isoindolo[2,1-a]indol-11-yl)acetate (14)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (s, 3 H), 3.76 (dd, J $=7.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=15.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=15.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.15,168.42,145.08,140.27,138.09,133.85,132.74,128.98,128.52$, 124.79, 124.66, 124.01, 123.26, 116.49, 71.03, 52.15, 42.73, 37.76 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}: 294.1125$, Found: 294.1119.

tert-Butyl (2-(6-oxo-10b,11-dihydro-6H-isoindolo[2,1-a]indol-11-yl)ethyl)carbamate (15)

trans :cis = $3.3: 1$
Major (trans):
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.49$ $(\mathrm{m}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.17$ (dt, $J=13.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.19-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.35,156.06,145.30,140.20,139.27$, 134.00, 132.79, 128.88, 128.10, 124.87, 124.65, 124.13, 123.04, 116.40, 79.53, 71.09, 43.69, 39.11, 28.48, 28.42 ppm.

Minor (cis):
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}$, $2 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (ddd, $J=14.6,10.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.19-1.99$ (m, 2 H), 1.32 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.29,155.99,142.46,139.06,138.94,135.28,132.26,128.50,126.17,124.77$, $124.45,116.70,79.33,69.04,41.71,40.49,37.38,32.09,28.42 \mathrm{ppm}$

HRMS (ESI) Calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 365.1869$, Found: 365.1853.

Methyl (2S)-2-((tert-butoxycarbonyl)amino)-3-(6-oxo-10b,11-dihydro-6H-isoindolo[2,1-

a]indol-11-yl)propanoate (16)

trans :cis = 1.4 :1
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{dd}, J=7.5,3.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}$, $J=8.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 4.66 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{p}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.30$ $(\mathrm{t}, J=8.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.24(\mathrm{t}, J=7.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.19(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 1.5 H), 7.07 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.83$ (d, $J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.52 (dd, $J=7.8,5.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.26$ (dd, $J=10.0,6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.69 (td, $J=8.6$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64-$ $3.54(\mathrm{~m}, 0.5 \mathrm{H}), 3.50-3.38(\mathrm{~m}, 1.5 \mathrm{H}), 3.38-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dt}, J=12.7,6.4 \mathrm{~Hz}, 1.5 \mathrm{H})$, 2.51 (ddd, $J=14.9,11.0,4.1 \mathrm{~Hz}, 1.5 \mathrm{H}), 2.40-2.31$ (m, 2 H), 1.41 ($\mathrm{s}, 6 \mathrm{H}$), 1.37 ($\mathrm{s}, 12 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}^{\text {NMR }}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.19,172.83,168.59,168.31,155.94,155.59,145.23,145.05$, $140.12,140.08,139.13,138.68,133.85,133.70,132.88,132.68,128.82,128.17,128.07,124.75$, $124.68,124.56,124.36,124.05,123.48,123.10,116.30,80.18,80.15,71.36,71.01,68.89$, $60.40,52.60,52.52,43.06,42.72,36.05,35.39,28.32,28.27,28.25,21.01,14.17 \mathrm{ppm}$ HRMS (ESI) Calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{H}\right]^{+}: 423.1914$, Found: 423.1907. $[\alpha]^{25}{ }_{\mathrm{D}}=+24.9\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.

11-Methyl-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (17)

trans :cis $=5.9: 1$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.13(\mathrm{~m}, 1 \mathrm{H}), 1.60$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13}{ }^{3} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.85$, 144.31, 139.96, 139.08, 133.10, 131.45, 127.79, 126.98, 123.85, 123.56, 122.58, 121.32, 115.43, 71.93, 40.29, 15.70 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}+\mathrm{H}\right]^{+}: 236.1070$, Found: 236.1066.

10b-Methyl-10b, 11-dihydro-6H-isoindolo[2,1-a]indol-6-one (18)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.24,151.31,139.52,135.82,132.86,132.65,128.62,128.01,125.70,124.97$, 124.57, 121.95, 117.27, 71.94, 40.38, 27.21 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}+\mathrm{H}\right]^{+}$: 236.1070, Found: 236.1066.

1-Bromo-11-(hydroxymethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (19)

Major (trans):
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.69 (d, $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=10.6,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.52(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.80$, 145.94, 140.91, 136.03, 133.83, 132.71, 128.71, 128.58, 124.59, 124.57, 124.17, 124.03, 116.65, $70.21,63.75,48.53 \mathrm{ppm}$.

Minor (cis):
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=8.3,5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (dd, $J=11.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.18$, 142.61, 141.75, 135.57, 134.93, 132.44, 130.51, 128.97, 127.93, 124.89, 124.36, 119.68, 115.36, $67.25,60.56,47.00 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrNO}_{2}+\mathrm{H}\right]^{+}: 330.0124$, Found: 330.0121 .

7-Fluoro-10b, 11-dihydro-6H-isoindolo[2,1-a]indol-6-one (20)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1 H), 7.23 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=$ $10.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=15.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=15.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-116.18(\mathrm{dd}, J=9.0,4.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.24(\mathrm{~d}, J$ $=2.3 \mathrm{~Hz}), 159.36(\mathrm{~d}, J=261.9 \mathrm{~Hz}), 148.68(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 140.43,135.68(\mathrm{~d}, J=2.0 \mathrm{~Hz})$, $134.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 128.00(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 125.40,124.67,121.23(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 119.00$ (d, $J=3.8 \mathrm{~Hz}$), $116.56(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 116.04(\mathrm{~d}, J=19.3 \mathrm{~Hz}), 65.09,33.79 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FNO}+\mathrm{H}\right]^{+}: 240.0819$, Found: 240.0814 .

9-Chloro-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (21)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H})$, $7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 1 H), 5.61 (dd, $J=10.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (dd, $J=15.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.09(\mathrm{dd}, J=15.0,10.4$ $\mathrm{Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.28,147.48,140.39,139.00,135.57,132.71$, 129.38, 128.14, 126.04, 125.44, 124.71, 123.42, 116.50, 64.99, 33.64 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClNO}+\mathrm{H}\right]^{+}: 256.0524$, Found:256.0519.

N-(6-Oxo-10b,11-dihydro-6H-isoindolo[2,1-a]indol-9-yl)acetamide (22)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.40(\mathrm{~s}, 1 \mathrm{H}), 8.07$ (s, 1 H), 7.70 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.70 (dd, $J=10.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.55(\mathrm{dd}, J=15.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ (dd, $J=15.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 169.54,168.29$, $148.52,144.12,140.98,136.87,127.93,127.69,126.15,125.32,124.67,119.63,116.14,113.38$, 65.27, 33.72, 24.67 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 279.1128$, Found: 279.1122.

9-Methoxy-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (23)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}$, 1 H), 7.00 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.58 (dd, $J=10.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (s, 3 H), 3.46 (dd, $J=15.2$, $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (dd, $J=15.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.65,163.70$, $148.63,141.03,135.58,128.01,126.47,126.34,125.28,124.22,116.43,115.17,107.80,65.03$, 55.76, 33.85 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 252.1019$, Found: 252.1015.

9-Fluoro-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (24)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, 1 H), $7.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}$, $J=10.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=15.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=15.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR-decoupling ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.56 ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.41,164.73$ (d, $J=253.2 \mathrm{~Hz}$), 147.45 (d, $J=9.8 \mathrm{~Hz}$), 139.49, 134.47, 129.12 (d, $J=2.3 \mathrm{~Hz}$), 127.06, 125.90 (d, $J=10.0 \mathrm{~Hz}$), 124.36, 123.55, 115.50 (d, $J=23.5 \mathrm{~Hz}$), $115.39,109.35(\mathrm{~d}, J=24.0 \mathrm{~Hz}), 63.91$ (d, $J=2.7 \mathrm{~Hz}$), 32.60 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FNO}+\mathrm{H}\right]^{+}: 240.0819$, Found: 240.0816 .

8-(Trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (25)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.5$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dd}, J=10.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=15.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=$ 15.1, $10.4 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{19}$ F NMR decoupling ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.38 ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.64,148.04,139.11,134.52,134.12,130.57(\mathrm{q}, J=33.0 \mathrm{~Hz}), 128.34(\mathrm{q}, J=3.5$
$\mathrm{Hz}), 127.18,124.46,123.89,122.64(\mathrm{q}, ~ J=272.6 \mathrm{~Hz}), 122.56,121.07(\mathrm{q}, J=4.0 \mathrm{~Hz}), 115.54$, 64.40, 32.52 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}+\mathrm{H}\right]^{+}: 290.0787$, Found: 290.0783.

In a 10 mL test tube with a magnetic stirring bar, indole derivative (0.2 mmol) and DIPEA ($80 \mu \mathrm{~L}, 2.5$ equiv) were dissolved in $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The test tube was sealed with a septum. The mixture was purged with argon for ten minutes, then the mixture was irradiated at $30-35^{\circ} \mathrm{C}$ with 365 nm LEDs for 12 h . The solvent was removed under reduced pressure. The residue was purified by flash column chromatography $(\mathrm{PE}: \mathrm{EA}=2: 1)$ to give the product (80%).

(5-Amino-1H-indol-1-yl)(2-chlorophenyl)methanone (S36)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{br}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{br}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.43,143.57,134.96,132.32,131.52,131.26,130.06,129.26$, 128.87, 127.15, 127.08, 117.23, 114.10, 109.50, 105.97 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}+\mathrm{H}\right]^{+}:$271.0633, Found: 271.0630.

Modification of complex molecules

Scheme S4: Synthesis of compound 26

A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 2-chlorobenzoyl chloride (1.5 equiv) was added dropwise to a solution of the Uhle's ketone (1 equiv), which was synthesized accord to the reported peocedure ${ }^{[11]}$, NaOH (2.5 equiv) and tetrabutylammonium bromide (TBAB, 0.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h . Then the mixture was warmed to room temperature. Another 0.5 equivalent of 2 -chlorobenzoyl chloride was added. The mixture was heated to reflux for 1 h . Water was added to quench the reaction and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography (PE:EA $=10: 1$) to afford the product in 92% yield.

In a 50 mL Schlenk tube charged with a magnetic stirring bar, indole 1-(2-chlorobenzoyl)-3,4-dihydrobenzo[cd]indol-5(1H)-one (190 mg) was dissolved in THF (10 mL). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ with ice-bath, $\mathrm{BH}_{3} \cdot \mathrm{THF}(1 \mathrm{M}, 2 \mathrm{~mL})$ was added dropwise. After 0.5 h , TLC indicated the substrate was consumed completely. The mixture was quenched with MeOH . The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: E A=2: 1$) to afford the product respectively in 90% yield.

1-(2-Chlorobenzoyl)-3,4-dihydrobenzo[cd]indol-5(1H)-one (S37)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{br}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.53(\mathrm{~m}, 3 \mathrm{H})$, $7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{br}, 1 \mathrm{H}), 3.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.90,165.95,135.40,134.52,134.20,131.94,131.22,130.25,128.82$, 127.29, 126.27, 121.90, 120.24, 117.54, 38.31, 20.41 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}: 310.0629$, Found: 310.0627.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35$ (br, 1 H), $7.59-7.47$ (m, 3 H), 7.48-7.31 (m, 3 H), 6.62 (br, $1 \mathrm{H}), 5.09(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dt}, J=14.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.91,135.03,133.84,133.63,131.59,131.18,130.12$, $129.54,129.33,128.80,127.15,126.16,120.51,119.75,116.15,67.16,32.65,18.04 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}: 312.0786$, Found: 312.0790.

In a 10 mL test tube with a magnetic stirring bar, indole derivative (0.5 mmol) and DIPEA $(0.2 \mathrm{~mL}, 2.5 \mathrm{eq})$ were dissolved in $\mathrm{MeCN}(5.0 \mathrm{~mL})$. The test tube was sealed with a septum. The mixture was purged with argon for ten minutes. Then the mixture was irradiated at $30-35{ }^{\circ} \mathrm{C}$ with 365 nm LEDs for 12 h . The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: \mathrm{EA}=3: 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=15: 1$) to afford the product in 66% yield.

3-Hydroxy-2,3,12b,12c-tetrahydrobenzo[cd]isoindolo[2,1-a]indol-8(1H)-one (27)

$d r=1.2: 1$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}$, 2 H), 7.44 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (d, $J=7.4 \mathrm{~Hz}, 0.6 \mathrm{H}$), 7.23 (t, $J=7.7 \mathrm{~Hz}, 0.7 \mathrm{H}$), 7.11 (d, J $=7.7 \mathrm{~Hz}, 0.7 \mathrm{H}), 7.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.55 \mathrm{H}), 7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.55 \mathrm{H}), 5.20(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $0.55 \mathrm{H}), 5.11(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.90-4.75(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.36(\mathrm{~m}$, $1 \mathrm{H}), 2.32-2.23(\mathrm{~m} 1.86 \mathrm{H}), 2.09-1.66(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.04$, $144.59,138.23,137.86,137.77,137.56,136.52,132.49,128.99,128.92,128.85,128.46,125.09$, $124.97,124.07,122.69,122.60,122.56,115.86,114.94,73.61,73.23,68.05,64.29,43.87$,
43.66, 33.87, 32.45, 26.83, 21.59 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 278.1176$, Found: 278.1175.

Scheme S5: Synthesis of compound 28

In a 100 mL round-bottom flask charged with a magnetic stirring bar, 2-(2-methyl-1H-indol-3-yl)acetic acid ($1.89 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$. Then a few drops of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added. The mixture was stirred at room temperature overnight. The reaction was quenched with water, extracted with ethyl acetate $(20 \mathrm{~mL} \times 3)$, washed with brine and dried with anhydrous sodium sulfate. The solvent was removed under reduced pressure. The residue was subjected to next step without purification.

A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 2-chlorobenzoyl chloride (1.5 equiv) was added dropwise to a solution of the above indole derivative 1 equiv), NaOH (2.5 equiv) and tetrabutylammonium bromide (TBAB, 0.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h. Then the mixture was warmed to room temperature. And another 0.5 equivalent of 2 chlorobenzoyl chloride was added. The mixture was stirred at room temperature for 2.5 h . Water was added to quench the reaction, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1,4: 1$) to afford the product in 95% overall yield.

Methyl 2-(2-methyl-1H-indol-3-yl)acetate ${ }^{16}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=6.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.22(\mathrm{~m}, 1$ H), $7.21-7.09(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

Methyl 2-(1-(2-chlorobenzoyl)-2-methyl-1H-indol-3-yl)acetate (28)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 5 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.18,166.83,136.37,135.89,134.71,132.14,131.79,130.46,130.16,129.42$, $127.45,124.15,123.62,118.26,114.62,113.71,52.19,30.09,13.45 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClNO}_{3}+\mathrm{H}\right]^{+}: 342.0891$, Found: 342.0889.

In a 10 mL test tube with a magnetic stirring bar, indole derivative (methyl 2-(1-(2-chlorobenzoyl)-2-methyl-1H-indol-3-yl)acetate ($160 \mathrm{mg}, 0.47 \mathrm{mmol}$) and DIPEA ($0.2 \mathrm{~mL}, 2.5$ eq) were dissolved in $\mathrm{MeCN}(5 \mathrm{~mL})$. The test tube was sealed with a septum. The mixture was purged with argon for ten minutes. The mixture was irradiated at $30-35^{\circ} \mathrm{C}$ with 365 nm LEDs for 12 h . The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) to afford the product respectively in 32% yield.

Methyl 2-(10b-methyl-6-oxo-10b,11-dihydro-6H-isoindolo[2,1-a]indol-11-yl)acetate (29)

$d r>20: 1$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{td}, J=$ $7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32$ (dt, $J=7.9, \mathrm{~m}, 1$ H), $7.13(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=15.6,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{dd}, J=15.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.50$,
$167.31,150.18,138.74,138.47,132.74,132.70,128.93,128.53,125.04,124.83,123.89,122.22$, 117.46, 74.86, 52.18, 46.25, 33.12, 21.53 ppm. HRMS ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}$: 308.1281, Found: 308.1275.

Scheme S6: Synthesis of glioperazine C analogues

To a stirred solution of compound $16(400 \mathrm{mg}, 0.88 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was dropwise added TFA $(4.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at room temperature for 3 h . The reaction mixture was evaporated. The residue was dissolved in DCM (20 mL), washed with NaHCO_{3}, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated used in the next step without further purification.

(L-)Methyl 1-(2-chlorobenzoyl)tryptophanate (S38)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 3 \mathrm{H})$, $7.49-7.42$ (m, 2 H), $7.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (br, 1 H$), 3.81$ (d, J $=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, J=14.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=14.4,7.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\text {NMR }}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.25,165.63,135.76,134.86,131.73,131.17,131.04,130.14$, $128.89,127.23,125.64,124.71,124.32,119.04,118.72,116.69,54.20,52.10,30.45 \mathrm{ppm}$.

To a solution of indole derivative $\mathbf{S 3 8}(230 \mathrm{mg}, 0.64 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, $\mathrm{EDCI}(150$ $\mathrm{mg}, 0.77 \mathrm{mmol}, 1.2 \mathrm{eq}$), HOBT ($100 \mathrm{mg}, 0.77 \mathrm{mmol}, 1.2$ equiv) and $N-$ Boc- $D-\mathrm{Thr}(170 \mathrm{mg}$, $0.77 \mathrm{mmol}, 1.2$ equiv) were added at room temperature. The solution was stirred at room temperature overnight. After completion of the reaction, the solution was washed with brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=100: 1\right)$ to give the desired product ($270 \mathrm{mg}, 74 \%$) as a white solid.

(L)-Methyl $\quad N$-((tert-butoxycarbonyl)-D-allothreonyl)-1-(2-chlorobenzoyl)-tryptophanate (S39)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{br}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{dd}, J=6.5,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{br}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1$ H), 4.01 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.09(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.64$, 171.59, 165.63, 156.45, 135.66, 134.76, 131.74, 131.17, 130.84, 130.12, 128.93, 127.21, 125.72, 124.70, 124.44, 118.78, 117.53, 116.70, 80.45, $66.68,58.08,52.54,52.24,28.22,27.44,18.26 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{ClN}_{3} \mathrm{O}_{7}+\mathrm{H}\right]^{+}: 558.2002$, Found: 558.1996.

To a stirred solution of $\mathbf{S 3 9}(270 \mathrm{mg}, 0.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was dropwise added TFA (3.0 mL) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at room temperature for 3 h . The reaction mixture was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with NaHCO_{3}, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated used in the next step without further purification. The residue was dissolved in toluene (10 mL), and stirred under reflux 12 h with white solid precipitated out of solution. The solid was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ to give the product ($130 \mathrm{mg}, 63 \%$) as a white solid.
(3S,6S)-3-((1-(2-Chlorobenzoyl)-1H-indol-3-yl)methyl)-6-((R)-1-hydroxyethyl)piperazine-

2,5-dione (30)

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.28$ (br, 1 H), 8.03 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 (d, $J=7.3 \mathrm{~Hz}, 1$ H), 7.72-7.65 (m, 3 H), 7.57 (td, $J=7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.33$ (m, 2 H), 7.01 (br, 1 H$), 4.98$ (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{td}, J=7.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{t}, J=2.6 \mathrm{~Hz}$, 1 H), 3.17 (dd, $J=14.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.00(\mathrm{dd}, J=14.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 168.65,168.63,165.65,135.14,134.75,132.75,131.99$, $130.39,130.29,129.56,128.30,126.03,125.51,124.51,120.64,118.53,115.84,68.65,61.16$, 53.65, 26.67, 20.30 ppm. HRMS (ESI) Calcd for $\left[\mathrm{M}+\mathrm{MeOH}+\mathrm{H}^{+}\right] \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClN}_{3} \mathrm{O}_{5}: 458.1477$, Found: 458.1473. $[\alpha]^{25}{ }_{\mathrm{D}}=+33.5(\mathrm{c} 0.25, \mathrm{MeOH})$.

In a 10 mL test tube with a magnetic stirring bar, $30(85.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and DIPEA ($83 \mu \mathrm{~L}$, $0.5 \mathrm{mmol}, 2.5$ equiv) were dissolved in $\mathrm{MeCN}(4 \mathrm{~mL})$. The test tube was sealed with a septum. The mixture was purged with argon for ten minutes, then the mixture was irradiated at $30-35^{\circ} \mathrm{C}$ with 365 nm LEDs for 12 h . The solvent was removed under reduced pressure. The residue was purified with flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=50: 1\right)$ to afford the product as a white solid in 71% yield (trans only).

(3R,6R)-3-((R)-1-Hydroxyethyl)-6-((6-oxo-10b,11-dihydro-6H-isoindolo[2,1-a]indol-11-

yl)methyl)piperazine-2,5-dione (31)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.58(\mathrm{br}, 1 \mathrm{H}), 8.39-8.28(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.78(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~s}$, $1 \mathrm{H}), 1.16(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 174.37,172.59$, $168.08,146.05,140.53,140.09,133.46,133.36,129.44,128.34,125.38,125.09,124.54,124.14$, 116.24, 70.66, 68.20, 61.06, 52.68, 43.04, 35.34, 20.46 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 392.1605$, Found: 392.1600. $[\alpha]_{\mathrm{D}}^{25}=+19.0(\mathrm{c} 0.25, \mathrm{MeOH})$.

Scheme S7: Synthesis of compound 32

In a 50 mL round-bottom flask charged with a magnetic stirring bar, to a suspension of indole derivative $\mathbf{S 3 1}$ (1.0 equiv) in EtOH (20 mL), butan-1-amine (1.0 equiv) was added. The mixture was heated to reflux for 2 h . Then the mixture was cooled down to room temperature. NaBH_{4} (4 equiv) was added slowly. After 1 h , the mixture was quenched with MeOH. Water was added to quench the reaction and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The residue was subjected to next step without purification

In a 50 mL round-bottom flask charged with a magnetic stirring bar, to above substrate in DCM (20 mL), acryloyl chloride (1.0 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv) were added. The mixture was stirred at room temperature overnight. The mixture was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography (PE:EA $=4: 1,1: 1$) to afford the product in 80% yield.

N -((4-Bromo-1-(2-chlorobenzoyl)-1H-indol-3-yl)methyl)- N -butylacrylamide (S40)

amide's rotamer 3:2
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~s}, 0.6 \mathrm{H}), 8.36(\mathrm{~s}, 0.4 \mathrm{H}), 7.56-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.30(\mathrm{t}, J=$ 8.1 Hz, 0.6 H), $7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.86(\mathrm{~s}, 0.4 \mathrm{H}), 6.71(\mathrm{~s}, 0.6 \mathrm{H}), 6.55(\mathrm{dd}, J=16.6$, $10.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.45(\mathrm{dd}, J=16.6,10.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.34(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.30(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.68(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.63(\mathrm{dd}, J=10.1,3.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H})$, $3.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1.2 \mathrm{H}), 3.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{td}, J=14.7,7.3 \mathrm{~Hz}, 2$ $\mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.57,166.43,165.71,165.54$, $137.74,137.36,134.25,132.50,132.06,131.20,131.08,130.32,130.11,129.21,128.98,128.85$, $128.71,128.58,128.32,128.16,127.61,127.46,127.32,126.94,126.42,125.98,124.97,120.75$, $119.75,115.96,115.69,113.92,113.73,47.57,47.09,46.02,42.26,31.72,30.24,20.30,19.99$, 13.91, 13.80 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrClN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 473.0626$, Found: 473.0619.

In a 25 mL Schlenk tube charged with a magnetic stirring bar, indole derivative $\mathbf{S 4 0}$ (1.0 equiv) was added. The Schlenk tube was evacuated and back-filled with argon three times. Then $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16 \mathrm{mg})$ and toluene $(5 \mathrm{~mL})$ were added. The mixture was degassed by freeze-pump-thaw cycle for three times and back-filled with argon. The mixture was heated to reflux overnight. TLC indicated the substrate was consumed completely. The solvent was removed under reduced pressure. The residue was purified with flash column chromatography $(\mathrm{PE}: \mathrm{EA}=10: 1$ to $4: 1)$ to afford the product in 50% yield.
(Z)-9-Butyl-2-(2-chlorobenzoyl)-9,10-dihydroazocino[3,4,5-cd]indol-8(2H)-one (32)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{br}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=13.6,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.85(\mathrm{br}, 1 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.31,165.69,136.67,134.59,131.98,131.43,131.19,130.25,129.03$,
$128.98,127.40,127.08,127.03,125.96,125.18,123.46,120.55,116.71,45.23,43.67,29.48$, 20.20, 13.91 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 393.1363$, Found: 393.1360.

In a 10 mL test tube with a magnetic stirring bar, indole $32(100 \mathrm{mg}, 0.255 \mathrm{mmol})$ and DIPEA ($0.11 \mathrm{~mL}, 0.638 \mathrm{mmol}, 2.5 \mathrm{eq}$) were dissolved in MeCN (3 mL). The test tube was sealed with a septum. The mixture was purged with argon for ten minutes. Then the mixture was irradiated at $30-35{ }^{\circ} \mathrm{C}$ with 365 nm LEDs for 12 h . The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: \mathrm{EA}=1: 1$) to afford the product in 71% yield.

(Z)-2-Butyl-1,2,14b,14c-tetrahydroazocino[3,4,5-cd]isoindolo[2,1-a]indole-3,10-dione (33)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.90(\mathrm{~s}, 0.5 \mathrm{H}), 6.83$ (dd, $J=13.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.17(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.14(\mathrm{~d}, J$ $=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=18.8,15.4 \mathrm{~Hz}, 1.5 \mathrm{H}), 4.34(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.97-3.75(\mathrm{~m}$, $2 \mathrm{H}), 2.93(\mathrm{dt}, J=14.0,7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 2 \mathrm{H})$, $1.40-1.23(\mathrm{~m}, 5 \mathrm{H}), 0.96-0.87(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.46,168.38,168.31$, $165.70,134.69,134.27,134.00,132.23,131.98,131.65,131.50,131.40,131.18,130.25,130.19$, $129.22,129.17,128.98,128.92,128.79,127.40,127.06,127.03,126.81,126.63,126.62,125.95$, $125.93,125.59,125.29,125.08,124.96,124.52,123.47,120.50,120.45,116.64,113.54,45.64$, 45.22, 43.69, 29.46, 20.30, 20.20, 13.89 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$: 359.1754, Found: 359.1748 .

Large-scale reaction and application

In a 100 mL round-bottom flask with a magnetic stirring bar, methyl 2-(1-(2-chlorobenzoyl)-1H-indol-3-yl)acetate $\mathbf{S 1 4}(1.40 \mathrm{~g}, 4.3 \mathrm{mmol})$ and DIPEA ($1.87 \mathrm{~mL}, 10.7 \mathrm{mmol}$, $2.5 \mathrm{eq})$ were dissolved in $\mathrm{MeCN}(20 \mathrm{~mL})$. The round-bottom flask was sealed with a septum. The mixture was purged with argon for ten minutes. Then the mixture was irradiated with 365 nm LEDs at $30-35^{\circ} \mathrm{C}$ for 24 h . The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) to afford the product $(1.10 \mathrm{~g})$ in 85% yield.

To a 50 mL Schlenk tube was charged with $\mathbf{1 4}(290 \mathrm{mg}, 0.99 \mathrm{mmol}), \mathrm{NaBH}_{4}(93.0 \mathrm{mg}, 25$ mmol) and dry THF (10 mL) under argon. To the stirred mixture, $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ was added slowly. The solution became gradually to reflux. When the bubble ceased to evolve, the mixture was heated to reflux for 15 h . The mixture was then quenched with water. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was washed with brine (30 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration under vacuum, the residue was purified by flash column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=2: 1$) to afford the products as a white solid with an overall yield of 85%. Trans- $\mathbf{3 4}$ was isolated in pure form in 45% yield.

Trans-(11-(2-Hydroxyethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (trans-34)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=7.6,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.04$ $(\mathrm{s}, 1 \mathrm{H}), 2.64-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.09(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.62,145.73$, $140.11,139.77,133.88,132.76,128.75,128.00,124.67,124.65,124.23,123.35,116.24,71.33$, 60.49, 43.22, 35.71 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 266.1176$, Found: 266.1171.

Cis-11-(2-Hydroxyethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (cis-34)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.50(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{br}, 1 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 1 \mathrm{H}), 0.93-$ $0.86(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.44,142.69,139.04,135.32,132.20,128.84$, $128.43,126.19,124.77,124.30,124.01,116.74,69.06,58.76,39.32,33.85 \mathrm{ppm}$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$: 266.1176, Found: 266.1170.

Figure S13: X-ray crystal structure of compound cis-34.

In a 50 mL round-bottom flask charged with a magnetic stirring bar, to a solution of $\mathbf{1 4}$ (380 $\mathrm{mg}, 1.3 \mathrm{mmol})$ in THF (20 mL), $\mathrm{LiAlH}_{4}(250 \mathrm{mg}, 4 \mathrm{eq})$ was added. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 5 h . TLC indicated the substrate was consumed completely. The reaction was quenched with water, extracted with ethyl acetate ($15 \mathrm{~mL} \times 3$), washed with brine and dried with anhydrous sodium sulfate. The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: \mathrm{EA}=4: 1$ to $1: 1$) to obtain the product (310 mg) in 95% yield.

2-(10b,11-dihydro-6H-isoindolo[2,1-a]indol-11-yl)ethan-1-ol (35)

trans : cis $=6.0: 1$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, 1 H), $7.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.63$ $(\mathrm{d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.72(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{br}, 1 \mathrm{H}), 2.25-2.01$ (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.02,143.20,139.65,133.37,128.12,127.74$, $127.34,124.57,122.72,122.30,120.93,112.37,76.08,60.55,58.74,44.86,38.94$ ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}: 252.1383$, Found: 252.1379.

In a 50 mL Schlenk tube charged with a magnetic stirring bar, triphenylphosphine (140 mg) was added. Then the Schlenk tube was evacuated and back-filled with argon three times. Cyclohexane (10 mL), $\mathrm{Br}_{2}(83.0 \mathrm{mg})$ were added. A yellow solid was formed immediately and stirred for 10 min at room temperature. Trans-34 (110 mg) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise. The mixture was stirred at room temperature for 5 h . TLC indicated the substrate was consumed completely. The solvent was removed under reduced pressure. Filtration over Celite and concentration of the filtrate in vacuo yielded the corresponding product. To the aforementioned product, DMF (10 mL), $\mathrm{NaN}_{3}(28.0 \mathrm{mg})$ were added. The mixture was heated to $80^{\circ} \mathrm{C}$ overnight. The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) to obtain the product 78% yield for two steps.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.47$ (m, 1 H), 2.55-2.47 (m, 1 H), 2.31-2.22 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.36$, $145.22,140.50,138.48,134.03,132.82,129.01,128.47,125.05,124.69,124.02,122.84,116.59$, 70.69, 49.23, 43.74, 31.85 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}+\mathrm{H}\right]^{+}: 291.1240$, Found: 291.1238 .

In a 25 mL Schlenk tube charged with a magnetic stirring bar, iron(II) phthalocyanine ($\mathrm{FePc}, 1.50 \mathrm{mg}$) and $\mathrm{Boc}_{2} \mathrm{O}(44.4 \mathrm{mg})$ were added. The Schlenk tube was evacuated and backfilled with argon three times. Then $\mathbf{3 6}(39.4 \mathrm{mg})$ in toluene (5 mL) was added. The mixture was degassed by freeze-pump-thaw cycle for three times and back-filled with argon. The mixture was heated to reflux for 3 days. TLC indicated the substrate was consumed completely. The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) to obtain the product $(43.7 \mathrm{mg})$ in 89% yield.

Tert-Butyl-8-Oxo-1,13b-dihydro-8H-isoindolo[2,1-a]pyrrolo[2,3-b]indole-3(2H)carboxylate (37)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$,
3.29 (td, $J=11.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=12.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 9$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.06,152.18,146.25,139.80,135.50,132.48,132.07$, $128.29,127.77,123.86,123.28,122.95,120.53,116.46,89.98,79.51,51.88,45.39,26.78$, 26.23 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 363.1703$, Found: 363.1696.

Figure S14: X-ray crystal structure of compound 37

In a 25 mL Schlenk tube charged with a magnetic stirring bar, triphenylphosphine (12.0 mg) was added. Then the Schlenk tube was evacuated and back-filled with argon three times. Cyclohexane (10 mL), $\mathrm{Br}_{2}(25 \mu \mathrm{~L})$ were added. A yellow solid was formed immediately and stirred for 10 min at room temperature. $35(96.3 \mathrm{mg})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise. The mixture was stirred at room temperature for 5 h . TLC indicated the substrate was consumed completely. The solvent was removed under reduced pressure. Filtration over Celite
and concentration of the filtrate in vacuo yielded the corresponding product. To the aforementioned product, $\mathrm{DMF}(10 \mathrm{~mL}), \mathrm{NaN}_{3}(28 \mathrm{mg})$ were added. The mixture was heated to $80^{\circ} \mathrm{C}$ overnight. The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: E A=10: 1$ to $5: 1$) to obtain the product in 76% yield.

11-(2-Azidoethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indole (38)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}$, 2 H), 7.17 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.84 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (t, $J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.89 ($\mathrm{s}, 1 \mathrm{H}$), 4.64 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.87-3.79(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.18$, $142.87,139.67,132.59,128.37,127.84,127.41,124.63,122.73,122.37,120.64,112.25,75.58$, 58.92, 45.07, 42.87, 38.88 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4}+\mathrm{H}\right]^{+}: 277.1448$, Found: 277.1442.

In a 25 mL Schlenk tube, charged with a magnetic stirring bar, $\mathrm{FePc}(3.30 \mathrm{mg})$ and $\mathrm{Boc}_{2} \mathrm{O}$ $(13.0 \mathrm{mg})$ were added. The Schlenk tube was evacuated and back-filled with argon three times. Then 11-(2-azidoethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indole $38(80.0 \mathrm{mg})$ in toluene (5 mL) was added. The mixture was degassed by freeze-pump-thaw cycle for three times and back-filled with argon. The mixture was heated to reflux for 12 h . TLC indicated the substrate was consumed completely. The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$ to $5: 1$) to obtain the product (87.3 mg) in 86% yield.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.14,141.82$, $141.13,133.85,133.30,132.52,128.37,126.84,124.49,123.68,121.80,121.21,119.71,119.32$, $112.60,110.59,109.35,103.76,48.29,41.49,28.55,25.28$ ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 349.1911$, Found: 349.1902.

In a 25 mL Schlenk tube charged with a magnetic stirring bar, compound $\mathbf{1 5}$ ($11.0 \mathrm{mg}, 0.30$ $\mathrm{mmol})$ was added. The Schlenk tube was evacuated and back-filled with argon three times. Then DMF (5 mL), NaH ($24.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) were added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . methyl (E)-3-(4-(bromomethyl)phenyl)acrylate $\mathbf{4 0}(84.2 \mathrm{mg}, 0.33 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 1 h . TLC indicated the substrate was consumed completely. The solvent was removed under reduced pressure. The residue was purified with flash column chromatography ($\mathrm{PE}: E A=4: 1$) to afford the product (75.3 mg) in 47% yield.

Methyl (E)-3-(4-(((tert-butoxycarbonyl)(2-(6-oxo-10b, 11-dihydro-6H-isoindolo[2,1-a]indol-11-yl)ethyl)amino)methyl)phenyl)acrylate (41)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (d, $\left.J=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.64(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.52(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (m, 4 H), 7.16 (t, $J=8.2 \mathrm{~Hz}, 3 \mathrm{H}$), 6.69 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.29 (d, $J=$
$16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{dd}, J=10.8,4.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.20 (s, 2 H), 3.00 (m, 1 H), 1.85 ($\mathrm{s}, 1 \mathrm{H}$) 1.43 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.46,166.96,155.97,145.14,144.51,138.64,137.74,136.92,134.68,132.67,131.97$, 130.50, 128.95, 128.81, 127.26, 126.55, 124.70, 124.58, 123.74, 117.34, 117.26, 79.43, 78.40, 51.66, 47.01, 44.43, 37.54, 33.36, 28.39 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{H}\right]^{+}$: 539.2540, Found: 539.2553.

To a stirred solution of compound $\mathbf{1 6}(400 \mathrm{mg}, 0.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was dropwise added TFA (4.0 mL) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at room temperature for 3 h . The reaction mixture was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), washed with NaHCO_{3}, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was used in the next step without further purification.

To a solution of indole derivative in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, EDCI ($210 \mathrm{mg}, 1.2 \mathrm{eq}$), HOBT (150 $\mathrm{mg}, 1.2$ equiv) and N-Boc- D-Thr ($240 \mathrm{mg}, 1.2$ equiv) were added at room temperature. The solution was stirred at room temperature overnight. After completion of the reaction, the solution was washed with brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by silica gel column chromatography (DCM : $\mathrm{MeOH}=100: 1)$ to give the desired product.

To a stirred solution of the above obtained product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was dropwise added TFA (4.0 mL) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at room temperature for 3 h . The reaction mixture was evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with NaHCO_{3}, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was dissolved in toluene (10 mL), and stirred under reflux 12 h . A white solid precipitated out of solution. The solid was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ to give the solid (276 mg) in 74% yield.

Mechanistic experiments

In a 10 mL test tube with a magnetic stirring bar, indole derivative (0.2 mmol), DIPEA (87 $\mu \mathrm{L}$, 2.5 equiv) and TEMPO ($0.2 \mathrm{mmol}, 1.0$ equiv) were dissolved in $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The test tube was sealed with a septum. The mixture was purged with argon for ten minutes, then the mixture was irradiated at $30-35^{\circ} \mathrm{C}$ with 410 nm LEDs for 12 h . The solvent was removed under reduced pressure. $1,3,5$-trimethoxylbenzene (0.2 mmol) was added. The mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR and GC-MS.

In a 10 mL test tube with a magnetic stirring bar, indole derivative (0.2 mmol), DIPEA (87 $\mu \mathrm{L}, 2.5$ equiv) $\mathrm{Ni}(\mathrm{dme}) \mathrm{Br}_{2}(3.1 \mathrm{mg}, 0.001 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and dttbpy $(5.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 10$ $\mathrm{mol} \%$) were dissolved in $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The test tube was sealed with a septum. The mixture was purged with argon for ten minutes, then the mixture was irradiated at $30-35^{\circ} \mathrm{C}$ with 410 nm LEDs for 12 h . The solvent was removed under reduced pressure. Dibromomethane (0.2 mmol) was added. The mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR and GC-MS.

To a Schlenk tube (50 mL) charged with magnetic stirring bar, indole ($234 \mathrm{mg}, 2 \mathrm{mmol}$) was added. The Schlenk tube was evacuated and back-filled with argon three times. Anhydrous DMF (10 mL) was added and then cooled down to $0^{\circ} \mathrm{C}$ with ice bath. Sodium hydride $(60 \%, 96$ $\mathrm{mg}, 2.4 \mathrm{mmol}$) was added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . 2-chlorobenzyl bromide $(45.0 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1 \mathrm{eq})$ was added in one portion. The mixture was stirred at room temperature for 1.5 h . TLC showed that the reaction was consumed completely. Water was added to quench the reaction and extracted with DCM (3 times). The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure.

The residue was purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=50: 1$) to give the product $(48.0 \mathrm{mg}, 99 \%)$ as a colorless oil.

1-(2-Chlorobenzyl)-1H-indole (42) ${ }^{8}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26-7.19 (m, 2 H), 7.20-7.14 (m, 2 H), 7.11 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.54(\mathrm{~m}, 2$ H), 5.46 (s, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.29$, 135.16, 132.38, 129.50, 128.81, 128.67, 128.40, 127.98, 127.23, 121.91, 121.07, 119.73, 109.64, 102.06, 47.68 ppm.

In a 10 mL test tube with a magnetic stirring bar, indole derivative (0.2 mmol) and DIPEA ($87 \mu \mathrm{~L}, 2.5$ equiv) were dissolved in $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The test tube was sealed with a septum. The mixture was purged with argon for ten minutes, then the mixture was irradiated at $30-35^{\circ} \mathrm{C}$ with 365 nm LEDs for 12 h . The solvent was removed under reduced pressure. Then the mixture was detected by ${ }^{1} \mathrm{H}$ NMR and GC-MS. Substrate was recovered completely.

Isotope labelling experiments

In a 10 mL test tube with a magnetic stirring bar, indole derivative (0.2 mmol) and DIPEA ($87 \mu \mathrm{~L}, 2.5$ equiv) were dissolved in $\mathrm{CD}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$. The test tube was sealed with a septum. The mixture was purged with argon for ten minutes, then the mixture was irradiated at $30-35^{\circ} \mathrm{C}$ with 365 nm LEDs for 12 h . The solvent was removed under reduced pressure. The residue was purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) to give the product in 57% yield.
${ }^{1} \mathrm{H}$ NMR of 1

In a 10 mL test tube with a magnetic stirring bar, indole derivative (0.2 mmol) and DIPEA ($87 \mu \mathrm{~L}, 2.5$ equiv) were dissolved in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{D}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}, 2.0 / 0.10 \mathrm{~mL}$). The test tube was sealed with a septum. The mixture was purged with argon for ten minutes, then the mixture was irradiated at $30-35^{\circ} \mathrm{C}$ with 365 nm LEDs for 12 h . The solvent was removed under reduced pressure. The residue was purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) to give the product in 32% yield.

${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{1}$

${ }^{13}$ C NMR

In a 10 mL test tube with a magnetic stirring bar, indole derivative $\mathbf{S 2 7}$ (0.5 mmol), DIPEA ($0.20 \mathrm{~mL}, 2.5$ equiv) were dissolved in $\mathrm{MeCN}(5.0 \mathrm{~mL})$. The test tube was screwed with a stopper. The mixture was purged with argon for ten minutes, then the mixture was irradiated at $30-35^{\circ} \mathrm{C}$ with 365 nm LEDs for 12 h . The solvent was removed under reduced pressure. The residue was purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) to give the as a colorless oil product 44 and 45 as a mixture.

11-(2-Bromoethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (44) and spiro [cyclopropane-1,11'-isoindolo[2,1-a]indol]-6'(10b'H)-one (45)

44
trans : cis $=1: 1$

45

44
trans : cis $=1: 1$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 3 \mathrm{H})$, $7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $3 \mathrm{H}), 7.13(\mathrm{td}, J=5.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~m}$, $1 \mathrm{H}), 3.34(\mathrm{td}, J=8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{dt}, J=14.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.47$ $(\mathrm{m}, 2 \mathrm{H}), 1.01-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.66-0.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.52$, $167.45,145.93,142.99,140.93,139.65,139.41,139.30,135.35,134.18,132.58,132.01,128.72$, $128.65,128.26,128.00,126.05,124.91,124.73,124.52,124.20,124.06,123.90,123.01,116.52$, 116.37, 70.67, 69.21, 47.46, 44.31, 25.25, 24.78, 12.10, 10.39 ppm. HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrNO}+\mathrm{H}\right]^{+}: 328.0332$, Found: 328.0328 .

45
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56$ (m, 1 H), 7.53 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.68(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.19, 143.30, 141.12, 132.41, 128.98, 127.28, 125.19, 124.78, 122.30, 119.19, 116.28, 68.81, 27.27, 18.32, 10.80 ppm . HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}+\mathrm{H}\right]^{+}: 248.1070$, Found: 248.1067.

Computational details

DFT/TDDFT calculations were performed using the Gaussian09 program package. ${ }^{18}$ The real vibrational frequencies of these optimized structures were computed to confirm that all the optimized structures are potential energy minima. Hybrid functional $\mathrm{PBE} 0^{19}$ with dispersion corrections in revision three (D3BJ) ${ }^{20}$ was employed. The $6-31 \mathrm{G}^{*}$ basis set ${ }^{21}$ was used for all atoms. Unrestricted DFT calculations were performed to optimize the structures of molecules at triplet excited states of T_{1}.

S_{0}
$\angle \mathrm{NC1C2C3}=67.2^{\circ}$

T_{1}
$\angle \mathrm{NC} 1 \mathrm{C} 2 \mathrm{C} 3=56.8^{\circ}$

Calculated emission at T_{1} state: 636 nm
номо \rightarrow Lumo номо $\rightarrow \mathrm{L}+1$

HOMO

LUMO

Figure S15. Calculated frontier molecular orbitals of $\mathbf{S 1}$ at T_{1} State

Table S2. Mulliken charge distribution of $\mathbf{S} 1$ in the ground state $\left(\mathrm{S}_{0}\right)$ and T_{1} state.

	indole group	carbonyl group	2-chlorobenzoyl
S_{0}	-0.04	0.05	-0.01
$\mathrm{~T}_{1}$	0.17	-0.08	-0.09

ΔG kcal/mol

Figure S16. Energy profile for the proposed reaction pathway (in Scheme 2 in manuscript) calculated at the M06-2X-D3/6-311++G**/PCM//B3LYP-D3/6-311G*/PCM level of theory. Critical bond lengths are given in \AA.

Calculated coordinates:

S1, S_{0}
$\begin{array}{lllll}\mathrm{C} & 2.65052200 & -0.72671900 & -0.79063200\end{array}$
$\begin{array}{lllll}\mathrm{C} & 2.01128400 & 0.28735500 & -0.04445700\end{array}$
$\begin{array}{llll}\text { C } & 2.71843600 & 1.17664800 & 0.75998900\end{array}$
$\begin{array}{lllll}\text { C } & 4.09968800 & 1.02642600 & 0.80460400\end{array}$
$\begin{array}{llll}\mathrm{C} & 4.75428500 & 0.02728100 & 0.07166300\end{array}$
$\begin{array}{lllll}\text { C } & 4.04027100 & -0.85319100 & -0.72848300\end{array}$
$\begin{array}{lllll}\text { C } & 1.62305000 & -1.44894500 & -1.49752300\end{array}$
$\begin{array}{lllll}\mathrm{C} & 0.43374600 & -0.89063500 & -1.17306500\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.20730400 & 1.95045700 & 1.31684000\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.68280900 & 1.70385100 & 1.42194500\end{array}$
$\begin{array}{lllll}\mathrm{H} & 4.54831600 & -1.62824800 & -1.29570000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.76682100 & -2.28342100 & -2.17024700\end{array}$
$\begin{array}{lllll}\mathrm{H} & -0.56554700 & -1.13439600 & -1.50048200\end{array}$
$\begin{array}{lllll}\mathrm{N} & 0.63476300 & 0.17153600 & -0.28376700\end{array}$
$\begin{array}{lllll}\mathrm{C} & -0.34845400 & 0.98991600 & 0.24684900\end{array}$
$\begin{array}{lllll}C & -1.76955700 & 0.60519000 & -0.04318500\end{array}$
$\begin{array}{lllll}\mathrm{C} & -2.38005300 & -0.54755000 & 0.45814100\end{array}$
$\begin{array}{lllll}\mathrm{C} & -2.54315000 & 1.50586700 & -0.77891900\end{array}$
$\begin{array}{lllll}\text { C } & -3.72246700 & -0.81276700 & 0.20387600\end{array}$
$\begin{array}{lllll}\mathrm{C} & -3.87985200 & 1.24419600 & -1.04784200\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.07450500 & 2.41830200 & -1.13533500\end{array}$
$\begin{array}{lllll}\mathrm{C} & -4.46682200 & 0.08064000 & -0.55758200\end{array}$
$\begin{array}{lllll}\mathrm{H} & -4.17392200 & -1.71087500 & 0.61201300\end{array}$
$\begin{array}{lllll}\mathrm{H} & -4.46367600 & 1.94928600 & -1.63134500\end{array}$
$\begin{array}{lllll}\mathrm{H} & -5.51316300 & -0.13144800 & -0.75683200\end{array}$
$\mathrm{Cl} \quad-1.48804300 \quad-1.65970000 \quad 1.45117100$
$\begin{array}{llll}\mathrm{O} & -0.09029500 & 1.99441000 & 0.87790400\end{array}$
$\begin{array}{lllll}\mathrm{H} & 5.83574700 & -0.05690200 & 0.13177800\end{array}$

S1, T_{1}
$\begin{array}{lllll}\mathrm{C} & 2.69388100 & -0.79317000 & -0.69524200\end{array}$
$\begin{array}{lllll}\mathrm{C} & 2.00413400 & 0.30085100 & -0.05131600\end{array}$
C
$2.66568900 \quad 1.27824000 \quad 0.63722000$
$\begin{array}{llll}\text { C } & 4.07994200 & 1.17421100 & 0.72414100\end{array}$
$\begin{array}{lllll}\text { C } & 4.78140300 & 0.11975700 & 0.11875900\end{array}$
$\begin{array}{lllll}\mathrm{C} & 4.11833300 & -0.86205200 & -0.59018800\end{array}$
$\begin{array}{lllll}\mathrm{C} & 1.76194100 & -1.59342600 & -1.30526900\end{array}$
$\begin{array}{lllll}\mathrm{C} & 0.43268100 & -1.00155200 & -1.05395800\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.12473000 & 2.09436300 & 1.09566300\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.62475000 & 1.93231300 & 1.27784000\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.65602600 & -1.67644300 & -1.06580100\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.92904700 & -2.50578900 & -1.86146500\end{array}$
$\begin{array}{lllll}\mathrm{H} & -0.50755300 & -1.20307100 & -1.54237200\end{array}$
$\begin{array}{lllll}\mathrm{N} & 0.60766500 & 0.12778600 & -0.27858800\end{array}$
$\begin{array}{llll}\mathrm{C} & -0.36412400 & 0.99730900 & 0.18330400\end{array}$
$\begin{array}{lllll}\mathrm{C} & -1.78486300 & 0.60880500 & -0.04079200\end{array}$
$\begin{array}{lllll}\text { C } & -2.38470700 & -0.58126900 & 0.39203600\end{array}$
$\begin{array}{lllll}\text { C } & -2.60601800 & 1.56673700 & -0.65099600\end{array}$
$\begin{array}{lllll}\mathrm{C} & -3.73731000 & -0.82934400 & 0.17648700\end{array}$
$\begin{array}{lllll}\mathrm{C} & -3.95316500 & 1.32836600 & -0.87517400\end{array}$
$\begin{array}{lllll}\mathrm{H} & -2.15076100 & 2.50862900 & -0.94125800\end{array}$
$\begin{array}{lllll}\mathrm{C} & -4.51911600 & 0.12183300 & -0.46760300\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.16915600 & -1.75901200 & 0.53229100\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.56333800 & 2.08276100 & -1.36272500\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.57384100 & -0.07625000 & -0.63450800\end{array}$
$\begin{array}{llll}\mathrm{Cl} & -1.47465600 & -1.76840000 & 1.28163200\end{array}$
$\begin{array}{llll}\mathrm{O} & -0.06872600 & 2.08481400 & 0.68096000\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.86318900 & 0.08050900 & 0.20857500\end{array}$
$[\mathrm{S} 1]^{-1}$
C
$2.69540700-0.72187300 \quad-0.64993100$
$\begin{array}{lllll}\mathrm{C} & 1.93262400 & 0.32951200 & -0.06833100\end{array}$
$\begin{array}{llll}\mathrm{C} & 2.50974000 & 1.28596800 & 0.76904900\end{array}$
C
$3.86594500 \quad 1.17343000 \quad 1.03578100$
C
$4.63846100 \quad 0.13696900 \quad 0.47847400$
$\begin{array}{lllll}\text { C } & 4.06545300 & -0.80510000 & -0.36129200\end{array}$
$\begin{array}{lllll}\mathrm{C} & 1.79071500 & -1.48740300 & -1.44962200\end{array}$
C
$0.55923100-0.90240500-1.31801800$
$1.90259800 \quad 2.09324400 \quad 1.16123100$
$4.34343900 \quad 1.90520600 \quad 1.68376500$
$4.66873900-1.60226400-0.79196200$
$2.02145400-2.36107000 \quad-2.04525100$
$-0.38971000 \quad-1.16542200-1.76383700$
$0.62312000 \quad 0.18256900-0.47563000$
$-0.44200900 \quad 1.12183200-0.21214800$
$\begin{array}{lllll}\mathrm{C} & -1.77550300 & 0.61981900 & -0.07847000\end{array}$
$\begin{array}{lllll}\text { C } & -2.23940600 & -0.67452200 & 0.33074400\end{array}$
$\begin{array}{lllll}\text { C } & -2.82665900 & 1.56108800 & -0.34328400\end{array}$
$\begin{array}{lllll}\mathrm{C} & -3.58012300 & -1.01633900 & 0.33423300\end{array}$
$\begin{array}{lllll}\text { C } & -4.15659800 & 1.21827500 & -0.34378700\end{array}$
H
$-2.50529200 \quad 2.57150400 \quad-0.57670000$
$-4.56495500-0.09493300-0.03577700$
$\begin{array}{lllll}\mathrm{H} & -3.85689700 & -2.01296000 & 0.66942500\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.90175900 & 1.97485000 & -0.58585100\end{array}$
H
$-1.14546600-1.85439500 \quad 1.05094300$

O
$-0.13667100 \quad 2.33485000-0.18481900$
$\begin{array}{llll}\mathrm{H} & 5.70086200 & 0.07996600 & 0.70707800\end{array}$
$\begin{array}{llll}\text { C } & -1.465206000 & 0.085411000 & -7.709592000\end{array}$
$\begin{array}{llll}\text { C } & -1.917036000 & -0.688469000 & -6.627361000\end{array}$
$\begin{array}{llll}\text { C } & -2.290460000 & -0.034673000 & -5.417636000\end{array}$
$\begin{array}{llll}\text { C } & -2.223881000 & 1.355505000 & -5.278092000\end{array}$
$\begin{array}{llll}\text { C } & -1.771195000 & 2.093463000 & -6.364835000\end{array}$
$\begin{array}{llll}\text { C } & -1.394634000 & 1.465185000 & -7.570540000\end{array}$
$\begin{array}{llll}\text { C } & -2.110001000 & -2.094503000 & -6.412007000\end{array}$
$\begin{array}{llll}\text { C } & -2.564605000 & -2.239675000 & -5.128287000\end{array}$
N $\quad-2.668664000 \quad-1.007094000 \quad-4.506760000$

H $\quad-1.173257000 \quad-0.391573000 \quad-8.640770000$
$\begin{array}{llll}\mathrm{H} & -2.536601000 & 1.830162000 & -4.356693000\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.709552000 & 3.174437000 & -6.285790000\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.047161000 & 2.072861000 & -8.400469000\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.935665000 & -2.892602000 & -7.119519000\end{array}$
H $\quad-2.824533000 \quad-3.131771000 \quad-4.579387000$
$\begin{array}{llll}\text { C } & -3.227282000 & -0.759509000 & -3.192626000\end{array}$
$\begin{array}{llll}\text { O } & -4.109389000 & 0.137000000 & -3.106697000\end{array}$
$\begin{array}{llll}\text { C } & -2.802927000 & -1.588787000 & -2.105071000\end{array}$

C $\quad-1.576825000 \quad-2.321698000 \quad-1.948488000$
C $\quad-3.692722000 \quad-1.690166000 \quad-0.977048000$
C $\quad-1.330207000 \quad-3.147736000 \quad-0.865703000$
$\begin{array}{llll}\text { C } & -3.447792000 & -2.514603000 & 0.098148000\end{array}$
$\begin{array}{llll}\text { C } & -2.271461000 & -3.287620000 & 0.162461000\end{array}$

H $\quad-4.601244000 \quad-1.100619000 \quad-1.021510000$
$\begin{array}{llll}\mathrm{H} & -0.377768000 & -3.663797000 & -0.803977000\end{array}$

H $\quad-4.175091000 \quad-2.568812000 \quad 0.903729000$

H $\quad-2.073786000 \quad-3.948342000 \quad 0.998918000$
$\mathrm{Cl} \quad-0.186655000 \quad-2.049293000 \quad-3.042267000$

TS1

$\begin{array}{llll}\text { C } & -1.506953000 & 0.068889000 & -7.734177000\end{array}$

C $\quad-1.860898000 \quad-0.668273000 \quad-6.594414000$
$\begin{array}{llll}\text { C } & -2.273141000 & 0.016874000 & -5.418494000\end{array}$

C $\quad-2.331634000 \quad 1.413131000 \quad-5.367356000$
$\begin{array}{llll}\text { C } & -1.973358000 & 2.118421000 & -6.511373000\end{array}$

C $\quad-1.566512000 \quad 1.455788000 \quad-7.685110000$

C $\quad-1.904181000 \quad-2.074655000 \quad-6.295544000$

C $\quad-2.304904000 \quad-2.198149000 \quad-4.999162000$
$\begin{array}{llll}\mathrm{N} & -2.529831000 & -0.942868000 & -4.439205000\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.188464000 & -0.440631000 & -8.638607000\end{array}$
H $\quad-2.660447000 \quad 1.918869000 \quad-4.470426000$
$\begin{array}{llll}\mathrm{H} & -2.012115000 & 3.203089000 & -6.497838000\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.296898000 & 2.038564000 & -8.560337000\end{array}$

H $\quad-1.666416000 \quad-2.888361000 \quad-6.965582000$

H $\quad-2.451026000 \quad-3.080299000 \quad-4.398408000$

C $\quad-3.086540000 \quad-0.679183000 \quad-3.141901000$
$\begin{array}{llll}\text { O } & -3.805428000 & 0.322752000 & -3.018399000\end{array}$
$\begin{array}{lllll}\text { C } & -2.757910000 & -1.582609000 & -2.060722000\end{array}$

C $\quad-1.660597000 \quad-2.497332000 \quad-2.034386000$

C $\quad-3.609250000 \quad-1.567315000 \quad-0.912433000$

C	-1.499239000	-3.397688000	-0.972188000
C	-3.478877000	-2.493397000	0.094844000
C	-2.436179000	-3.457530000	0.044300000
H	-4.389890000	-0.814347000	-0.873058000
H	-0.632517000	-4.053115000	-0.958343000
H	-4.165586000	-2.483510000	0.935539000
H	-2.361878000	-4.224186000	0.809934000
Cl	0.089796000	-1.878797000	-2.731538000
TS1'			
C	-1.425247000	0.102374000	-7.724727000
C	-1.826047000	-0.658845000	-6.602546000
C	-2.309629000	-0.000359000	-5.433347000
C	-2.396020000	1.366988000	-5.350597000
C	-1.985510000	2.105209000	-6.486107000
C	-1.511885000	1.486306000	-7.649508000
C	-1.849152000	-2.036010000	-6.344096000
C	-2.336338000	-2.197852000	-5.016727000
N	-2.606504000	-1.007582000	-4.476229000
H	-1.057658000	-0.391955000	-8.615964000
H	-2.770830000	1.861973000	-4.467060000
H	-2.044315000	3.186546000	-6.445866000
H	-1.211936000	2.094724000	-8.493799000
H	-1.556791000	-2.842398000	-6.999257000
H	-2.493675000	-3.109346000	-4.463561000
C	-3.191627000	-0.744618000	-3.148863000

O	-3.934275000	0.229648000	-3.084569000
C	-2.810983000	-1.617026000	-2.070063000
C	-1.777075000	-2.590632000	-2.108922000
C	-3.564506000	-1.503585000	-0.859431000
C	-1.554219000	-3.445328000	-1.022835000
C	-3.378311000	-2.386225000	0.175889000
C	-2.390099000	-3.398100000	0.078332000
H	-4.303043000	-0.712239000	-0.789170000
H	-0.731968000	-4.153232000	-1.060155000
H	-3.980555000	-2.304892000	1.074467000
H	-2.276736000	-4.125140000	0.876649000
Cl	0.031951000	-2.077220000	-3.002174000
TS1' ${ }^{\prime \prime}$			
C	-1.034833000	-0.142066000	-7.260747000
C	-1.764485000	-0.769425000	-6.231969000
C	-2.552931000	0.023095000	-5.351209000
C	-2.626942000	1.395822000	-5.456214000
C	-1.888561000	1.995821000	-6.490805000
C	-1.107709000	1.239944000	-7.378235000
C	-1.900841000	-2.117965000	-5.832731000
C	-2.749767000	-2.148275000	-4.706242000
N	-3.154521000	-0.849649000	-4.418789000
H	-0.428253000	-0.731529000	-7.938442000
H	-3.232235000	1.981024000	-4.778115000
H	-1.930725000	3.073013000	-6.604854000

$\begin{array}{llll}\mathrm{H} & -0.558026000 & 1.743963000 & -8.164598000\end{array}$
H $\quad-1.482445000 \quad-2.989045000 \quad-6.313588000$
$\begin{array}{llll}\mathrm{H} & -3.355611000 & -2.985946000 & -4.402003000\end{array}$

C $\quad-3.526914000 \quad-0.468657000 \quad-3.101616000$
$\begin{array}{llll}\text { O } & -4.092155000 & 0.574744000 & -2.862829000\end{array}$
$\begin{array}{llll}\text { C } & -3.060187000 & -1.469327000 & -2.120315000\end{array}$
$\begin{array}{llll}\text { C } & -2.065455000 & -2.368828000 & -2.527796000\end{array}$
C $\quad-3.575792000 \quad-1.546920000 \quad-0.825900000$
C $\quad-1.618216000 \quad-3.394491000 \quad-1.697112000$
$\begin{array}{llll}\text { C } & -3.123150000 & -2.557817000 & 0.020706000\end{array}$

C $\quad-2.160352000 \quad-3.483609000 \quad-0.417562000$
$\begin{array}{llll}\mathrm{H} & -4.342361000 & -0.848565000 & -0.507801000\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.845566000 & -4.081841000 & -2.022793000\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.528788000 & -2.642040000 & 1.022303000\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.826129000 & -4.266224000 & 0.255704000\end{array}$
$\begin{array}{llll}\mathrm{Cl} & 0.027346000 & -1.072524000 & -3.184315000\end{array}$

C
$\begin{array}{llll}\text { C } & -1.531902000 & 0.054597000 & -7.743294000\end{array}$

C $\quad-1.864882000 \quad-0.641637000 \quad-6.575641000$
$\begin{array}{llll}\text { C } & -2.268946000 & 0.073561000 & -5.422204000\end{array}$
$\begin{array}{llll}\text { C } & -2.341796000 & 1.467208000 & -5.411324000\end{array}$
$\begin{array}{llll}\text { C } & -2.003589000 & 2.136850000 & -6.584957000\end{array}$
$\begin{array}{llll}\text { C } & -1.605084000 & 1.442397000 & -7.738772000\end{array}$
$\begin{array}{llll}\text { C } & -1.894534000 & -2.044938000 & -6.243456000\end{array}$

C $\quad-2.282585000 \quad-2.154141000 \quad-4.950187000$

N	-2.509699000	-0.874251000	-4.405243000
H	-1.221124000	-0.483944000	-8.632461000
H	-2.658754000	2.004159000	-4.530203000
H	-2.054705000	3.220332000	-6.605187000
H	-1.352100000	1.998318000	-8.635525000
H	-1.670396000	-2.869104000	-6.904567000
H	-2.464924000	-3.035608000	-4.360441000
C	-2.950659000	-0.570302000	-3.113176000
O	-3.401651000	0.529825000	-2.848067000
C	-2.827782000	-1.625522000	-2.061668000
C	-1.884806000	-2.632049000	-2.045596000
C	-3.666415000	-1.545378000	-0.931832000
C	-1.702825000	-3.556960000	-1.048574000
C	-3.538195000	-2.463115000	0.104600000
C	-2.564083000	-3.464569000	0.054938000
H	-4.407759000	-0.755026000	-0.890801000
H	-0.935557000	-4.322174000	-1.097405000
H	-4.198762000	-2.397952000	0.961834000
H	-2.466638000	-4.173195000	0.871034000

TS2

$\begin{array}{llll}\text { C } & -1.171967000 & 0.099112000 & -7.541839000\end{array}$

C $\quad-1.789807000 \quad-0.663297000 \quad-6.538275000$
$\begin{array}{lllll}\text { C } & -2.495755000 & -0.003314000 & -5.498317000\end{array}$

C $\quad-2.572614000 \quad 1.384011000 \quad-5.419407000$

C $\quad-1.946219000 \quad 2.116535000 \quad-6.426249000$

C	-1.258724000	1.483397000	-7.477364000
C	-1.893820000	-2.071648000	-6.299195000
C	-2.601246000	-2.254785000	-5.127810000
N	-2.998976000	-0.988600000	-4.630584000
H	-0.635746000	-0.388903000	-8.348765000
H	-3.111595000	1.866267000	-4.615541000
H	-1.999576000	3.199650000	-6.401359000
H	-0.790844000	2.088423000	-8.246632000
H	-1.550078000	-2.862662000	-6.949475000
H	-3.167568000	-3.131322000	-4.856557000
C	-3.192490000	-0.761570000	-3.250520000
O	-3.721005000	0.246637000	-2.826589000
C	-2.588179000	-1.828805000	-2.419870000
C	-1.764948000	-2.760836000	-3.026462000
C	-2.752969000	-1.877609000	-1.027023000
C	-1.119337000	-3.768426000	-2.344684000
C	-2.100987000	-2.869549000	-0.302598000
C	-1.289137000	-3.807432000	-0.952654000
H	-3.385874000	-1.143898000	-0.538728000
H	-0.492834000	-4.499307000	-2.845721000
H	-2.223098000	-2.920682000	0.773568000
H	-0.782565000	-4.573880000	-0.374115000
D			
C	-1.072327000	0.287579000	-7.570997000
C	-1.635480000	-0.531721000	-6.565962000

C $\quad-2.546397000 \quad 0.060262000 \quad-5.631302000$

C $\quad-2.874199000 \quad 1.400808000 \quad-5.664419000$
$\begin{array}{lllll}\text { C } & -2.292228000 & 2.190739000 & -6.669198000\end{array}$
$\begin{array}{llll}\text { C } & -1.409020000 & 1.634786000 & -7.608793000\end{array}$

C $\quad-1.466431000 \quad-1.888167000 \quad-6.250545000$
$\begin{array}{llll}\text { C } & -2.416051000 & -2.241278000 & -5.139095000\end{array}$
$\mathrm{N} \quad-2.946439000 \quad-0.923959000 \quad-4.708853000$
$\begin{array}{llll}\mathrm{H} & -0.384211000 & -0.135110000 & -8.295095000\end{array}$

H $\quad-3.551221000 \quad 1.822132000 \quad-4.932896000$
$\begin{array}{llll}\mathrm{H} & -2.534533000 & 3.246434000 & -6.721011000\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.983117000 & 2.271111000 & -8.377473000\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.879667000 & -2.614935000 & -6.793500000\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.245732000 & -2.844501000 & -5.542149000\end{array}$

C $\quad-2.893566000 \quad-0.760426000 \quad-3.319557000$
$\begin{array}{llll}\text { O } & -3.196185000 & 0.254861000 & -2.720272000\end{array}$
$\begin{array}{lllll}\text { C } & -2.336578000 & -2.025220000 & -2.783754000\end{array}$
$\begin{array}{lllll}\text { C } & -1.970210000 & -2.866023000 & -3.836570000\end{array}$

C $\quad-2.099950000 \quad-2.370549000 \quad-1.456332000$

C $\quad-1.370008000 \quad-4.091977000 \quad-3.584571000$

C $\quad-1.484752000 \quad-3.593606000 \quad-1.199599000$
$\begin{array}{llll}\text { C } & -1.122177000 & -4.441856000 & -2.254446000\end{array}$

H $\quad-2.385850000 \quad-1.699387000 \quad-0.653809000$

H $\quad-1.090428000 \quad-4.759209000 \quad-4.392732000$

H $\quad-1.282843000 \quad-3.894269000 \quad-0.177432000$

H $\quad-0.639492000 \quad-5.387972000 \quad-2.033808000$

X-ray crystallographic details of compound 37

cxy1304_0m (CCDC number 2101131)

Table S3 Crystal data and structure refinement for cxy1304_0m.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
cxy1304_0m
$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$
362.41
100.0
monoclinic
P2 ${ }_{1}$
9.6179(7)
15.5833(12)
12.4610(9)

90
93.679(3)

90
1863.8(2)

4
1.292
0.087
768.0
$0.34 \times 0.32 \times 0.29$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection ${ }^{\circ} 4.984$ to 55.086

Index ranges	$-12 \leq \mathrm{h} \leq 12,-20 \leq \mathrm{k} \leq 20,-16 \leq 1 \leq 16$
Reflections collected	44261
Independent reflections	$8583\left[\mathrm{R}_{\text {int }}=0.0475, \mathrm{R}_{\text {sigma }}=0.0345\right]$
Data/restraints/parameters	$8583 / 1 / 494$
Goodness-of-fit on F^{2}	1.023
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0344, \mathrm{wR}_{2}=0.0786$
Final R indexes [all data $]$	$\mathrm{R}_{1}=0.0416, \mathrm{wR}_{2}=0.0830$
Largest diff. peak/hole $/ \mathrm{e}_{\mathrm{I}}^{-3} 0.27 /-0.18$	
Flack parameter	$0.4(3)$

Table S4 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for cxy1304_0m. $U_{e q}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	y	z	U(eq)
O1	1728.5(14)	4098.4(9)	-326.5(11)	19.3(3)
O2	-96.5(15)	3621.0(9)	-1427.9(11)	20.0(3)
O3	2922.7(17)	4266.8(11)	2811.8(13)	29.4(4)
O4	6461.7(14)	5970.7(10)	7013.6(11)	22.0(3)
O5	5690.9(17)	5924.6(11)	3807.1(13)	30.4(4)
O6	8150.8(15)	6340.6(10)	8298.5(11)	20.9(3)
N1	-425.2(17)	4458.8(11)	17.3(13)	15.5(3)
N2	845.2(17)	4280.6(11)	1773.3(13)	16.7(3)
N3	8635.1(17)	5567.3(11)	6830.6(13)	17.3(4)
N4	7622.8(17)	5808.5(11)	4996.7(13)	17.7(4)
C1	3003(2)	3728.8(16)	-1901.9(17)	25.1(5)
C2	2803(2)	3534.7(14)	-731.4(16)	17.7(4)
C3	379(2)	4014.3(12)	-644.7(15)	15.3(4)
C4	79(2)	4871.3(13)	1029.3(15)	15.0(4)
C5	-1303(2)	5058.2(13)	1571.0(16)	16.7(4)
C6	-1390(2)	4287.5(13)	2308.9(16)	18.1(4)
C7	-2483(2)	3997.8(14)	2879.9(16)	21.6(4)
C8	-2254(2)	3306.1(15)	3581.9(17)	25.0(5)
C9	4087(2)	3794.8(15)	-31.4(18)	22.1(4)
C10	-1951(2)	4451.8(14)	-163.2(16)	18.0(4)
C11	-2407(2)	5117.5(13)	635.9(17)	18.6(4)
C12	-105(2)	3877.2(13)	2435.6(16)	18.1(4)
C13	-964(3)	2914.7(14)	3702.7(18)	25.7(5)
C14	143(2)	3186.7(14)	3121.0(17)	23.0(5)
C15	2140(2)	4599.3(14)	2127.8(16)	21.0(4)
C16	2316(2)	5406.8(14)	1534.6(17)	19.2(4)
C17	1113(2)	5579.7(13)	899.1(16)	17.0(4)
C18	998(2)	6304.6(14)	258.4(17)	21.4(4)
C19	2119(3)	6867.5(15)	315(2)	28.5(5)
C20	3314(2)	6706.9(16)	974(2)	29.9(5)
C21	3439(2)	5971.2(16)	1591.6(18)	25.6(5)
C22	2424(2)	2600.2(14)	-556.1(19)	24.2(5)
C23	5641(3)	7390.3(16)	7448(2)	39.0(7)
		S86		

C24	$5322(2)$	$6443.5(14)$	$7461.1(17)$	$19.4(4)$
C25	$7766(2)$	$5996.1(14)$	$7458.5(16)$	$17.1(4)$
C26	$8224(2)$	$5180.7(13)$	$5784.3(15)$	$16.0(4)$
C27	$9654(2)$	$4937.9(14)$	$5354.1(16)$	$18.0(4)$
C28	$9932(2)$	$5702.1(13)$	$4648.2(16)$	$18.0(4)$
C29	$11140(2)$	$5948.4(14)$	$4189.5(17)$	$21.8(4)$
C30	$11099(2)$	$6664.4(15)$	$3520.6(18)$	$24.8(5)$
C31	$4096(2)$	$6230.9(15)$	$6672.3(18)$	$24.9(5)$
C32	$10137(2)$	$5531.6(14)$	$7117.5(17)$	$18.9(4)$
C33	$10630(2)$	$4838.5(14)$	$6361.7(17)$	$19.7(4)$
C34	$8713(2)$	$6174.8(13)$	$4438.3(16)$	$18.5(4)$
C35	$7090(2)$	$4515.5(14)$	$5811.8(16)$	$17.0(4)$
C36	$5990(2)$	$4746.0(14)$	$5094.0(16)$	$19.5(4)$
C37	$4816(2)$	$4234.8(15)$	$4939.3(18)$	$23.7(5)$
C38	$4780(2)$	$3480.7(16)$	$5529.3(18)$	$25.7(5)$
C39	$5873(2)$	$3258.5(15)$	$6264.5(17)$	$24.1(5)$
C40	$7044(2)$	$3780.6(14)$	$6424.1(17)$	$20.8(4)$
C41	$6335(2)$	$5553.7(14)$	$4536.4(16)$	$20.5(4)$
C42	$8652(2)$	$6880.2(14)$	$3763.6(17)$	$22.3(5)$
C43	$9878(3)$	$7116.7(14)$	$3303.0(17)$	$25.2(5)$
C44	$5078(3)$	$6107(2)$	$8571.2(19)$	$40.2(7)$

Table S5 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for cxy1304_0m. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} \mathbf{a}^{* 2} \mathbf{U}_{11}+2 h k a^{*} b^{*} \mathbf{U}_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 2}}$	
O1	$14.9(7)$	$22.2(8)$	$20.7(7)$	$-5.7(6)$	$1.0(6)$	$0.9(6)$
O2	$21.8(7)$	$21.8(8)$	$16.3(7)$	$-4.2(6)$	$0.1(6)$	$-0.8(6)$
O3	$29.2(8)$	$31.9(9)$	$25.4(8)$	$-2.1(7)$	$-10.9(7)$	$5.3(7)$
O4	$15.5(7)$	$28.9(8)$	$21.4(7)$	$-9.1(7)$	$-0.9(6)$	$2.7(6)$
O5	$30.9(8)$	$33.3(9)$	$25.1(8)$	$4.4(7)$	$-11.1(6)$	$2.8(7)$
O6	$22.0(7)$	$24.7(8)$	$15.7(7)$	$-3.9(6)$	$-1.9(6)$	$0.1(6)$
N1	$14.1(8)$	$17.4(8)$	$14.8(8)$	$-2.3(7)$	$-1.3(6)$	$0.6(7)$
N2	$17.6(8)$	$17.4(8)$	$14.9(8)$	$1.2(7)$	$-0.3(6)$	$0.8(7)$
N3	$14.3(8)$	$22.8(9)$	$14.5(8)$	$-2.0(7)$	$-2.5(6)$	$0.8(7)$
N4	$18.9(8)$	$18.4(9)$	$15.3(8)$	$0.5(7)$	$-2.0(6)$	$2.6(7)$
C1	$21.6(11)$	$34.0(13)$	$20.1(11)$	$1.8(9)$	$3.6(8)$	$-1.5(10)$
C2	$16.2(9)$	$18.6(10)$	$18.5(10)$	$-0.2(8)$	$3.0(8)$	$3.7(8)$
C3	$17.6(9)$	$13.1(9)$	$15.2(10)$	$1.2(8)$	$0.5(7)$	$-1.4(8)$
C4	$16.3(9)$	$14.1(9)$	$14.5(9)$	$-1.7(7)$	$-0.2(7)$	$1.3(8)$
C5	$17.5(9)$	$16.6(10)$	$16.2(9)$	$-2.5(8)$	$1.7(7)$	$0.7(8)$
C6	$23.2(10)$	$16.5(10)$	$14.8(9)$	$-4.0(8)$	$2.0(8)$	$-1.8(8)$
C7	$26.7(11)$	$21.1(10)$	$17.3(10)$	$-6.1(8)$	$4.1(8)$	$-3.6(9)$
C8	$33.8(12)$	$23.8(11)$	$18.3(10)$	$-4.8(9)$	$7.8(9)$	$-9.2(10)$
C9	$16.3(10)$	$25.5(11)$	$24.0(11)$	$-0.1(9)$	$-1.3(8)$	$1.0(9)$
C10	$14.5(9)$	$19.8(10)$	$19.4(10)$	$-0.8(8)$	$-2.1(7)$	$1.3(8)$
C11	$16.2(9)$	$18.0(10)$	$21.5(10)$	$-0.8(8)$	$0.6(8)$	$1.9(8)$
C12	$23.8(10)$	$17.1(10)$	$13.4(9)$	$-3.8(8)$	$1.2(8)$	$-2.0(8)$

C13	$43.3(14)$	$16.4(10)$	$17.5(10)$	$-0.2(8)$	$4.2(9)$	$-4.3(10)$
C14	$33.6(12)$	$17.4(10)$	$17.7(10)$	$-1.8(8)$	$-0.1(9)$	$2.8(9)$
C15	$21.2(10)$	$26.0(11)$	$15.4(10)$	$-7.4(8)$	$-1.6(8)$	$2.1(9)$
C16	$18.8(10)$	$21.5(10)$	$17.4(10)$	$-7.5(8)$	$1.9(8)$	$1.7(8)$
C17	$17.6(9)$	$17.6(10)$	$16.1(10)$	$-4.5(8)$	$3.5(7)$	$0.0(8)$
C18	$23.7(10)$	$18.5(10)$	$22.5(10)$	$-1.4(9)$	$5.9(8)$	$1.2(9)$
C19	$32.4(13)$	$18.4(11)$	$35.9(13)$	$-0.4(10)$	$10.9(10)$	$-2.7(9)$
C20	$26.3(12)$	$27.3(12)$	$37.0(13)$	$-10.3(10)$	$9.9(10)$	$-11.4(10)$
C21	$18.3(10)$	$30.6(12)$	$27.8(11)$	$-11.5(10)$	$0.9(8)$	$-4.6(9)$
C22	$24.0(11)$	$19.1(10)$	$29.0(12)$	$3.6(9)$	$-2.1(9)$	$1.9(9)$
C23	$38.6(15)$	$22.0(12)$	$53.3(16)$	$-6.5(12)$	$-20.7(13)$	$3.8(11)$
C24	$17.0(10)$	$20.7(10)$	$20.6(10)$	$-2.2(8)$	$1.1(8)$	$1.9(8)$
C25	$17.3(9)$	$17.8(9)$	$16.0(9)$	$2.5(8)$	$-0.1(7)$	$-0.8(8)$
C26	$17.4(9)$	$17.0(9)$	$13.5(9)$	$-0.7(8)$	$-0.9(7)$	$3.0(8)$
C27	$17.7(9)$	$17.1(10)$	$19.5(10)$	$0.1(8)$	$2.2(8)$	$1.3(8)$
C28	$23.3(10)$	$16.3(10)$	$14.4(9)$	$-3.0(8)$	$1.4(8)$	$0.2(8)$
C29	$25.8(11)$	$19.9(10)$	$20.5(10)$	$-3.2(9)$	$6.6(8)$	$-0.7(9)$
C30	$34.4(12)$	$21.3(11)$	$19.9(10)$	$-4.2(9)$	$10.6(9)$	$-6.4(10)$
C31	$17.8(10)$	$27.1(12)$	$29.4(12)$	$-4.3(9)$	$-1.8(8)$	$2.2(9)$
C32	$14.4(9)$	$22.9(10)$	$18.9(10)$	$2.1(8)$	$-2.2(7)$	$-1.3(8)$
C33	$15.9(10)$	$20.6(10)$	$22.6(11)$	$4.6(8)$	$1.0(8)$	$1.3(8)$
C34	$24.0(10)$	$18.3(10)$	$13.2(9)$	$-3.3(8)$	$0.2(8)$	$-0.2(8)$
C35	$16.9(9)$	$20.5(10)$	$13.8(9)$	$-3.8(8)$	$3.3(7)$	$0.7(8)$
C36	$20.7(10)$	$25.0(11)$	$12.9(9)$	$-3.9(8)$	$0.8(7)$	$2.2(8)$
C37	$20.2(10)$	$32.9(12)$	$17.7(10)$	$-5.8(9)$	$-0.7(8)$	$-1.9(9)$
C38	$23.1(11)$	$31.9(12)$	$22.9(11)$	$-6.0(9)$	$6.5(9)$	$-8.0(9)$
C39	$28.4(12)$	$23.9(11)$	$21.0(11)$	$0.9(9)$	$9.0(9)$	$-3.1(9)$
C40	$20.3(10)$	$25.3(11)$	$17.1(10)$	$0.1(8)$	$3.6(8)$	$2.6(9)$
C41	$21.5(10)$	$23.3(11)$	$16.4(10)$	$-4.6(8)$	$-1.8(8)$	$2.1(9)$
C42	$31.8(12)$	$18.3(11)$	$16.3(10)$	$-0.4(8)$	$-1.5(9)$	$2.5(9)$
C43	$40.3(13)$	$18.8(10)$	$16.6(10)$	$2.0(8)$	$3.1(9)$	$-3.0(10)$
C44	$24.4(12)$	$72(2)$	$24.7(12)$	$6.6(13)$	$5.1(9)$	$-4.3(13)$

Table S6 Bond Lengths for cxy1304_0m.

AtomAtom Length/i̊ AtomAtom Length/Å

O1	C2	$1.470(2)$	C10	C11	$1.522(3)$
O1	C3	$1.339(2)$	C12	C14	$1.385(3)$
O2	C3	$1.217(2)$	C13	C14	$1.392(3)$
O3	C15	$1.216(3)$	C15	C16	$1.475(3)$
O4	C24	$1.461(2)$	C16	C17	$1.386(3)$
O4	C25	$1.339(2)$	C16	C21	$1.391(3)$
O5	C41	$1.213(3)$	C17	C18	$1.384(3)$
O6	C25	$1.213(2)$	C18	C19	$1.389(3)$
N1	C3	$1.357(3)$	C19	C20	$1.392(4)$
N1	C4	$1.470(2)$	C20	C21	$1.381(4)$
N1	C10	$1.471(2)$	C23	C24	$1.507(3)$

N 2	C 4	$1.470(3)$	C 24	C 31	$1.522(3)$
N 2	C 12	$1.417(3)$	C 24	C 44	$1.512(3)$
N 2	C 15	$1.386(3)$	C 26	C 27	$1.555(3)$
N 3	C 25	$1.357(3)$	C 26	C 35	$1.507(3)$
N 3	C 26	$1.467(3)$	C 27	C 28	$1.515(3)$
N 3	C 32	$1.467(2)$	C 27	C 33	$1.526(3)$
N 4	C 26	$1.477(2)$	C 28	C 29	$1.381(3)$
N 4	C 34	$1.415(3)$	C 28	C 34	$1.395(3)$
N 4	C 41	$1.389(3)$	C 29	C 30	$1.392(3)$
C 1	C 2	$1.514(3)$	C 30	C 43	$1.381(3)$
C 2	C 9	$1.521(3)$	C 32	C 33	$1.528(3)$
C 2	C 22	$1.520(3)$	C 34	C 42	$1.383(3)$
C 4	C 5	$1.556(3)$	C 35	C 36	$1.388(3)$
C 4	C 17	$1.502(3)$	C 35	C 40	$1.378(3)$
C 5	C 6	$1.518(3)$	C 36	C 37	$1.385(3)$
C 5	C 11	$1.528(3)$	C 36	C 41	$1.486(3)$
C 6	C 7	$1.383(3)$	C 37	C 38	$1.388(3)$
C 6	C 12	$1.391(3)$	C 38	C 39	$1.393(3)$
C 7	C 8	$1.397(3)$	C 39	C 40	$1.394(3)$
C 8	C 13	$1.382(3)$	C 42	C 43	$1.394(3)$

Table S7 Bond Angles for cxy1304_0m.

Atom Atom Atom			$\begin{aligned} & \text { Angle } /^{\circ} \\ & 121.96(16) \end{aligned}$	Atom Atom Atom			Angle $/^{\circ}$ 109.26(18)
C3	O1	C2		C16	C17	C4	
C25	O4	C24	122.22(16)	C18	C17	C4	129.29(18)
C3	N1	C4	125.13(16)	C18	C17	C16	121.44(19)
C3	N1	C10	120.38(17)	C 17	C18	C19	116.9(2)
C4	N1	C10	113.92(15)	C18	C19	C20	121.7(2)
C12	N2	C4	109.21(16)	C21	C20	C19	121.1(2)
C15	N2	C4	112.34(17)	C 20	C21	C16	117.2(2)
C15	N2	C12	124.95(17)	O 4	C24	C23	109.33(19)
C25	N3	C26	125.01(16)	O 4	C24	C31	102.30(16)
C25	N3	C32	120.76(17)	O 4	C24	C44	109.80(18)
C32	N3	C26	113.96(16)	C 23	C24	C31	110.86(19)
C34	N4	C26	108.86(16)	C 23	C24	C44	113.1(2)
C41	N4	C26	112.68(17)	C 44	C24	C31	110.86(19)
C41	N4	C34	125.54(17)	O 4	C25	N3	109.99(17)
O1	C2	C1	110.29(17)	O6	C25	O4	126.59(18)
O1	C2	C9	101.94(16)	O6	C25	N3	123.42(18)
O1	C2	C22	110.03(16)	N3	C26	N4	112.97(16)
C1	C2	C9	110.53(17)	N3	C26	C27	102.25(15)
C1	C2	C22	112.10(19)	N3	C26	C35	114.61(16)
C22	C2	C9	111.49(18)	N 4	C26	C27	104.44(16)
O1	C3	N1	110.47(16)	N4	C26	C35	102.58(15)
O2	C3	O1	126.46(19)	C35	C26	C27	119.88(17)
O2	C3	N1	123.05(18)	C28	C27	C26	101.66(16)

N1	C4	N2	113.05(16)	C 28	C27	C33	115.81(17)
N1	C4	C5	102.14(15)	C33	C27	C26	104.59(16)
N1	C4	C17	114.41(16)	C 29	C28	C27	130.05(19)
N2	C4	C5	104.54(15)	C 29	C28	C34	119.64(19)
N2	C4	C17	102.68(15)	C34	C28	C27	110.26(17)
C17	C4	C5	119.95(17)	C28	C29	C30	118.6(2)
C6	C5	C4	101.33(16)	C 43	C30	C29	121.2(2)
C6	C5	C11	116.56(17)	N3	C32	C33	102.47(16)
C11	C5	C4	104.56(16)	C 27	C33	C32	103.69(16)
C7	C6	C5	130.03(19)	C 28	C34	N4	109.58(17)
C7	C6	C12	119.4(2)	C 42	C34	N4	128.02(19)
C12	C6	C5	110.45(17)	C 42	C34	C28	122.39(19)
C6	C7	C8	118.7(2)	C 36	C35	C26	109.27(18)
C13	C8	C7	120.9(2)	C 40	C35	C26	129.26(19)
N1	C10	C11	102.78(16)	C 40	C35	C36	121.5(2)
C10	C11	C5	104.04(16)	C35	C36	C41	109.69(18)
C6	C12	N2	109.34(18)	C 37	C36	C35	121.4(2)
C14	C12	N2	127.7(2)	C 37	C36	C41	128.8(2)
C14	C12	C6	122.9(2)	C36	C37	C38	117.5(2)
C8	C13	C14	121.4(2)	C 37	C38	C39	121.0(2)
C12	C14	C13	116.8(2)	C 38	C39	C40	121.2(2)
O3	C15	N2	125.0(2)	C35	C40	C39	117.4(2)
O3	C15	C16	129.0(2)	O 5	C41	N4	124.9(2)
N2	C15	C16	106.01(17)	O 5	C41	C36	129.4(2)
C17	C16	C15	109.50(18)	N4	C41	C36	105.61(17)
C17	C16	C21	121.5(2)	C 34	C42	C43	117.2(2)
C21	C16	C15	128.9(2)	C30	C43	C42	121.0(2)

Table S8 Torsion Angles for cxy1304_0m.

A	B C D	Angle/ ${ }^{\circ}$	$A \quad B \quad C \quad D$	Angle $/{ }^{\circ}$
O3	C15 C16C17	-174.8(2)	C 15 C 16 C 21 C 20	-177.5(2)
O3	C15 C16C21	2.1(4)	C 16 C 17 C 18 C 19	-2.6(3)
N1	C4 C5 C6	96.25(17)	C 17 C 4 C 5 C 6	-136.03(18)
N1	C4 C5 C11	-25.29(19)	C 17 C 4 C 5 C 11	102.4(2)
N1	C4 C17-16	-124.46(18)	C 17 C 16 C 21 C 20	-0.9(3)
N1	C4 C17-18	54.5(3)	C 17 C 18 C 19 C 20	0.8(3)
N1	C10 C11 C5	-31.4(2)	C 18 C 19 C 20 C 21	0.8(4)
N2	C4 C5 C6	-21.75(19)	C 19 C 20 C 21 C 16	-0.8(3)
N2	C4 C5 C11	-143.29(16)	C 21 C 16 C 17 C 4	-178.28(18)
N2	C4 C17-16	-1.6(2)	C 21 C 16 C 17 C 18	2.7(3)
N2	C4 C17-18	177.4(2)	C 24 O 4 C 25 O 6	6.0(3)
N2	C12 C14-13	179.02(19)	C 24 O 4 C 25 N 3	-174.41(17)
N2	C15 C16C17	3.6(2)	C 25 O 4 C 24 C 23	61.0(3)
N2	C15 C16C21	-179.5(2)	C 25 O 4 C 24 C 31	178.55(19)
N3	C26C27 C28	-96.17(17)	C 25 O 4 C 24 C 44	-63.7(3)
N3	C26 C27 C33	24.7(2)	C 25 N 3 C 26 N 4	58.3(3)

| N 3 | C 26 | C 35 | C 36 | $124.00(18)$ | C25 N3 |
| :--- | :--- | :--- | :--- | :--- | :--- | C26 C27 $-169.97(18)$

| C12 N2 | C4 | C5 | $21.1(2)$ | C37 C36C41 O5 |
| :--- | :--- | :--- | :--- | ---: |$r-2.6(4)$

Table S9 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{c x y} 1304 _0 \mathrm{~m}$.

Atom	\boldsymbol{x}	y	z	U(eq)
H1A	2180.24	3539.19	-2343.81	38
H1B	3827.79	3424.88	-2126.2	38
H1C	3129.63	4347.84	-1993.57	38
H5	-1240.35	5605.52	1990.26	20
H7	-3372.09	4263.88	2796.45	26
H8	-2995.05	3101.86	3981.6	30
H9A	4254.53	4410.9	-114.21	33
H9B	4896.75	3472.92	-251.89	33
H9C	3938.69	3668.14	723.01	33
H10A	-2338.88	3879.13	-11.4	22
H10B	-2243.04	4617.67	-910.9	22
H11A	-3342.98	4981.41	876.18	22
H11B	-2425.48	5698.66	314.52	22
H13	-829.55	2450.6	4192.72	31
H14	1026.06	2912.02	3190.77	28
H18	188.62	6412.29	-199.35	26
H19	2069.92	7375.57	-106.9	34
H20	4056.46	7110.08	1000.53	36
H21	4257.68	5855.58	2035.97	31
H22A	2242.73	2510.97	200.87	36
H22B	3196.73	2232.03	-745.71	36
H22C	1587.09	2455.34	-1010.36	36
H23A	6492.04	7503.45	7901.37	59
H23B	4863.45	7710.06	7725.71	59
H23C	5775.41	7572.8	6709.52	59
H27	9590.68	4394.14	4927.57	22
H29	11980.24	5635.69	4327.66	26
H30	11925.65	6845.3	3208.16	30
H31A	4298.35	6425.68	5951	37
H31B	3257.51	6520.95	6895.66	37
H31C	3941.82	5609.19	6662.28	37
		S92		

H32A	10327.88	5367.11	7880.1	23
H32B	10589.06	6089.45	6987.2	23
H33A	11611.08	4933.9	6197.38	24
H33B	10542.6	4260.42	6680.06	24
H37	4064.51	4394.35	4447.94	28
H38	3997.42	3110.35	5430.33	31
H39	5818.57	2741.76	6664.17	29
H40	7782.73	3635.69	6934.94	25
H42	7810.48	7190.48	3620.11	27
H43	9874.22	7596.26	2832.13	30
H44A	5046.24	5478.45	8554.25	60
H44B	4190.8	6329.19	8800.56	60
H44C	5837.6	6294.92	9078.51	60

Table S10 Crystal data and structure refinement for cxy1304_0m.
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ} \quad 93.679(3)$
$\gamma /{ }^{\circ} 90$
Volume $/ \AA^{3} \quad 1863.8(2)$
Z 4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3} \quad 1.292$
$\mu / \mathrm{mm}^{-1} \quad 0.087$
$\mathrm{F}(000) \quad 768.0$
Crystal size $/ \mathrm{mm}^{3} \quad 0.34 \times 0.32 \times 0.29$
Radiation $\quad \operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ} 4.984$ to 55.086
Index ranges
$-12 \leq \mathrm{h} \leq 12,-20 \leq \mathrm{k} \leq 20,-16 \leq 1 \leq 16$
Reflections collected
Independent reflections $\quad 8583\left[\mathrm{R}_{\text {int }}=0.0475, \mathrm{R}_{\text {sigma }}=0.0345\right]$
Data/restraints/parameters 8583/1/494
Goodness-of-fit on F^{2}
1.023

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0344, \mathrm{wR}_{2}=0.0786$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0416, \mathrm{wR}_{2}=0.0830$
Largest diff. peak/hole /e $\AA^{-3} 0.27 /-0.18$
Flack parameter $\quad 0.4(3)$

X-Ray details of compound cis-34

cxy1215_0m (CCDC number 2101130)

Table S11 Crystal data and structure refinement for cxy1215_0m.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$\mathrm{a} / \AA \quad 10.4073(6)$
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ} \quad 94.709(2)$
$\gamma{ }^{\circ} \quad 90$
Volume $/ \AA^{3} \quad 1321.78(12)$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
4
$\mu / \mathrm{mm}^{-1} \quad 0.088$
$\mathrm{F}(000) \quad 560.0$
Crystal size $/ \mathrm{mm}^{3} \quad 0.34 \times 0.29 \times 0.12$
Radiation $\quad \operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ} 4.632$ to 55.162
Index ranges
$-13 \leq \mathrm{h} \leq 13,-11 \leq \mathrm{k} \leq 9,-18 \leq 1 \leq 19$
18279
$3054\left[\mathrm{R}_{\text {int }}=0.0357, \mathrm{R}_{\text {sigma }}=0.0229\right]$
Independent reflections
Data/restraints/parameters
3054/0/183
Goodness-of-fit on F^{2}
1.054

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0365, \mathrm{wR}_{2}=0.0919$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0430, \mathrm{wR}_{2}=0.0960$
Largest diff. peak/hole / e \AA^{-3} 0.31/-0.20
Table S12 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for cxy $1215 _0 \mathrm{~m}$. $U_{e q}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U}(\mathbf{e q)}$
O1	$4575.9(8)$	$2426.3(10)$	$878.5(5)$	$21.1(2)$
O2	$1532.6(8)$	$3810.9(10)$	$4907.7(6)$	$23.8(2)$
N1	$3831.5(9)$	$4160.0(10)$	$1903.4(6)$	$15.3(2)$
C1	$7765.9(11)$	$2381.4(14)$	$3150.8(8)$	$22.0(3)$
C2	$6929.1(11)$	$2276.5(13)$	$2358.7(8)$	$20.2(2)$
C3	$5794.2(10)$	$3121.5(12)$	$2330.2(7)$	$16.3(2)$
C4	$4715.5(10)$	$3154.7(12)$	$1599.5(7)$	$15.8(2)$
C5	$2475.3(10)$	$4087.4(11)$	$1758.0(7)$	$14.9(2)$
C6	$1941.2(11)$	$4373.3(12)$	$2589.3(7)$	$15.1(2)$
C7	$613.0(11)$	$4449.3(12)$	$2603.4(8)$	$18.5(2)$
C8	$-156.1(11)$	$4202.1(13)$	$1783.6(8)$	$20.6(2)$
C9	$1731.5(11)$	$3806.3(12)$	$943.7(7)$	$17.9(2)$
C10	$397.2(11)$	$3861.4(13)$	$975.0(8)$	$20.3(2)$
C11	$2998.3(10)$	$4486.3(12)$	$3372.3(7)$	$14.2(2)$
C12	$3135.0(11)$	$2996.1(12)$	$3937.0(7)$	$16.3(2)$
C13	$1925.5(11)$	$2547.7(12)$	$4388.3(8)$	$18.3(2)$
C14	$4199.1(10)$	$4799.2(12)$	$2827.4(7)$	$14.9(2)$
C15	$5481.5(10)$	$4037.6(12)$	$3063.7(7)$	$15.9(2)$
C16	$6340.0(11)$	$4170.5(13)$	$3839.7(7)$	$19.3(2)$
C17	$7481.9(11)$	$3326.6(14)$	$3877.5(8)$	$21.3(3)$

Table S13 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for cxy1215_0m. The

Atom	U_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	U_{13}	U_{12}
O1	20.9(4)	26.1(4)	16.5(4)	-6.1(3)	3.6(3)	0.8(3)
O2	27.2(5)	22.5(4)	23.7(4)	-5.5(3)	13.4(3)	-5.9(3)
N1	17.4(5)	15.9(4)	12.7(4)	-1.1(3)	2.1(3)	-0.3(3)
C1	14.7(5)	22.8(6)	28.6(6)	3.0(5)	3.0(4)	-0.6(4)
C2	17.4(6)	20.3(6)	23.5(6)	-1.7(4)	5.0(4)	-1.6(4)
C3	15.8(5)	16.6(5)	16.8(5)	0.0(4)	3.4(4)	-3.7(4)
C4	16.7(5)	16.1(5)	15.1(5)	0.9(4)	5.0(4)	-1.7(4)
C5	17.1(5)	11.3(5)	16.3(5)	1.6(4)	1.4(4)	1.1(4)
C6	19.5(5)	11.3(5)	14.6(5)	0.9(4)	1.8(4)	0.5(4)
C7	19.5(5)	16.3(5)	20.3(5)	1.0(4)	4.4(4)	1.6 (4)
C8	16.3(5)	19.1(5)	26.1(6)	2.7(4)	0.1(4)	-0.1(4)
C9	23.0(6)	15.2(5)	15.4(5)	-0.2(4)	1.0(4)	1.4(4)
C10	22.9(6)	16.3(5)	20.6(5)	1.3(4)	-4.5(4)	-1.7(4)
C11	16.2(5)	12.8(5)	13.8(5)	-0.5(4)	3.2(4)	-0.1(4)
C12	19.3(5)	14.5(5)	15.6(5)	1.4(4)	3.5(4)	0.9(4)

C13	$22.4(6)$	$15.5(5)$	$17.6(5)$	$0.2(4)$	$5.1(4)$	$-1.8(4)$
C14	$18.7(5)$	$13.1(5)$	$12.9(5)$	$-1.3(4)$	$2.1(4)$	$-1.9(4)$
C15	$16.3(5)$	$14.7(5)$	$17.0(5)$	$1.7(4)$	$3.2(4)$	$-3.7(4)$
C16	$20.6(5)$	$20.8(5)$	$16.8(5)$	$-0.9(4)$	$2.8(4)$	$-5.4(4)$
C17	$17.7(5)$	$24.0(6)$	$21.9(5)$	$4.1(4)$	$-1.0(4)$	$-6.3(4)$

Table S14 Bond Lengths for cxy1215_0m.

Atom Atom	Length/A	Atom Atom		Length/Å
O1	C4	$1.2282(13)$	C6	C7

Table S15 Bond Angles for cxy1215_0m.

Atom Atom Atom			Angle $/{ }^{\circ}$127.72(9)	Atom Atom Atom			$\begin{aligned} & \text { Angle } /^{\circ} \\ & 118.72(10) \end{aligned}$
C4	N1	C5		C6	C7	C8	
C4	N1	C14	113.95(9)	C 10	C8	C7	120.81(10)
C5	N1	C14	109.53(8)	C 5	C9	C10	116.96(10)
C2	C1	C17	120.91(11)	C8	C10	C9	121.28(10)
C3	C2	C1	117.51(10)	C6	C11	C12	112.12(8)
C2	C3	C4	128.50(10)	C6	C11	C14	100.83(8)
C2	C3	C15	122.12(10)	C 12	C11	C14	112.23(9)
C15	C3	C4	109.27(9)	C 13	C12	C11	113.97(9)
O1	C4	N1	124.98(10)	O 2	C13	C12	108.52(9)
O1	C4	C3	129.45(10)	N1	C14	C11	103.95(8)
N1	C4	C3	105.53(9)	N1	C14	C15	101.56(8)
C6	C5	N1	108.98(9)	C 15	C14	C11	122.56(9)
C9	C5	N1	128.17(10)	C 3	C15	C14	109.57(9)
C9	C5	C6	122.85(10)	C 16	C15	C3	119.92(10)
C5	C6	C11	110.43(9)	C16	C15	C14	130.46(10)
C7	C6	C5	119.31(10)	C 15	C16	C17	118.48(10)
C7	C6	C11	130.20(10)	C1	C17	C16	121.00(10)

Table S16 Torsion Angles for cxy1215_0m.
A B C
Angle ${ }^{\circ}$
A B C
D
Angle $/^{\circ}$
$\left.\begin{array}{llllllll}\text { N1 C5 } & \text { C6 } & \text { C7 } & 176.29(9) & \text { C6 } & \text { C5 } & \text { C9 } & \text { C10 }\end{array}\right)$

Table S17 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for cxy1215_0m.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}				U(eq)	
H2	912.17	3548.26	5206.17	36				
H1	8540.79	1801.11	3196.81	26				
H2A	7126.52	1650.96	1856.68	24				
H7	231.34	4664.83	3158.26	22				
H8	-1067.48	4268.49	1781.29	25				
H9	2113.8	3586.04	389.73	21				
H10	-144	3661.98	432.19	24				
H11	2835.66	5375.03	3779.34	17				
H12A	3366.85	2152.34	3528.33	20				
H12B	3852.23	3118.6	4420.24	20				
H13A	1232.15	2266.95	3913.15	22				
H13B	2104.31	1651.65	4794.72	22				
H14	4329.16	5930.35	2776.15	18				
H16	6153.93	4820.99	4333.44	23				
H17	8074.99	3397.01	4406.12	26				

Experimental details

Single crystals of $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ [$\mathbf{c x y 1 2 1 5 _ 0 m}$] were generated from ethyl acetate and hexane. A suitable crystal was selected on a BrukerD8 venture microsource diffractometer. The crystal was kept at 100 K during data collection. Using Olex 2 , ${ }^{[18]}$ the structure was solved with the ShelXT ${ }^{[19]}$ structure solution program using Intrinsic Phasing and refined with the ShelXL ${ }^{[20]}$ refinement package using Least Squares minimisation.

Crystal structure determination of [cxy1215_0m]

Crystal Data for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ ($M=265.30 \mathrm{~g} / \mathrm{mol}$): monoclinic, space group $\mathrm{P}_{1} / \mathrm{n}$ (no. 14), $a=10.4073(6) \AA, b=8.7265(5) \AA, c=14.6032(7) \AA, \beta=94.709(2), V=1321.78(12) \AA^{3}, Z=4, T$ $=100 \mathrm{~K}, 00 \mathrm{MoK} \alpha \mathrm{O}=0.088 \mathrm{~mm}^{-1}$, Dcalc $=1.333 \mathrm{~g} / \mathrm{cm}^{3}, 18279$ reflections measured (4.632 oup P2-8.Howard, J.A.K. \& Pus $R_{\mathrm{int}}=0.0357, \mathrm{R}_{\mathrm{sigma}}=0.0229$) which were used in all calculations. The final R_{1} was 0.0365 (I >2 asI)) and $w R_{2}$ was 0.0960 (all data).

Refinement model description

Number of restraints - 0 , number of constraints - unknown.
Details:

1. Fixed Uiso

At 1.2 times of:
All $\mathrm{C}(\mathrm{H})$ groups, All $\mathrm{C}(\mathrm{H}, \mathrm{H})$ groups
At 1.5 times of:
All $\mathrm{O}(\mathrm{H})$ groups
2.a Ternary CH refined with riding coordinates:

C11(H11), C14(H14)
2.b Secondary CH 2 refined with riding coordinates:

C12(H12A,H12B), C13(H13A,H13B)
2.c Aromatic/amide H refined with riding coordinates:

C1(H1), C2(H2A), C7(H7), C8(H8), C9(H9), C10(H10), C16(H16), C17(H17)
2.d Idealised tetrahedral OH refined as rotating group:

O2(H2)

NMR Spectra

${ }^{1} H$ NMR of S1

${ }^{1} \mathrm{H}$ NMR of $\mathrm{S} 1^{\prime}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{S 1}{ }^{\prime \prime}$

ydh-3-198-indole-I-1H-0105. 1. fid 20180105-400m

$\int \mid \int\left\|\int\right\|_{\|}$

${ }^{1} H$ NMR of S2

${ }^{13} \mathrm{C}$ NMR of S 2

${ }^{1} \mathrm{H}$ NMR of $\mathbf{S 3}$

${ }^{13}$ C NMR of S3

${ }^{1} \mathrm{H}$ NMR of $\mathbf{S 4}$

${ }^{19}$ F NMR of S4
ydh-6-198-F-indole-F-400m. 1. fid

\qquad
${ }^{13} \mathrm{C}$ NMR of S4

${ }^{1} \mathrm{H}$ NMR of S5

${ }^{13}$ C NMR of $\mathbf{S 5}$
ydh-7-sin-Ome-h-400m. 2. fid

${ }^{1} H$ NMR of S6

${ }^{13}$ C NMR of S6

${ }^{1} \mathrm{H}$ NMR of $\mathbf{S 7}$

${ }^{13}$ C NMR of S7

YDH-7-5-NHAC-H-500M. 4. fid

-23.63
AcHN

${ }^{1} \mathrm{H}$ NMR of S7'

${ }^{13} \mathbf{C}$ NMR of S S7'

${ }^{1} \mathrm{H}$ NMR of S8

${ }^{13}$ C NMR of S8
ydh-7-144-5-Bno-h-5

${ }^{1}$ H NMR of S9

${ }^{13}$ C NMR of S 9

${ }^{1} \mathbf{H}$ NMR of S10

${ }^{13}$ C NMR of S10

${ }^{1} \mathbf{H}$ NMR of S11

${ }^{13} \mathrm{C}$ NMR of S11

${ }^{1} \mathrm{H}$ NMR of S12

${ }^{13} \mathrm{C}$ NMR of $\mathbf{S} 12$

${ }^{1}$ H NMR of S13

${ }^{13}$ C NMR of S13

${ }^{1} \mathbf{H}$ NMR of S14

${ }^{13}$ C NMR of S14

${ }^{1}$ H NMR of S15

${ }^{13}$ C NMR of S15
ydh-7-111-1h-0630-500m. 2. fid

HBoc

$\stackrel{\infty}{\infty}$

${ }^{1} \mathrm{H}$ NMR of S16

${ }^{13}$ C NMR of S16

[^0]
${ }^{1} \mathbf{H}$ NMR of $\mathbf{S 1 7}$

${ }^{1}$ H NMR of S18

ñ

				$\underset{\substack{\mathrm{N}}}{ }$	$\begin{aligned} & \text { To } \\ & 0 \\ & \hline \end{aligned}$	of																
10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	${ }_{6.5}^{1}$	6. 0	5. 5	5.0	4.5	4. 0	3.5	,	2.5	2.0	1.5	1.0	0.5	0. 0	-0.

${ }^{1} \mathbf{H}$ NMR of S19

${ }^{13} \mathrm{C}$ NMR of S19

$\begin{aligned} & \mathfrak{o} \\ & \underline{\hat{6}} \\ & \hline \end{aligned}$	
	\rightarrow

${ }^{1}$ H NMR of S20

${ }^{19}$ F NMR of S20
ydh-5-156-7-cl-F-h-400m. 1. fid

${ }^{13}$ C NMR of S20

${ }^{1} \mathbf{H}$ NMR of $\mathbf{S 2 1}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{S} 21$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{S 2 1}{ }^{\prime}$

${ }^{13} \mathrm{C}$ NMR of $\mathrm{S} 21^{\prime}$

${ }^{1} \mathbf{H}$ NMR of $\mathbf{S 2 2}$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{S} 22$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{S 2 3}$
ydh $7=116$ - OMe-H-500m. 1. fid

${ }^{13} \mathbf{C}$ NMR of $\mathbf{S} 23$

\qquad
${ }^{1} \mathbf{H}$ NMR of $\mathbf{S} 24$

${ }^{19}$ F NMR of S24

${ }^{13}$ C NMR of S24

${ }^{1}$ H NMR of $\mathbf{S 2 5}$

${ }^{19}$ F NMR of S25

ydh-7-98-1h-CF-F-400m. 31. fid

${ }^{13}$ C NMR of S25

${ }^{1}$ H NMR of S26

${ }^{13}$ C NMR of S26

${ }^{1} \mathbf{H}$ NMR of S27

${ }^{13} \mathbf{C}$ NMR of S27

${ }^{1} \mathrm{H}$ NMR of S28

${ }^{13}$ C NMR of S28
ydh-7-In-5-NO2-h-500m. 4.fi

${ }^{1} \mathbf{H}$ NMR of S29

${ }^{13} \mathbf{C}$ NMR of $\mathbf{S 2 9}$

${ }^{1} \mathrm{H}$ NMR of S30

${ }^{13} \mathrm{C}$ NMR of S30

${ }^{1} \mathbf{H}$ NMR of S31

${ }^{13} \mathrm{C}$ NMR of $\mathbf{S 3 1}$

${ }^{1} \mathbf{H}$ NMR of $\mathbf{S 3 2}$
ydh-7-108-py-h-400
$20200603-1$

${ }^{13}$ C NMR of S32
ydh-7-108-py-h-400m. 3. fid 20200603-1

${ }^{13}$ C NMR of S33
 -

${ }^{1} \mathbf{H}$ NMR of S34

${ }^{13}$ C NMR of S34

${ }^{\mathbf{1}} \mathrm{H}$ NMR of S35

${ }^{13}$ C NMR of S35

$\stackrel{-}{\square} \quad \underbrace{\circ}$

${ }^{1} \mathrm{H}$ NMR of S36
 20201030-400m $\underbrace{\infty}$
$\stackrel{\circ}{\circ}$

${ }^{13}$ C NMR of S36

${ }^{13} \mathbf{C}$ NMR of $\mathbf{S 3 7}$

${ }^{1} \mathrm{H}$ NMR of S38

${ }^{13} \mathrm{C}$ NMR of $\mathbf{S 3 8}$

${ }^{1}$ H NMR of S39

${ }^{13}$ C NMR of S39

${ }^{1} \mathrm{H}$ NMR of $\mathbf{S 4 0}$

${ }^{13}$ C NMR of S40
ydh-7-31-C-0621-500m. 1. fid $\widehat{\sim}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1}$

${ }^{13} \mathrm{C}$ NMR of 1

[^1]${ }^{1} \mathrm{H}$ NMR of 2

${ }^{13}$ C NMR of 2

${ }^{1}$ H NMR of 3

${ }^{13}$ C NMR of 3

${ }^{1} \mathrm{H}$ NMR of 4

${ }^{19}$ F NMR of 4

${ }^{13}$ C NMR of 4
ydh-6-198-F-indole-C1-P-h-400m. 3. find
20191206-400m

Coses)

[^2]${ }^{1} \mathrm{H}$ NMR of 5

${ }^{13}$ C NMR of 5

${ }^{1} \mathrm{H}$ NMR of 6

${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{7}$

${ }^{13}$ C NMR of 7

${ }^{1} \mathrm{H}$ NMR of 8

${ }^{13}$ C NMR of 8

${ }^{1} \mathrm{H}$ NMR of 9

${ }^{13}$ C NMR of 9

[^3]${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{1 0}$

${ }^{13}$ C NMR of 10

${ }^{1} H$ NMR of 11

${ }^{13}$ C NMR of 11

${ }^{1} \mathrm{H}$ NMR of 12

${ }^{13} \mathrm{C}$ NMR of 12

${ }^{1} \mathrm{H}$ NMR of 13

${ }^{13}$ C NMR of 13

[^4]${ }^{1} \mathrm{H}$ NMR of 14

${ }^{13}$ C NMR of 14

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 5}$

${ }^{13}$ C NMR of 15

${ }^{1}$ H NMR of 16

${ }^{13}$ C NMR of 16

${ }^{1} \mathrm{H}$ NMR of 17

$\underset{\sim}{6}$

N 8 in

$\xrightarrow[\sim]{\sim}$$\stackrel{0}{2}$

${ }^{13}$ C NMR of 17

${ }^{1} \mathrm{H}$ NMR of 18

${ }^{13}$ C NMR of 18
ydh-4-33-2-3C-500m. 1. fid
Cosermer

${ }^{1} \mathrm{H}$ NMR of 19

${ }^{13}$ C NMR of 19

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 0}$

${ }^{19}$ F NMR of 20
ydh-8-82-f-cl-F-400m. 1.fid
\qquad MMO

${ }^{13} \mathrm{C}$ NMR of 20

${ }^{1} \mathbf{H}$ NMR of 21

${ }^{13}$ C NMR of 21

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 2}$

${ }^{13}$ C NMR of 22

${ }^{13}$ C NMR of 23

${ }^{1} \mathrm{H}$ NMR of 24

${ }^{19}$ F NMR of 24
ydh-7-103-in-F-h-400m. 2. fid
400m

\qquad

${ }^{13}$ C NMR of 24

[^5]${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 5}$

${ }^{19}$ F NMR of 25
ydh-7-104-Cf3-In-h-400m. 2. fid
400 m
$\operatorname{com}_{\substack{\text { yod-7-2- } \\ \text { toom }}}$
COCN
\qquad
${ }^{13}$ C NMR of 25

${ }^{1}$ H NMR of 26

${ }^{13}$ C NMR of 26

${ }^{1} \mathrm{H}$ NMR of 27

\section*{

${ }^{13}$ C NMR of 27

${ }^{13}$ C NMR of 28

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 9}$

${ }^{13}$ C NMR of 29

$\mathrm{MeO}_{2} \mathrm{C}$ Cosers)
${ }^{13} \mathrm{C}$ NMR of 30

${ }^{1}$ H NMR of 31

${ }^{13} \mathrm{C}$ NMR of 31

${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{3 2}$

${ }^{13}$ C NMR of 32

${ }^{1} \mathrm{H}$ NMR of 33

${ }^{13}$ C NMR of 33
 $\underbrace{(1)}$ 욷

${ }^{1} \mathrm{H}$ NMR of trans-34

${ }^{13}$ C NMR of trans-34
dh-7-49-NABh4-1h-400m. 2. fid

\%	N
\bigcirc	¢
\|	\|

${ }^{1} \mathbf{H}$ NMR of cis-34 (contains a minor amount of trans-34)
ydh-7-49-2m

 trans.cis = 1:6.3 $\mathrm{V} \underbrace{\text { ल. }}$

${ }^{13}$ C NMR of $\boldsymbol{c i s}$ - 34 (contains a minor amount of trans-34)
ydh-7-49-2h-5NaBH4-00m. 4. fid

trans.cis $=1: 6.3$

$\begin{array}{ll}\circ & \stackrel{0}{\sim} \\ 0 & \infty \\ 0 & 0 \\ 1 & 1\end{array}$ -39.32
-33.85

${ }^{1} \mathrm{H}$ NMR of 35

trans : dis $=6.0: 1$

${ }^{13}$ C NMR of 35

${ }^{1} \mathrm{H}$ NMR of 36

${ }^{13} \mathrm{C}$ NMR of 36

${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{3 7}$

${ }^{13} \mathbf{C}$ NMR of 37

${ }^{1} H$ NMR of 38

${ }^{13}$ C NMR of 38

${ }^{1} \mathrm{H}$ NMR of 39

${ }^{13}$ C NMR of 39

\qquad
${ }^{1} \mathbf{H}$ NMR of 41

${ }^{13}$ C NMR of 41

${ }^{1} \mathrm{H}$ NMR of 42

${ }^{13}$ C NMR of 42

${ }^{1} \mathrm{H}$ NMR of 44 and 45

${ }^{13}$ C NMR of 44 and 45

Reference

[1] H. M. O’Brien, M. Manzotti, R. D. Abrams, D. Elorriaga, H. A. Sparkes, S. A. Davis and R. B. Bedford, Nat. Catal., 2018, 1, 429.
[2] J. Zeng, Z. Zhang, Q. Zhu, Z. Jiang and G. Zhong, Molecules, 2020, 25, 1189.
[3] S. Brown, S. Clarkson, R. Grigg, W. A. Thomas, V. Sridharan and D. M. Wilson, Tetrahedron., 2001, 57, 1347.
[4] M. Bhuyan and B. Koenig, Chem. Commun., 2012, 48, 7489.
[5] A. M. Signori, E. Latocheski, B. L. Albuquerque, D. Faggion, T. B. Bisol, L. Meiera and J. B. Domingos, New J. Chem., 2015, 39, 1574.
[6] J. E. Macor and M. E. Newman, Tetrahedron Lett., 1991, 32, 3345.
[7] D. A. Petrone, A. Yen, N. Zeidan and M. Lautens, Org. Lett., 2015, 17, 4838.
[8] X.-H. Shan, H.-X. Zheng, B. Yang, L. Tie, J.-L. Fu, J.-P. Qu and Y.-B. Kang, Nat. Commип., 2019, 10, 908.
[9] C. G. Hatchard and C. A. Parker, Proc. R. Soc. London, Ser. A, 1956, 235, 518.
[10] A. de Meijere, V. Chaplinski, F. Gerson, P. Merstetter and E. Haselbach, J. Org. Chem. 1999, 64, 6951.
[11] A. R. Forrester, Organic N-Centered Radicals and Nitroxide Radicals • Part 1, LandoltBörnstein - Group II Molecules and Radicals 9C1, 1979, Springer-Verlag Berlin Heidelberg.
[12] G. J. Barbante, N. Kebede, C. M. Hindson, E. H. Doeven, E. M. Zammit, G. R. Hanson, C. F. Hogan and P. S. Francis, Chem - Eur. J. 2014, 20, 14026.
[13] a) Y. L. Chow, W. C. Danen, S. F. Nelsen and D. H. Rosenblatt, Chemical Reviews 1978, 78, 243-274. b) W. Miao, J.-P. Choi and A. J. Bard, J. Am. Chem. Soc. 2002, 124, 14478.
[14] a) G. R. Buettner, Free Radical Biology and Medicine 1987, 3, 259-303; b) K. Makino, T. Hagiwara and A. Murakami, Int. J. Radiat. Appl. Instrum Part C. Radiat. Phys. Chem. 1991, 37, 657.
[15] D. A. Petrone, A. Yen, N. Zeidan and M. Lautens, Org. Lett., 2015, 17, 4838.
[16] (a) I. Moldvai, E. Temesvári-Major, M. Incze, É. Szentirmay, E. Gács-Baitz and C. Szántay, J. Org. Chem., 2004, 69, 5993; (b) M. Ruiz, P. López-Alvarado and J. C. Menéndez, Eur. J. Org. Chem., 2013, 2802.
[17] E. De Vita, P. Schüler, S. Lovell, J. Lohbeck, S. Kullmann, E. Rabinovich, A. Sananes, B. Heßling, V. Hamon, N. Papo, J. Hess, E. W. Tate, N. Gunkel and A. K. Miller, J. Med. Chem., 2018, 61, 8859.
[18] C. G. Hatchard and C. A. Parker, Proc. R. Soc. London, Ser. A, 1956, 235, 518.
[19] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. Petersson, Inc.: Wallingford CT 2010.
[20] C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158.
[21] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
[22] (a) M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265; (b) L. Radom, P. Hariharan, J. Pople and P. Schleyer, J. Am. Chem. Soc., 1973, 95, 6531.
[23] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
[24] G. M. Sheldrick Acta Cryst., 2015, A71, 3
[25] G. M. Sheldrick Acta Cryst., 2015, C71, 3

[^0]:

[^1]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & & \\ \text { (ppm) }\end{array}$

[^2]:

[^3]: $\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^4]:

[^5]:

