Supporting Information for:

Electrostatic vs. Inductive Effects in Phosphine Ligand Donor Properties and Reactivity

Margaret L. Kelty, Andrew J. McNeece, Josh W. Kurutz, Alexander S. Filatov, John S. Anderson*

Department of Chemistry, The University of Chicago, Chicago, IL, USA.
*Correspondence to: jsanderson@uchicago.edu

Table of Contents

Experimental Procedures 8
General Considerations 8
X-ray structure determination 8
Synthesis of reported compounds 9
Procedure for oxidative addition of $\mathrm{C}_{6} \mathrm{~F}_{6}$ 11
Procedures for catalytic C-F borylation. 13
NMR Characterization Spectra 15
$\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ (K1) 15
Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of K1 in DMSO- $d 6$ 15
Figure S2. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of K1 in DMSO- $d 6$. 15
Figure S3. ${ }^{19}$ F $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of K1 in DMSO- $d 6$. 16
Figure $\mathrm{S} 4 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of K 1 collected in DMSO- d_{6}. 16
Figure S5. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of K1 in DMSO- $d 6$. 17
$\left[\mathrm{PPh}_{4}\right]\left[\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})\left(\mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)\right)\right]$ (2) 17
Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ collected in CDCl_{3}. 17
Figure $\mathrm{S} 7 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ collected in CDCl_{3} 18
Figure $\mathrm{S} 8 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ collected in CDCl_{3} 18
Figure $\mathrm{S} 9 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ collected in CDCl_{3}. 19
Figure $\mathrm{S} 10 .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3} 19
$\left[\mathrm{PPh}_{4}\right]\left[\mathrm{SePPh}_{2}\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)\right]\left(\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]\right)$ 20
Figure $\mathrm{S} 11 .{ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in CDCl_{3} 20
Figure $\mathrm{S} 12 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in CDCl_{3}. 20
Figure $\mathrm{S} 13 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{PPh} 4]\left[{ }^{\mathrm{Se}}\right]$ in CDCl_{3}. 21
Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{PPh} 4]\left[1^{\mathrm{Se}}\right]$ in CDCl_{3} 21
Figure $\mathrm{S} 15 .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ in CDCl_{3} 22
Figure S16. DOSY NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ in CDCl_{3} 22
$[\mathrm{TEA}]\left[\mathrm{SePPh}_{2}\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)\right]\left([\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]\right)$ 23
Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of $[T E A]\left[{ }^{\mathrm{Se}}\right]$ in CDCl_{3} 23
Figure $\mathrm{S} 18 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in CDCl_{3} 23
Figure S19. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in CDCl_{3}. 24
Figure S20. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{TEA}]\left[1^{\mathrm{Se}}\right]$ in CDCl_{3} 24
Figure S21. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[T E A]\left[{ }^{\text {Se }}\right]$ 25
$\left[\mathrm{PPh}_{4}\right]\left[\mathrm{SePPh}_{2}\left(2-\mathrm{BF}_{3} \mathrm{Ph}\right)\right]\left(\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]\right)$ 26
Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of $[\mathrm{PPh} 4]\left[3^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$ 26
Figure $\mathrm{S} 23 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. 26
Figure S24. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$. 27
Figure $\mathrm{S} 25 .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$. 27
Figure S26. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$ 28
Variable solvent ${ }^{31} \mathrm{P}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right],[$ TEA $]\left[\mathbf{1}^{\mathrm{Se}}\right]$ and $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ 29
Figure $\mathrm{S} 27 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[{ }^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$ and DMSO- d_{6} 29
Figure S28. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in CDCl_{3} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ 29
Figure S29. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ 30
Figure S30. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in solvent mixtures 30
Figure S31. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[{ }^{\mathrm{Se}}\right]$ with PPh 4 Br 31
Figure $\mathrm{S} 32 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $[\mathrm{PPh} 4]\left[1^{\mathrm{Se}}\right]$ in with (TBA) salts 31
Figure $\mathrm{S} 34 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[$ TEA $]\left[1^{\mathrm{Se}}\right]$ in various solvets 32
Figure S35. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[$ TEA $]\left[1^{\mathrm{Se}}\right]$ in various solvents. 33
Figure S36. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ in various solvents 33
Figure $\mathrm{S} 37 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathrm{SePPh}_{2} \mathrm{Et}$ in various solvents. 34
Figure $\mathrm{S} 38 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of SePPh_{3} in various solvents. 34
Figure S39. ${ }^{1} \mathrm{H}$ NMR spectra of $[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$ and $[\mathrm{PPh} 4]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. 35
Figure S40. ${ }^{1} \mathrm{H}$ NMR spectra of $[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$ and $[\mathrm{PPh} 4]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in DMSO- $d 6$. 35
Figure S41. ${ }^{1} \mathrm{H}$ NMR spectra showing methylene resonance of $[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$ and $[\mathrm{PPh} 4]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and DMSO- d_{6}. 36
Figure $\mathrm{S} 42 .{ }^{19} \mathrm{~F}$ NMR spectra showing the BF_{3} resonance of $[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$ and $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and DMSO- $d 6$. 36
NMR spectra of the reaction kinetics of $\mathrm{C}_{6} \mathrm{~F}_{6}$ oxidative addition. 37
K1 with $\mathrm{Ni}(\mathrm{COD})_{2}$ 37
Figure $\mathrm{S} 43 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of K 1 and $\mathrm{Ni}(\mathrm{COD})_{2}$ in THF 37
Figure $\mathrm{S} 44 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $\mathrm{K} 1, \mathrm{Ni}(\mathrm{COD})_{2}$, and $\mathrm{C}_{6} \mathrm{~F} 6$. 37
Figure $\mathrm{S} 45 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $\mathrm{K} 1, \mathrm{Ni}(\mathrm{COD})_{2}$, and $\mathrm{C}_{6} \mathrm{~F} 6$ 38
Figure $\mathrm{S} 46 .{ }^{19} \mathrm{~F}$ NMR spectrum of the reaction between $\mathrm{K} 1, \mathrm{Ni}(\mathrm{COD})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}$ and OPPh_{3}. 38
Figure S47. Time course monitoring of the ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction between K1, $\mathrm{Ni}(\mathrm{COD})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}$ and OPPh_{3} 39
Figure $\mathrm{S} 48 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction between $\mathrm{K} 1, \mathrm{Ni}(\mathrm{COD})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}$ and OPPh_{3} 40
Figure S49. Time course monitoring of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction between $\mathrm{K} 1, \mathrm{Ni}(\mathrm{COD})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}$ and OPPh_{3} 41
РСу3 with $\mathrm{Ni}(\mathrm{COD})_{2}$ 42
Figure $\mathrm{S} 50 .{ }^{19} \mathrm{~F}$ NMR spectrum of the reaction between $\mathrm{PCy}_{3}, \mathrm{Ni}(\mathrm{COD})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}$ and OPPh_{3} 42
Figure S51. Time course monitoring of the ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction between $\mathrm{PCy}_{3}, \mathrm{Ni}(\mathrm{COD})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}$ and OPPh_{3} 43
Figure $\mathrm{S} 52 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction between $\mathrm{PCy}_{3}, \mathrm{Ni}(\mathrm{COD})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}$ and OPPh_{3} 44
Figure S53. Time course monitoring of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction between $\mathrm{PCy}_{3}, \mathrm{Ni}(\mathrm{COD})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}$ and OPPh_{3} 45
PEt_{3} with $\mathrm{Ni}(\mathrm{COD})_{2}$ 46
Figure S54. ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction between $\mathrm{PEt}_{3}, \mathrm{Ni}(\mathrm{COD})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}$ and OPPh_{3} 46
Figure S55. Time course monitoring of the ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction between PEt_{3}, $\mathrm{Ni}(\mathrm{COD})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}$ and OPPh_{3} 47
Figure S56. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction between $\mathrm{PEt}_{3}, \mathrm{Ni}(\mathrm{COD})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}$ and OPPh_{3} 48
Figure S57. Time course monitoring of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction between $\mathrm{PEt}_{3}, \mathrm{Ni}(\mathrm{COD})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}$ and OPPh_{3} 49
Table S1. Summary of observed rates from NMR monitoring experiments 50
Figure $\mathrm{S} 58 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $\mathrm{PEt}_{3}, \mathrm{Ni}(\mathrm{COD})_{2}$, and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF 50
NMR spectra of the catalytic C-F borylation reactions 51
Figure S59. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the 1,2-difluorobenzene reaction mixture 51
Figure $\mathrm{S} 60 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the 1,3-difluorobenzene reaction mixture 52
Figure $\mathrm{S} 61 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the 1,4-difluorobenzene reaction mixture. 53
Figure $\mathrm{S} 62 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the 1,2,4-trifluorobenzene reaction mixture 54
Figure $\mathrm{S} 63 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the 1,3,5-trifluorobenzene reaction mixture 55
GC/MS characterization of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Bpin}$ 56
Figure S 64 . GC trace of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ reaction mixture. 56
Figure S 65 . Mass spectrum of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~B}$ pin peak from the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ reaction mixture 57
Infrared Spectra 58
Figure S66. IR spectrum (KBr Pellet) of K1. 58
Figure S67. IR spectrum (DCM Solution) of 2 58
Figure S 68 . IR spectrum (KBr pellet) of 2 59
Figure S 69 . IR spectrum $\left(\mathrm{CDCl}_{3}\right.$ solution) of $\left[\mathrm{PPh}_{4}\right]\left[{ }^{\mathrm{Se}}\right]$ 59
Figure S70. IR spectrum (KBr pellet) of $[\mathrm{TEA}]\left[1^{\mathrm{Se}}\right]$. 60
Figure S71. IR spectrum (KBr pellet) of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$. 60
Figure S72. IR spectra of $\mathbf{2}$ in different solvents 61
Figure S73. IR spectra of $\mathrm{Rh}(\mathrm{CO})_{2}$ acac in different solvents 61
UV-visible spectra 62
Figure S74. Reaction between $\mathrm{Ni}(\mathrm{COD})_{2}$, 1 equivalent of K 1 , and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF 62
Figure S 75 . Reaction between $\mathrm{Ni}(\mathrm{COD})_{2}$, 2 equivalents of K 1 , and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF 63
Figure S 76 . Reaction between $\mathrm{Ni}(\mathrm{COD})_{2}, 3$ equivalents of K 1 , and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF 64
Figure S 77 . Reaction between $\mathrm{Ni}(\mathrm{COD})_{2}, 4$ equivalents of K 1 , and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF 65
Figure S 78 . Reaction between $\mathrm{Ni}(\mathrm{COD})_{2}, 8$ equivalents of K 1 , and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF 66
Figure S 79 . Reaction of $\mathrm{Ni}(\mathrm{COD})_{2}$ and 2 equivalents of $\mathrm{K} \mathbf{1}$ in THF 67
Calculations 67
General considerations 67
Figure S80. Calculated structure of $\mathbf{1}^{\mathrm{Se}}$ (cisoid structure) 70
Table S2. Coordinates of optimized structure of $\mathbf{1}^{\mathrm{Se}}$ (cisoid structure) 70
Figure S81. Calculated structure of $\mathbf{1}^{\mathrm{Se}}$ (transoid structure) 71
Table S3. Coordinates of calculated structure of edited $\mathbf{1}^{\mathrm{Se}}$ (transoid structure). 71
Table S4. Calculated electric field and $J_{\mathrm{P}-\mathrm{Se}}$ for calculated structures of $\mathbf{1}^{\mathrm{Se}}$ 72
Figure S82. Optimized structure of $\mathrm{SePPh}_{2} \mathrm{Et}$ 73
Table S5. Coordinates of calculated structure of $\mathrm{SePPh}_{2} \mathrm{Et}$ 73
Figure S83. Optimized structure of $\mathbf{2}$ 74
Table S6. Coordinates of calculated structure of $\mathbf{2}$. 74
Figure S84. Optimized structure of $\mathbf{1}^{\mathrm{Se}}$ with explicit MeCN solvation. 76
Table S7. Coordinates of calculated structure of $\mathbf{1}^{\mathrm{Se}}$ with explicit MeCN solvation. 76
Figure S 85 . Optimized structure of $\mathbf{1}^{\mathrm{Se}}$ with explicit DCM solvation. 79
Table S8. Coordinates of calculated structure of $\mathbf{1}^{\mathrm{Se}}$ with explicit DCM solvation 79
Figure S 86 . Optimized structure of $\mathbf{1}^{\mathrm{Se}}$ with explicit CHCl_{3} solvation. 82
Table S9. Coordinates of calculated structure of $\mathbf{1}^{\mathrm{Se}}$ with explicit CHCl_{3} solvation 82
NBO Analysis 84
Correlation between $J_{\mathrm{P}-\mathrm{Se}}$ and TEP 85
Figure S 87 . Plot of experimental $J_{P-S e}$ reported in CDCl_{3} vs. TEP. 85
Table S10. Additional data points added to main text Figure 2 85
Table S11. Phosphines used in the $J_{\mathrm{P} \text {-Se }}$ vs. TEP fit. 86
Further analysis of solvent dependence 87
Figure S88. Plots of $J_{\mathrm{P}-\mathrm{Se}}$ as a function of solvent dielectric. 87
Table S12. $J_{\text {P-Se }}(\mathrm{Hz})$ for $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right],\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right], \mathrm{SePPh}_{2} \mathrm{Et}$ and SePPh_{3} 88
Table S13. Fit parameters for the linear fits of $J_{\mathrm{P} \text {-Se }}$ to $1 /(4 \pi \varepsilon)$ 88
Table S14. $J_{\mathrm{P}-\mathrm{Se}}(\mathrm{Hz})$ for $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ with additional salts 88
Discussion of the slopes of $J_{\mathrm{P} \text {-Se }}$ versus $1 /(4 \pi \varepsilon)$ for $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ and $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ 89
Single crystal X-ray crystallography 90
Figure S 89 . SXRD structure of K 1 with K^{+}counterion shown. 90
Figure S90. SXRD structure of $\mathbf{2}$ with $\mathrm{PPh}_{4}{ }^{+}$counterion shown 90
Figure S91. SXRD structure of $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ with $\mathrm{PPh}_{4}{ }^{+}$counterion shown 91
Figure S92. Space filling model of the SXRD structure of [$\left.\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$. 91
Figure S93. SXRD structure of $[T E A]\left[1^{\mathrm{Se}}\right]$ with TEA^{+}counterion shown 92
Figure S94. Space filling model of the SXRD structure of [TEA][1 $\left.{ }^{\mathrm{Se}}\right]$. 92
Figure S95. SXRD structure of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ with $\mathrm{PPh}_{4}{ }^{+}$counterion shown 93
Table S15. Selected average bond lengths for SXRD structures. 93
Discussion of van der Waals radii in $\mathbf{2}$ 93
Table S16. Refinement data for crystal structures of K1, 2, $[\mathrm{PPh} 4]\left[\mathbf{1}^{\mathrm{Se}}\right],[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$, and [PPh 4$]\left[3^{\mathrm{Se}}\right]$. 94
Catalytic C-F borylation trial reactions. 96
Table S17. Initial scan of additives for C-F borylation of 1,3 difluorobenzene. 96
Table S18. Variation of reaction conditions with $\mathrm{H}_{2} \mathrm{O}$ as an additive. 97
Table S19. Variation of reaction conditions with alcohols as additives 98
Table S20. Variation of reaction conditions with MeOH as an additive 99
Table S21. Variation of reaction time with MeOH and CsOH and control reactions 100
Table S22. Variation of addition order and additives 101
Table S23. Variation of cations. 102
Table S24. Variation of reaction solvent. 103

References... 104

Experimental Procedures

General Considerations

All reagents were purchased from commercial suppliers and used without further purification unless otherwise specified. $\mathrm{K}\left[\mathrm{ICH}_{2} \mathrm{BF}_{3}\right],{ }^{1} \mathrm{~K}\left[\mathrm{PPh}_{2}\left(o-\mathrm{BF}_{3} \mathrm{Ph}\right)\right],{ }^{2,3,4,} \mathrm{SePPh}_{3}$ and $\mathrm{SePPh}_{2} \mathrm{Et}^{5,6}$ were synthesized according to literature procedures. All manipulations were carried out under an atmosphere of N_{2} using standard Schlenk and glovebox techniques. Glassware was dried at 180 ${ }^{\circ} \mathrm{C}$ for a minimum of two hours and cooled under vacuum prior to use. All reactions were carried out in 20 mL scintillation vials unless otherwise specified. Catalytic reactions were carried out in 4 mL screw thread borosilicate glass vials. All volumes below 1 mL were measured using Hamilton 100 or $250 \mu \mathrm{~L}$ syringes. Solvents were dried on a solvent purification system from Pure Process Technology and stored over $4 \AA$ molecular sieves under N2. Tetrahydrofuran was stirred over NaK alloy and run through an additional activated alumina plug prior to use to ensure dryness. Solvents were tested for $\mathrm{H}_{2} \mathrm{O}$ and O_{2} using a standard solution of sodium-benzophenone ketyl radical anion. $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CDCl}_{3}$, acetone- $d_{6}, \mathrm{CD}_{3} \mathrm{CN}$, and DMSO- d_{6} were dried by passage over a column of activated alumina and stored over $4 \AA$ molecular sieves in the glovebox. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\},{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ data were acquired on a combination of two three spectrometers: a 400 MHz Bruker DRX spectrometer equipped with a BBO probe; a 500 MHz Bruker AvanceII+ spectrometer equipped with a ${ }^{1} \mathrm{H}\left\{{ }^{19} \mathrm{~F},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}\right\}$ QNP probe; and a 500 MHz Bruker Avance III HD spectrometer equipped with a Bruker BBFO "Smart" probe. All spectrometers use Topspin. Chemical shifts are reported in ppm units referenced to residual solvent resonances for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra, and external standards for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\},{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{19} \mathrm{~F}$. Assignments for ${ }^{13} \mathrm{C}$ NMR resonances were made based on previously reported (PPh_{4}) and related compounds $\left(\mathrm{Rh}(\mathrm{acac})(\mathrm{CO}) \mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{Et}, \mathrm{PPh}_{2}\left(2-\mathrm{BF}_{3}-\mathrm{Ph}\right) .{ }^{2,3,7-10}\right.$ Unless otherwise indicated, multipoint baseline corrections were applied to ${ }^{19} \mathrm{~F}$ NMR spectra in Mnova to remove broad peaks in the baseline around $150-220 \mathrm{ppm}$ resulting from Teflon within the probe. NMR samples were prepared by dissolving approximately $10-20 \mathrm{mg}$ of the sample in about 0.5 mL of the appropriate deuterated solvent. No change in signal position or coupling was observed as a function of concentration. IR spectra were recorded on a Bruker Tensor II. Solution IR were recorded in a solution cell using CaF_{2} windows, and then the solvent signal was subtracted out. Solid IR were recorded using a KBr pellet. Elemental analysis was performed by Midwest Microlabs.

X-ray structure determination

The diffraction data were measured at 100 K on a Bruker D8 VENTURE with PHOTON 100 CMOS detector system equipped with a Mo-target micro-focus X-ray tube $(\lambda=0.71073 \AA)$. Data reduction and integration were performed with the Bruker APEX3 software package (Bruker AXS, version 2015.5-2, 2015). Data were scaled and corrected for absorption effects using the multiscan procedure as implemented in SADABS (Bruker AXS, version 2014/5, 2015, part of Bruker APEX3 software package). The structure was solved by the dual method implemented in SHELXT ${ }^{11}$ and refined by a full-matrix least-squares procedure using OLEX23 ${ }^{12}$ software package (XL refinement program version 2014/713). Suitable crystals were mounted on a cryo-
loop and transferred into the cold nitrogen stream of the Bruker D8 Venture diffractometer. Most of the hydrogen atoms were generated by geometrical considerations and constrained to idealized geometries and allowed to ride on their carrier atoms with an isotropic displacement parameter related to the equivalent displacement parameter of their carrier atoms. The co-crystallized THF and phenyl rings of the phosphine were modeled for disorder in K1. For $\left[\mathrm{PPh}_{4}\right]\left[{ }^{\mathrm{Se}}\right]$, after fully solving and refining the structure, a relatively large residual peak was observed suggesting a possible co-crystallized submixture. The peak was located close to the $\mathrm{CH}_{2}-\mathrm{BF}_{3}$ bond, and the distance correlated well with a P-I bond length. Thus, this component was refined as a $\left(\mathrm{Ph}_{2}\right) \mathrm{P}-\mathrm{I}$ (refined occupancy about 4\%). While it is hard to concretely assign the identity of such a small submixture, we note that several examples of $\left(\mathrm{R}_{2}\right) \mathrm{P}-\mathrm{I}$ molecules have been previously reported with P-I bond lengths between 2.45-2.55 Å). ${ }^{14}$

Synthesis of reported compounds

Synthesis of $\mathbf{P h}_{\mathbf{2}} \mathbf{P C H}_{\mathbf{2}} \mathbf{B F}_{\mathbf{3}} \mathbf{K}$ (K1). To a stirring solution of $\mathrm{PHPh}_{2}(0.368 \mathrm{~g}, 1.97 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added a solution of KHMDS ($0.398 \mathrm{~g}, 1.99 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (5 mL), resulting in a bright red homogeneous solution. This was added dropwise over 20 minutes to a stirring slurry of $\mathrm{K}\left[\mathrm{ICH}_{2} \mathrm{BF}_{3}\right](0.541 \mathrm{~g}, 2.18 \mathrm{mmol}, 1.1 \mathrm{eq})$ in THF $(5 \mathrm{~mL})$. After addition, the resulting slurry was stirred for 1 hour, placed in the freezer at $-40^{\circ} \mathrm{C}$ to settle for 1 hour and then filtered through Celite. The filtrate was dried under vacuum, and the resulting sticky white solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, leaving behind $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ as a white powder ($\left.0.301 \mathrm{~g}, 0.98 \mathrm{mmol}, 50 \%\right)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$, DMSO- d_{6}) $\delta=7.33(\mathrm{t}, J=8 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ph}-\mathrm{H}$), 7.24-7.14 (m, 6H, mand $p-\mathrm{Ph}-\mathrm{H}), 0.8\left(\mathrm{dq}, J_{\mathrm{P}-\mathrm{H}}=14 \mathrm{~Hz}, J_{\mathrm{F}-\mathrm{H}}=4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{BF}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right.$, DMSO- d_{6}) $\delta=-15.9\left(\mathrm{q}, J_{\mathrm{P}-\mathrm{F}}=13 \mathrm{~Hz}, \mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(376 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right.$, DMSO$\left.d_{6}\right) \delta=-133.9$ (broad s, 3F, BF3). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{DMSO}-d_{6}$) $\delta=144.4$ (d, $J_{\mathrm{C}-\mathrm{P}}$ $=25 \mathrm{~Hz}, C_{\mathrm{ipso}}$), $132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=50 \mathrm{~Hz}, C_{\text {ortho }}\right), 127.6$ (s, $C_{\text {para }}$), 126.9 (s, $C_{\text {meta }}$), 17.0 (broad s, $\mathrm{CH}_{2} \mathrm{BF}_{3}$). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($160 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta=4.0$ (broad s). IR (KBr pellet): 3419 (w), 3053 (m), 2916 (w), 2885 (w), 1954 (w), 1881 (w), 1807 (w), 1584 (m), 1480 (m), 1433 (s), 1386 (m), 1168 (s), 1093 (m), 1046 (s), 931 (s), 742 (s), 697 (s). K1 was too air sensitive for reliable elemental analysis, and instead was consistent with full oxidation of the phosphine sample despite multiple attempts. Elem. Anal: Calc'd $\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{BF}_{3} \mathrm{~K}+\mathrm{O}\right)$: C 48.5 H 3.8 N 0 Found: C 48.1 H 4.0 N 0 .

Synthesis of $\left[\mathbf{P P h}_{4}\right]\left[\mathbf{R h}(\mathbf{a c a c})(\mathbf{C O})\left(\mathbf{P P h}_{\mathbf{2}}\left(\mathbf{C H}_{\mathbf{2}} \mathbf{B F}_{3}\right)\right)\right] \mathbf{(2)}$. To a stirring THF solution (3 mL) of $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(67 \mathrm{mg}, 0.26 \mathrm{mmol})$ was added a THF solution (5 mL) of K1 ($80 \mathrm{mg}, 0.26 \mathrm{mmol}$, $1 \mathrm{eq})$ and a DCM solution (4 mL) of $\mathrm{PPh}_{4} \mathrm{Br}(109 \mathrm{mg}, 0.26 \mathrm{mmol}, 1 \mathrm{eq})$, resulting in a color change from light yellow to brown. The reaction was stirred at room temperature for 1 hour, then filtered, evacuated to dryness, and washed with petroleum ether leaving $\left[\mathrm{PPh}_{4}\right]\left[\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})\left(\mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)\right)\right]$ as a brown oil, which was crystallized by vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a CHCl_{3} or DCM^{2} solution at room temperature to yield yellow crystals ($146 \mathrm{mg}, 0.17$ $\mathrm{mmol}, 67 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta=7.85\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph}\right.$ and $\left.\mathrm{PPh}_{4}\right) 7.73(\mathrm{~m}, 8 \mathrm{H}$, PPh_{4}), 7.57 (m, 8H, PPh_{4}) $7.19(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}) 5.30\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH} \mathrm{acac}\right.$), $1.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{acac}}\right), 1.62(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{BF}_{3}$), $1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{aaca}}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=40.4\left(\mathrm{dq}, J_{\mathrm{P}-\mathrm{Rh}}=\right.$ $166 \mathrm{~Hz}, J_{\mathrm{P}-\mathrm{F}}=10 \mathrm{~Hz}, 1 \mathrm{P}, P \mathrm{Ph}_{2}\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)$), $25.6\left(\mathrm{~s}, 1 \mathrm{P}, P \mathrm{Ph}_{4}\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right.$, $\left.\mathrm{CDCl}_{3}\right) \delta=-131.6($ broad s, $3 \mathrm{~F}, \mathrm{BF} 3) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=190.5\left(\mathrm{dd}, J_{\mathrm{C}}\right.$ $\left.\mathrm{Rh}=79 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=25 \mathrm{~Hz}, \mathrm{Rh}-C O\right), 186.6\left(\mathrm{~s}, C_{\text {acac }}\right), 185.6$ ($\mathrm{s}, C_{\text {acac }}$), 137.7 (d, $J_{\mathrm{C}-\mathrm{P}}=49 \mathrm{~Hz}, C_{\mathrm{ipso}}$),
135.9 (d, $\left.J_{\mathrm{C}-\mathrm{P}}=4 \mathrm{~Hz}, \mathrm{PPh}_{4} C_{\mathrm{para}}\right), 134.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10 \mathrm{~Hz}, \mathrm{PPh}_{4} C_{\text {meta }}\right), 134.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11 \mathrm{~Hz}\right.$, $C_{\text {ortho }}$), 130.9 (d, $J_{\mathrm{C}-\mathrm{P}}=13 \mathrm{~Hz}, \mathrm{PPh}_{4} C_{\text {ortho }}$), 128.5 (d, $J_{\mathrm{C}-\mathrm{P}}=3 \mathrm{~Hz}, C_{\text {para }}$), 127.0 (d, $J_{\mathrm{C}-\mathrm{P}}=10 \mathrm{~Hz}$, $\left.C_{\text {meta }}\right), 117.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=89 \mathrm{~Hz}, \mathrm{PPh}_{4} C_{\mathrm{ipso}}\right), 100.3\left(\mathrm{~s}, C \mathrm{H}_{\text {acac }}\right), 27.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5 \mathrm{~Hz}, C \mathrm{H}_{3 \mathrm{acac}}\right), 27.0(\mathrm{~s}$, $C \mathrm{H}_{3 \text { acac }}$, 19.1 (br s, $\mathrm{CH}_{2} \mathrm{BF}_{3}$). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(160 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=3.6$ (broad s). IR (DCM solution, CaF_{2} windows, cm^{-1}): 3068 (m), 2969 (s), 2859 (m), 1962 ($\mathrm{s}, \mathrm{Rh}-\mathrm{C} \equiv \mathrm{O}$), 1574 (s , acac $\mathrm{C}=\mathrm{O}$), 1514 (s), 1487 (m), 1434 (m), 1383 (m), 1167 (m), 1104 (s). Elem. Anal: Calc'd $\left(\left[\mathrm{PPh}_{4}\right]\left[\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})\left(\mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)\right)\right]\right) \mathrm{C} 61.8 \mathrm{H} 4.7 \mathrm{~N} 0$. Found: C 61.5 H 4.9 N 0.

Synthesis of $\left[\mathbf{P P h}_{4}\right]\left[\mathbf{S e P P h}_{2}\left(\mathbf{C H}_{\mathbf{2}} \mathbf{B F}_{3}\right)\right]\left(\left[\mathbf{P P h}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]\right)$. To a stirring solution of K1 $(50 \mathrm{mg}, 0.16$ mmol) in THF (5 mL) was added a 10 -fold excess of solid selenium powder ($129 \mathrm{mg}, 1.6 \mathrm{mmol}$, $10 \mathrm{eq})$, followed by $\mathrm{PPh}_{4} \mathrm{Br}(75 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.1 \mathrm{eq})$ in $\mathrm{DCM}(3 \mathrm{~mL})$. This mixture was stirred overnight, then filtered through Celite and all volatiles were removed in vacuo. Crystallization by vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a CDCl_{3} or DCM solution of $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ gave the product as clear crystals ($60 \mathrm{mg}, 0.087 \mathrm{mmol}, 55 \%$). Analytically pure samples were obtained by crystallizing $[\mathrm{PPh} 4]\left[\mathbf{1}^{\mathrm{Se}}\right]$ from a mixture of hot MeCN and THF. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=7.98-$ 7.92 (m, 4H, Ph-H), 7.88-7.82 (m, 4H, p-Ph-H PPh4), 7.77-7.70 (m, 8H, PPh4), 7.65-7.57 (m, 8H, PPh4), 7.30-7.24 (m, 6H, Ph-H) $1.89\left(\mathrm{dq}, J_{\mathrm{P}-\mathrm{H}}=10 \mathrm{~Hz}, J_{\mathrm{F}-\mathrm{H}}=4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{BF}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=33.59\left(\mathrm{q}, J_{\mathrm{P}-\mathrm{F}}=10 \mathrm{~Hz}, J_{\mathrm{P}-\mathrm{Se}}=656 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{Se}_{2} \mathrm{Ph}_{2}\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)\right), 22.08$ (s, 1P,$P \mathrm{Ph} 4) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta=-132.93$ (broad s, $3 \mathrm{~F}, \mathrm{~B} F_{3}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=135.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=88.2 \mathrm{~Hz}, C_{\mathrm{ipso}}\right), 135.9\left(\mathrm{~s}, \mathrm{PPh}_{4} C_{\text {para }}\right), 134.4$ (d, $J_{\mathrm{C}-\mathrm{P}}=12.6 \mathrm{~Hz}, \mathrm{PPh}_{4} C_{\text {meta }}$), 132.3 (d, $J_{\mathrm{C}-\mathrm{P}}=12.6 \mathrm{~Hz}, C_{\text {ortho }}$), 130.9 (d, $J_{\mathrm{C}-\mathrm{P}}=25.2 \mathrm{~Hz}, \mathrm{PPh}_{4} C_{\text {ortho }}$), 129.8 (s, $C_{\text {para }}$), 127.5 (d, $J_{\text {C-P }}=25.2 \mathrm{~Hz}, C_{\text {meta }}$), 117.5 (d, $J_{\mathrm{C}-\mathrm{P}}=113.4 \mathrm{~Hz}, \mathrm{PPh}_{4} C_{\text {ipso }}$), 26.7 (broad s, $\mathrm{CH}_{2} \mathrm{BF}_{3}$). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(160 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=3.1$ (broad s). IR (CDCl_{3} solution): 3058 (m), 1978 (w), 1907 (w), 1814 (w), 1590 (m), 1487 (m), 1438 (s), 1310 (w), 1144 (m), 1103 (s), 1023 (s). Elem. Anal: Calc'd ([PPh4][SePPh $\left.2\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)\right]$ C 64.8 H 4.7 N 0 . Found: C 65.0 H 4.7 N 0.3.
 mmol) in THF (5 mL) was added a 10 -fold excess of solid selenium powder ($129 \mathrm{mg}, 1.6 \mathrm{mmol}$, 10 eq), followed by $\operatorname{TEABr}(36 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.05 \mathrm{eq})$ in $\mathrm{DCM}(3 \mathrm{~mL})$. This mixture was stirred overnight, then filtered through Celite and all volatiles were removed in vacuo. Crystallization by vapor diffusion or layering of Et 2 O into a DCM solution of [TEA] $\left[1^{\mathrm{Se}}\right]$ at $-35^{\circ} \mathrm{C}$ gave the product as clear colorless needle shaped crystals ($49 \mathrm{mg}, 0.103 \mathrm{mmol}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right.$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.93-7.84(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.36-7.3(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 3.18\left(\mathrm{q}, J_{\mathrm{H}-\mathrm{H}}=5 \mathrm{~Hz}, 8 \mathrm{H}\right.$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) 4\right), 1.94\left(\mathrm{dq}, J_{\mathrm{P}-\mathrm{H}}=16 \mathrm{~Hz}, J_{\mathrm{F}-\mathrm{H}}=4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{BF}_{3}\right), 1.20\left(\mathrm{t}, J_{\mathrm{H}-\mathrm{H}}=4 \mathrm{~Hz}, 12 \mathrm{H}\right.$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) 4\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=32.2\left(\mathrm{q}, J_{\mathrm{P}-\mathrm{F}}=10 \mathrm{~Hz}, J_{\mathrm{P}-\mathrm{Se}}=678 \mathrm{~Hz}\right.$, ${ }^{1 P}, \mathrm{Se} P \mathrm{Ph}_{2}\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)$). ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(376 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=-131.4$ (broad s, $3 \mathrm{~F}, \mathrm{BF}_{3}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=136.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=70 \mathrm{~Hz}, C_{\text {ipso }}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11 \mathrm{~Hz}\right.$, $\left.C_{\text {ortho }}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2, C_{\text {para }}\right), 127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12 \mathrm{~Hz}, \mathrm{C}_{\text {meta }}\right), 52.5\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{N}}=2 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) 4\right)$, 23.3 (broad s, $\mathrm{CH}_{2} \mathrm{BF}_{3}$), $7.6\left(\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}\right) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(160 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=2.9$ (broad s). IR (KBr pellet): 2981 (w), 2948(w), 1486, (m), 1436 (m), 1393 (w), 1370(w), 1310 (w), 1262 (w), 1139 (s), 1099 (s), 1023 (s), 969 (s), 953 (s), 808 (m), 762 (m), 732 (m), 698 (s). Elem. Anal: Calc'd ([TEA][SePPh2 $\left.\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)\right]$ C 53.0 H 6.8 N 2.9. Found: C 52.8 H 7.0 N 3.1.

Synthesis of $\left[\mathbf{P P h}_{4}\right]\left[\mathbf{S e P P h}_{\mathbf{2}}\left(\mathbf{2 - B F}_{\mathbf{3}} \mathbf{P h}\right)\right]\left(\left[\mathbf{P P h}_{4}\right]\left[{ }^{\mathbf{S e}}\right]\right)$. To a stirring acetonitrile solution (10 mL) of $\mathrm{K}\left[\mathrm{PPh}_{2}\left(2-\mathrm{BF}_{3} \mathrm{Ph}\right)\right](50 \mathrm{mg}, 0.14 \mathrm{mmol})$ was added an excess of elemental selenium (109 mg , $1.4 \mathrm{mmol}, 10 \mathrm{eq})$ and this mixture was stirred for 6 hours at room temperature. The solution was filtered, and $\mathrm{PPh} 4 \mathrm{Br}(62 \mathrm{mg}, 0.14 \mathrm{mmol}, 1 \mathrm{eq})$ was added as a solid, the resulting slurry was stirred for 10 min , then all volatiles were removed under vacuum. The white powder was washed with 2 $\mathrm{mLCHCl} l_{3}$ to remove excess $\mathrm{PPh}_{4} \mathrm{Br}$, and then extracted into MeCN . Crystallization by diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the filtered MeCN solution afforded $\left[\mathrm{PPh}_{4}\right]\left[\mathrm{SePPh}_{2}\left(2-\mathrm{BF}_{3} \mathrm{Ph}\right)\right]$ as clear crystals (Yield: $10 \mathrm{mg}, 0.014 \mathrm{mmol}, 10 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=8.04\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{F}-\mathrm{H}}=\right.$ $\left.16 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right) 7.91(\mathrm{t}, 4 \mathrm{H}, J=8 \mathrm{~Hz}), 7.76-7.65(\mathrm{~m}, 20 \mathrm{H}), 7.4-7.2(\mathrm{~m}, 9 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left.\left(162 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=40.3\left(\mathrm{~s}, J_{\mathrm{P}-\mathrm{Se}}=700 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{Se}_{\mathrm{Peh}}^{2}\left(2-\mathrm{BF}_{3} \mathrm{Ph}\right)\right]\right), 22.9(\mathrm{~s}, 1 \mathrm{P}, P \mathrm{Ph} 4)$. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=-132.6(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{~B} F 3) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, 25$ $\left.{ }^{\circ} \mathrm{C}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=136.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=97 \mathrm{~Hz}, C_{\text {ipso }}\right), 136.4$ (s, $\mathrm{PPh}_{4} C_{\text {para }}$), $135.9(\mathrm{~s}), 135.8$ (d, $J_{\mathrm{C}-\mathrm{P}}=16$ $\left.\mathrm{Hz}, C^{3}-\mathrm{Ar}\right), 135.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13 \mathrm{~Hz}, \mathrm{PPh}_{4} C_{\text {meta }}\right), 133.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13 \mathrm{~Hz}, C_{\text {ortho }}\right), 132.0(\mathrm{~s}), 131.3(\mathrm{~d}$, $J_{\mathrm{C}-\mathrm{P}}=13 \mathrm{~Hz}, \mathrm{PPh}_{4} C_{\text {ortho }}$), 130.9 ($\mathrm{s}, C_{\text {para }}$), 128.3 (d, $J_{\mathrm{C}-\mathrm{P}}=13 \mathrm{~Hz}, C_{\text {meta }}$), 126.4 (d, $J_{\mathrm{C}-\mathrm{P}}=25 \mathrm{~Hz}$, $\left.C^{6}-\mathrm{Ar}\right), 119.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=113 \mathrm{~Hz}, \mathrm{PPh}_{4} C_{\mathrm{ipso}}\right) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(160 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=2.4$ (broad q, $J_{\mathrm{B}-\mathrm{F}}=51 \mathrm{~Hz}$). IR (KBr pellet): 3048 (m) 1586 (m) 1482 (m) 1434 (s) 1315 (w) 1260 (w) 1181 (m) 1162 (m) 1109 (s) 1052 (w) 978 (m) 955 (m) 935 (s) 759 (m) 725 (s) 691 (s) $610(\mathrm{~m})$. Elem. Anal: Calc'd ([PPh4][SePPh $\left.\left.2\left(2-\mathrm{BF}_{3} \mathrm{Ph}\right)\right]\right)$ C 67.5 H 4.6 N 0. Found: C 67.7 H 4.9 N 0.

Procedure for oxidative addition of $\mathrm{C}_{6} \mathrm{~F}_{6}$

UV-vis

To a stirring THF solution $(1 \mathrm{~mL})$ of $\mathrm{Ni}(\mathrm{COD})_{2}(14 \mathrm{mg}, 0.051 \mathrm{mmol})$ was added a THF solution $(1 \mathrm{~mL})$ of $\mathrm{K} 1(30 \mathrm{mg}, 0.099 \mathrm{mmol}, 1.9 \mathrm{eq})$ and an excess of $\mathrm{C}_{6} \mathrm{~F}_{6}(200 \mathrm{mg}, 1.07 \mathrm{mmol}, 21 \mathrm{eq})$, resulting in a deep red solution. After stirring for one hour, the solution had become brown-yellow, and NMR indicated oxidative addition of the C-F bond via the appearance of characteristic ${ }^{19} \mathrm{~F}$ NMR peaks at $-383(\mathrm{Ni}-\mathrm{F})$ and -117 (o-C-F) ppm and the disappearance of ${ }^{31} \mathrm{P}$ peaks associated with K1 (Figures S29-31). Further characterization of the oxidative addition product could not be obtained due to the instability of the resulting species. Samples for UV-vis were prepared by dissolving $\mathrm{Ni}(\mathrm{COD})_{2}(10 \mathrm{mg}, 0.035 \mathrm{mmol})$, $\mathrm{K} 1\left(22 \mathrm{mg}, 0.072 \mathrm{mmol}, 2\right.$ equiv.), and $\mathrm{C}_{6} \mathrm{~F}_{6}(89 \mu \mathrm{~L}$, 0.76 mmol , 21 equiv.) in 2.9 mL THF , resulting in a 12 mM solution. Diluting $75 \mu \mathrm{~L}$ of this solution in 2.5 mL resulted in a 0.36 mM solution which was used to monitor the decay of the Ni complex by UV-vis. The decay of the absorbance at 464 nm was monitored to determine the rate of decay of the in situ formed Ni complex (Figure S46). Monitoring the decay under identical conditions in the absence of $\mathrm{C}_{6} \mathrm{D}_{6}$ indicates minimal decay (Figure 47).

NMR Kinetics

K1

A THF stock solution was prepared by adding $66 \mu \mathrm{~L}$ of $\mathrm{CF}_{3} \mathrm{Ph}(0.54 \mathrm{mmol})$ and $125 \mu \mathrm{~L}$ of $\mathrm{C}_{6} \mathrm{~F}_{6}$ (1.08 mmol) to 9 mL of THF. In a 20 mL scintillation vial $\mathrm{Ni}(\mathrm{COD})_{2}(10 \mathrm{mg}, 0.036 \mathrm{mmol}), \mathrm{K} 1$ ($22 \mathrm{mg}, 0.072 \mathrm{mmol}, 2$ equiv.) and $\mathrm{PPh}_{3} \mathrm{O}$ ($10 \mathrm{mg}, 0.036,1$ equiv.) were dissolved in 3 mL of the
stock solution (delivering 0.18 mmol of $\mathrm{CF}_{3} \mathrm{Ph}$, 5 equiv., and $0.36 \mathrm{mmol}_{\mathrm{C}}^{6} \mathrm{~F}_{6}, 10$ equiv.). Approximately $500 \mu \mathrm{~L}$ of this solution was pipetted into an NMR tube, which was then covered with a small piece of tubing connected to a plastic adapter, removed from the glovebox, frozen in LN_{2}, placed under vacuum on the schlenk line and sealed under vacuum. The sample was kept frozen until the time of the first scan. NMR spectra of the reaction were collected every 2 hours for 16 hours, then again at 20 hours.
PCy_{3}
A THF stock solution was prepared by adding $66 \mu \mathrm{~L}$ of $\mathrm{CF}_{3} \mathrm{Ph}(0.54 \mathrm{mmol})$ and $125 \mu \mathrm{~L}$ of $\mathrm{C}_{6} \mathrm{~F}_{6}$ $(1.08 \mathrm{mmol})$ to 9 mL of THF. In a 20 mL scintillation vial $\mathrm{Ni}(\mathrm{COD})_{2}(10 \mathrm{mg}, 0.036 \mathrm{mmol}), \mathrm{PCy} 3$ ($20 \mathrm{mg}, 0.072 \mathrm{mmol}, 2$ equiv.) and $\mathrm{PPh}_{3} \mathrm{O}(10 \mathrm{mg}, 0.036,1$ equiv.) were dissolved in 3 mL of the stock solution (delivering 0.18 mmol of $\mathrm{CF}_{3} \mathrm{Ph}$ (5 equiv.) and $0.36 \mathrm{mmol} \mathrm{C}_{6} \mathrm{~F}_{6}$ (10 equiv.)). Approximately $500 \mu \mathrm{~L}$ of this solution was pipetted into an NMR tube, which was then covered with a small piece of tubing connected to a plastic adapter, removed from the glovebox, frozen in LN_{2}, placed under vacuum on the schlenk line and sealed under vacuum. The sample was kept frozen until the time of the first scan. NMR spectra were collected every 3 hours for 18 hours, then every 5 hours for 35 more hours, for 53 hours of monitoring total.
PEt_{3}
A THF stock solution was prepared by adding $32 \mu \mathrm{~L}$ of $\mathrm{PEt}_{3}(0.216 \mathrm{mmol}), 66 \mu \mathrm{~L}$ of $\mathrm{CF}_{3} \mathrm{Ph}(0.54$ $\mathrm{mmol})$ and $125 \mu \mathrm{~L}$ of $\mathrm{C}_{6} \mathrm{~F}_{6}(1.08 \mathrm{mmol})$ to 9 mL of THF. In a 20 mL scintillation vial $\mathrm{Ni}(\mathrm{COD})_{2}$ ($10 \mathrm{mg}, 0.036 \mathrm{mmol}$) and $\mathrm{PPh}_{3} \mathrm{O}(10 \mathrm{mg}, 0.036,1$ equiv.) were dissolved in 3 mL of the stock solution (delivering 0.072 mmol of PEt_{3} (2 equiv.), 0.18 mmol of $\mathrm{CF}_{3} \mathrm{Ph}$ (5 equiv.), and 0.36 mmol $\mathrm{C}_{6} \mathrm{~F}_{6}$ (10 equiv.)). Approximately $500 \mu \mathrm{~L}$ of this solution was pipetted into an NMR tube, which was then covered with a small piece of tubing connected to a plastic adapter, removed from the glovebox, frozen in LN_{2}, placed under vacuum on the schlenk line and sealed under vacuum. The sample was kept frozen until the time of the first scan. Spectra of the reaction were collected every 3 hours for 18 hours, then every 5 hours for 36 more hours, then every 12 hours for 60 more hours, for a total of 114 hours. Previous reports suggest the reaction reaches completion after 4 weeks, and the partial conversion observed here is consistent with that time frame. ${ }^{15}$

NMR methods

T_{1} measurements of the reaction mixtures were used to decide collection parameters for monitoring the course of the reaction. Fluorine NMR was collected without decoupling with the following parameters: $\mathrm{NS}=16, \mathrm{O} 1 \mathrm{P}=-113 \mathrm{ppm}, \mathrm{SW}=140 \mathrm{ppm}, \mathrm{D} 1=25 \mathrm{~s}$ and $\mathrm{AQ}=2 \mathrm{~s} .{ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ was collected using the following parameters: $\mathrm{NS}=31, \mathrm{O} 1 \mathrm{P}=35 \mathrm{ppm}, \mathrm{SW}=429 \mathrm{ppm}, \mathrm{D} 1=35 \mathrm{~s}$, and $\mathrm{AQ}=2$ s. The spectra were collected using an automated Bruker Avance III HD nanobay 400 MHz . The rate of formation was determined using Mnova by generating a concentration graph, and fitting the concentration data to a three parameter exponential fit to the equation $y=B+F^{*} \exp (-$ $x^{*} \mathrm{G}$), with G the observed rate.

Procedures for catalytic C-F borylation

Trial reactions - A 4 mL screw thread cap vial was charged with solid $\mathrm{Ni}(\mathrm{COD})_{2}$ ($10 \mathrm{mg}, 0.036$ mmol), K1 ($22 \mathrm{mg}, 0.072 \mathrm{mmol}, 2$ equiv.) and B2pin2 (amount specified in reaction tables). The solid mixture was then dissolved in 1 mL THF to give dark red solutions. Next, 1,3difluorobenzene ($40 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 11$ equiv.), $\mathrm{CF}_{3} \mathrm{Ph}(20 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 4.5$ equiv.) and any additives were added to the reactions. Solutions were heated at $50^{\circ} \mathrm{C}$ for the specified amounts of time. To work up the reactions, the 1 mL reaction was diluted to 5 mL in a scintillation vial. From that solution, $50 \mu \mathrm{~L}$ were diluted to $400 \mu \mathrm{~L}$ within an NMR tube, giving a 4 mM solution of $\mathrm{CF}_{3} \mathrm{Ph}$ and what would be a 10 mM solution of product if there were 100% conversion of the fluoroarene. All yields are reported relative to added 1,3-difluorobenzene, consistent with the yields reported in the main text. See Tables S17-S24 for the yields from trial runs. Some of the yields are a slight underestimate because an excess of 1,3-difluorobenzene was added relative to B2pin2 (11 equiv. arene vs 10 equiv. B_{2} pinz relative to $\left.\mathrm{Ni}(\mathrm{COD})_{2}\right)$. Yield was determined by comparing the integration of the $\mathrm{CF}_{3} \mathrm{Ph}$ peak to the product peak using the following equation- ${ }^{16}$

$$
\text { Moles of product }=\frac{\text { Integration of product }}{\# \text { of fluorines in product }} \times \frac{\# \text { of fluorines in CF3Ph }}{\text { Integration of CF3Ph }} \times \text { moles of CF3Ph }
$$

Yield $=$ moles of product/theoretical yield * 100
Theoretical yield for borylated products is 0.4 mmol , theoretical yield for coupled products is 0.2 mmol.

Catalytic reactions - Stock solutions were prepared for three reactions at a time by dissolving $\mathrm{Ni}(\mathrm{COD})_{2}\left(30 \mathrm{mg}, 0.108 \mathrm{mmol}, 3\right.$ equiv.), $\mathrm{K} 1\left(66 \mathrm{mg}, 0.216 \mathrm{mmol}, 6\right.$ equiv.), and $\mathrm{B}_{2} \mathrm{pin}_{2}(552 \mathrm{mg}$, 2.16 mmol , 60 equiv.) in 3 mL THF. Next the substrate ($1.2 \mathrm{mmol}, 33$ equiv.), $\mathrm{CF}_{3} \mathrm{Ph}(60 \mu \mathrm{~L}, 0.48$ mmol, 13.5 equiv.), and $\mathrm{MeOH}(90 \mu \mathrm{~L}, 2.16 \mathrm{mmol}$, 60 equiv.) was added. The solution was divided into three vials which each already contained CsOH ($54 \mathrm{mg}, 0.36 \mathrm{mmol}, 1$ equiv.). The reactions were then heated at $50^{\circ} \mathrm{C}$ for 4 hours. See Figure 5 in main text for the yields from these reactions. To characterize the yield of the $\mathrm{C}_{6} \mathrm{FH}_{5}$ reaction, the 1 mL reaction was diluted to 5 mL in a scintillation vial. From this solution, $45 \mu \mathrm{~L}$ was subsequently diluted to 3 mL , giving what would be a 1.2 mM solution if there were 100% conversion. This solution was filtered through a short silica plug in a pipette. The integration of the $\mathrm{C}_{6} \mathrm{H}_{5}$-Bpin was compared to an integral calibration curve prepared with stock solutions of $\mathrm{C}_{6} \mathrm{H}_{5}$-Bpin. The methods for workup and yield determination by NMR for the remaining catalytic reactions are identical to those for the trial reactions. Literature sources were used to assign the NMR shifts and MS of substrates and products:

Compound
1,2-difluorobenzene
1-Bpin-2-C6FH4
1,3-difluorobenzene

Reference

17

1-Bpin-3-C6FH4
1,2,4-trifluorobenzene
1,3,5-trifluorobenzene
1-Bpin-3,5-C6 $\mathrm{F}_{2} \mathrm{H}_{4}$
1,3-Bpin-5-C6 CH_{3}
MS of $\mathrm{C}_{6} \mathrm{~F}_{5}$-Bpin
$2,2^{\prime}-\mathrm{F}_{2}-1,1^{\prime}-\mathrm{Ph}_{2} \quad 18$
1,4-difluorobenzene 19
1-Bpin-4-C6FH4 20
$2,2^{\prime}, 5,5^{\prime}-\mathrm{F}_{4}-1,1^{\prime}-\mathrm{Ph}_{2} \quad 21$

NMR Characterization Spectra

$\mathbf{P h}_{2} \mathbf{P C H}_{2} \mathrm{BF}_{3} \mathrm{~K}$ (K1)

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of K 1 in DMSO- d_{6} with inset showing CH_{2} peak.

Figure S2. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of K1 in DMSO- d_{6}.

Figure S3. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of K 1 in DMSO- $d 6$. Broad feature around -190 ppm is a result of Teflon within the probe.

Figure S4. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of K1 collected in DMSO- $d 6$.

Figure S5. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of K1 in DMSO- d_{6} collected in a quartz NMR tube. $\left[\mathrm{PPh}_{4}\right]\left[\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})\left(\mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)\right)\right]$ (2)

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ collected in CDCl_{3}.

Figure S7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ collected in CDCl_{3}.

Figure S8. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ collected in CDCl_{3}.

Figure S9. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ collected in CDCl_{3}. Inset depicts doublet of doublets corresponding to the $\mathrm{Rh}-\mathrm{CO}$ carbon. Asterisks indicate THF impurity.

Figure S10. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3} collected in a quartz NMR tube, the broad peak centered at 0 in the baseline is a result of borosilicate in the NMR probe.

$\left[\mathbf{P P h}_{4}\right]\left[\mathbf{S e P P h}_{2}\left(\mathbf{C H}_{2} \mathbf{B F}_{3}\right)\right]\left(\left[\mathbf{P P h}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]\right)$

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[{ }^{\mathrm{Se}}\right]$ in CDCl_{3}, with inset showing splitting on the CH_{2} group.

Figure S12. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in CDCl_{3}.

Figure S13. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in CDCl_{3}.

| 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in CDCl_{3}.

Figure S15. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ in CDCl_{3} collected in a quartz NMR tube.

Figure S16. DOSY NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in CDCl_{3}. The diffusion value is $6.64 \mathrm{~cm}^{2} / \mathrm{sec}$. Smearing is observed at 7.26 ppm due to the solvent peak.

$[$ TEA $]\left[\mathrm{SePPh}_{2}\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)\right]\left([\mathrm{TEA}]\left[1^{\mathrm{Se}}\right]\right)$

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of $[\mathrm{TEA}]\left[{ }^{\mathrm{Se}}\right]$ in CDCl_{3}, with inset showing splitting on the CH_{2} group.

Figure S18. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in CDCl_{3}.

Figure S19. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in CDCl_{3}.

Figure S20. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in CDCl_{3}

Figure S21. ${ }^{11} \mathrm{~B}\left\{{ }^{[1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{TEA}]\left[1^{\mathrm{Se}}\right]$ collected in CDCl_{3}; the broad peak centered around 0 ppm is a result of borosilicate in the NMR tube and the NMR probe.

$\left[\mathbf{P P h}_{4}\right]\left[\mathrm{SePPh}_{2}\left(\mathbf{2}-\mathrm{BF}_{3} \mathbf{P h}\right)\right]\left(\left[\mathrm{PPh}_{4}\right]\left[\mathbf{3}^{\mathrm{Se}}\right]\right)$

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{3}^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$; observed solvent impurities include DCM, THF and $\mathrm{Et}_{2} \mathrm{O}$.

Figure S23. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

\qquad
$\frac{17-128-129-130-131-132-133-134-135-136-137-13}{p p m}$

Figure S24. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{3}^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S25. ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S26. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$ collected in a quartz NMR tube; the broad peak in the baseline around 0 is a result of borosilicate in the NMR probe.

Variable solvent ${ }^{31} \mathrm{P}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[1{ }^{\mathrm{Se}}\right]$, $[\mathrm{TEA}]\left[1^{\mathrm{Se}}\right]$ and [$\left.\mathrm{PPh}_{4}\right]\left[{ }^{3}{ }^{\mathrm{Se}}\right]$

Figure S27. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[{ }^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$ (left) and DMSO- d_{6} (right) showing the $\mathrm{P}-\mathrm{Se}$ phosphorus resonance.

Figure S28. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ in CDCl_{3} (left) and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (right) showing the $\mathrm{P}-$ Se phosphorus resonance.

Acetone

Figure S29. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ showing the P -Se phosphorus resonance.

Figure S30. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in the indicated solvent mixtures showing the $\mathrm{P}-$ Se phosphorus resonance.

Figure S31. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[{ }^{1}{ }^{\mathrm{Se}}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with addition of different equivalents of $\mathrm{PPh}_{4} \mathrm{Br}$. While the changing electrolyte concentration could influence the solvent dielectric, and hence the coupling constant, literature examples with tetra-alkyl ammonium salts suggest that very little change is expected for changing electrolyte concentration over this concentration range (~ 1 M). ${ }^{22}$

Figure S32. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ in CDCl_{3} with addition of tetrabutylammonium (TBA) salts.

Figure S33. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[{ }^{\mathrm{Se}}\right]$ in CDCl_{3} with addition of tetraethylammonium (TEA) and bis(triphenylphosphine)iminium (PPN) salts.

Figure S34. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{TEA}]\left[1^{\mathrm{Se}}\right]$ in the indicated solvents showing the $\mathrm{P}-\mathrm{Se}$ phosphorus resonance.

Figure S35. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in the indicated solvents.

Figure S36. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ in different solvents.

Figure S37. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathrm{SePPh}_{2} \mathrm{Et}$ in the indicated solvents.

Figure S38. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of SePPh_{3} in the indicated solvents.

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectra of $[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$ and $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectra of $[$ TEA $]\left[1^{\mathrm{Se} e}\right]$ and $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ in DMSO- d_{6}.

Figure S41. ${ }^{1} \mathrm{H}$ NMR spectra showing methylene resonance of $[\mathrm{TEA}]\left[1^{\mathrm{Se}}\right]$ and $\left[\mathrm{PPh}_{4}\right]\left[\mathrm{1}^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and DMSO-d6. The * indicates a small THF impurity.

$\mathrm{CD}_{2} \mathrm{Cl}_{2}$

DMSO

Figure $\mathbf{S 4 2} .{ }^{19} \mathrm{~F}$ NMR spectra showing the BF_{3} resonance of $[\mathrm{TEA}]\left[\mathbf{1}^{\mathrm{Se}}\right]$ and $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and DMSO- $d 6$.

NMR spectra of the reaction kinetics of $\mathbf{C}_{6} \mathbf{F}_{6}$ oxidative addition

$\mathbf{K} 1$ with $\mathrm{Ni}(\mathrm{COD})_{2}$

Figure S43. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of K 1 and $\mathrm{Ni}(\mathrm{COD})_{2}$ in THF.

Figure S44. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $\mathrm{K} 1, \mathrm{Ni}(\mathrm{COD})_{2}$, and $\mathrm{C}_{6} \mathrm{~F}_{6}$ after 1 hr at RT. This upfield region shows the characteristic Ni-F peak.

Figure S45. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $\mathrm{K} 1, \mathrm{Ni}(\mathrm{COD})_{2}$, and $\mathrm{C}_{6} \mathrm{~F}_{6}$ after 1 hr at RT. The broad peak centered around -180 ppm is Teflon within the NMR probe. The peak at -164.6 ppm that is cut off is excess $\mathrm{C}_{6} \mathrm{~F}_{6}$.

Figure S46. ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction between $\mathrm{K} 1(24 \mathrm{mM}), \mathrm{Ni}(\mathrm{COD})_{2}(12 \mathrm{mM})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(120 \mathrm{mM})$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}(60 \mathrm{mM})$ and $\mathrm{PPh}_{3} \mathrm{O}(12 \mathrm{mM})$ as internal integral standards after 20 h at RT. Oxidative addition product peaks assigned: -117.5 ($2 \mathrm{~F}, \mathrm{~F}_{\text {ortho }}$), $-132.3\left(6 \mathrm{~F}, \mathrm{BF}_{3}\right)$, $-166.4\left(1 \mathrm{~F}, \mathrm{~F}_{\text {para }}\right)-167.1\left(2 \mathrm{~F}, \mathrm{~F}_{\text {meta }}\right)$ based on comparison to reference 15 . Peaks at -140.3 and 156.5 ppm are not always observed and are assigned as unknown impurities. The peak at -164.6 ppm is unreacted $\mathrm{C}_{6} \mathrm{~F}_{6}$.

Figure S47. Time course monitoring of the ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction between K1 (24 $\mathrm{mM}), \mathrm{Ni}(\mathrm{COD})_{2}(12 \mathrm{mM})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(120 \mathrm{mM})$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}(60 \mathrm{mM})$ and $\mathrm{OPPh}_{3}(12 \mathrm{mM})$ as internal integral standards over the course of 20 h at RT. The observed rate of formation and $\%$ completion for the oxidative addition product for the following peaks are: $-166.4 \mathrm{ppm}\left(1.4 \mathrm{E}-4 \mathrm{~s}^{-1}\right.$, $3.5 \mathrm{mM}, 30 \%$), $-167.1 \mathrm{ppm}\left(1.7 \mathrm{E}-4 \mathrm{~s}^{-1}, 3.0 \mathrm{mM}, 25 \%\right),-117.5 \mathrm{ppm}\left(1.9 \mathrm{E}-4 \mathrm{~s}^{-1}, 2.6 \mathrm{mM}, 22 \%\right)$. The average observed rate of formation and $\%$ yield are $1.7(3) \mathrm{E}-4 \mathrm{~s}^{-1}$ and $25(4) \%$.

Figure S48. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction between $\mathrm{K} 1(24 \mathrm{mM}), \mathrm{Ni}(\mathrm{COD})_{2}(12 \mathrm{mM})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(120 \mathrm{mM})$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}(60 \mathrm{mM})$ and $\mathrm{OPPh}_{3}(12 \mathrm{mM})$ as internal integral standards after 16 h at RT. The phosphorus resonance for the oxidative addition product is assigned as the doublet at 9.6 ppm on the basis of coupling to ${ }^{19} \mathrm{~F}$ on the Ni-F.

Figure S49. Time course monitoring of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction between K1 $(24 \mathrm{mM}), \mathrm{Ni}(\mathrm{COD})_{2}(12 \mathrm{mM})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(120 \mathrm{mM})$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}(60 \mathrm{mM})$ and $\mathrm{OPPh}_{3}(12$ mM) as internal integral standards over the course of 16 h at RT. The observed rate of formation and $\%$ completion for the oxidative addition peak at 9.6 ppm is $1.4 \mathrm{E}-4 \mathrm{~s}^{-1}$ and $3.0 \mathrm{mM}(25 \%)$

PCy_{3} with $\mathrm{Ni}(\mathrm{COD})_{2}$

Figure S50. ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction between $\mathrm{PCy}_{3}(24 \mathrm{mM}), \mathrm{Ni}(\mathrm{COD})_{2}(12 \mathrm{mM})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(120 \mathrm{mM})$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}(60 \mathrm{mM})$ and $\mathrm{OPPh}_{3}(12 \mathrm{mM})$ as internal integral standards after 53 h at RT. Oxidative addition product peaks assigned: -110.6 ($2 \mathrm{~F}, \mathrm{Fortho}$), -166.8 ($2 \mathrm{~F}, \mathrm{~F}_{\text {meta }}$) based on comparison to reference 15 . The $\mathrm{F}_{\text {para }}$ peak is hidden under the $\mathrm{C}_{6} \mathrm{~F}_{6}$ peak, but can be observed in the ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. The peak at -164.6 ppm is the unreacted $\mathrm{C}_{6} \mathrm{~F} 6$.

Figure S51. Time course monitoring of the ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction between PCy_{3} (24 $\mathrm{mM}), \mathrm{Ni}(\mathrm{COD})_{2}(12 \mathrm{mM})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(120 \mathrm{mM})$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}(60 \mathrm{mM})$ and $\mathrm{OPPh}_{3}(12 \mathrm{mM})$ as internal integral standards over the course of 52 h at RT. The observed rate of formation and $\%$ completion for the oxidative addition product for the following peaks are: $-110.6 \mathrm{ppm}\left(2.0 \mathrm{E}-5 \mathrm{~s}^{-1}\right.$, $6.7 \mathrm{mM}, 56 \%),-166.8 \mathrm{ppm}\left(2.1 \mathrm{E}-5 \mathrm{~s}^{-1}, 7.0 \mathrm{mM}, 58 \%\right)$. The average observed rate of formation and $\%$ yield are $2.10(7) \mathrm{E}-5 \mathrm{~s}^{-1}$ and $57(2) \%$.

Figure S52. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction between $\mathrm{PCy} 3(24 \mathrm{mM}), \mathrm{Ni}(\mathrm{COD})_{2}(12 \mathrm{mM})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(120 \mathrm{mM})$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}(60 \mathrm{mM})$ and $\mathrm{OPPh}_{3}(12 \mathrm{mM})$ as internal integral standards after 53 h at RT. The phosphorus resonance for the oxidative addition product is assigned as the doublet at 18.5 ppm on the basis of coupling to ${ }^{19} \mathrm{~F}$ in the Ni-F. The starting phosphine is assigned as the peak at 10.6 ppm .

Figure S53. Time course monitoring of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction between PCy_{3} $(24 \mathrm{mM}), \mathrm{Ni}(\mathrm{COD})_{2}(12 \mathrm{mM})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(120 \mathrm{mM})$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}(60 \mathrm{mM})$ and $\mathrm{OPPh}_{3}(12$ $\mathrm{mM})$ as internal integral standards over the course of 53 h at RT. The observed rate of formation and $\%$ completion for the oxidative addition peak at 18.5 ppm is $2.0 \mathrm{E}-5 \mathrm{~s}^{-1}$ and $10.0 \mathrm{mM}(83 \%)$

PEt_{3} with $\mathbf{N i (C O D)} \mathbf{2}_{2}$

Figure S54. ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction between $\mathrm{PEt}_{3}(24 \mathrm{mM}), \mathrm{Ni}(\mathrm{COD})_{2}(12 \mathrm{mM})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(120 \mathrm{mM})$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}(60 \mathrm{mM})$ and $\mathrm{OPPh}_{3}(12 \mathrm{mM})$ as internal integral standards after 114 h at RT. Oxidative addition product peaks assigned: $-116.6(2 \mathrm{~F}, \mathrm{Forth}),-163.9\left(1 \mathrm{~F}, \mathrm{~F}_{\text {para }}\right)$, and $-166.0\left(2 \mathrm{~F}, \mathrm{~F}_{\text {meta }}\right)$ based on comparison to reference 15 . Peaks at -140.3 and -156.5 , and -169.3 ppm are not always observed and are assigned as unknown impurities. The peak at -164.6 ppm is unreacted $\mathrm{C}_{6} \mathrm{~F}_{6}$.

Figure S55. Time course monitoring of the ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction between $\mathrm{PEt}_{3}(24$ $\mathrm{mM}), \mathrm{Ni}(\mathrm{COD})_{2}(12 \mathrm{mM})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(120 \mathrm{mM})$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}(60 \mathrm{mM})$ and $\mathrm{OPPh}_{3}(12 \mathrm{mM})$ as internal integral standards over the course of 114 h at RT. The observed rate of formation and $\%$ completion for the oxidative addition product for the following peaks are: $-116.6 \mathrm{ppm}(3.5 \mathrm{E}-6$ $\left.\mathrm{s}^{-1}, 2.7 \mathrm{mM}, 23 \%\right),-163.9 \mathrm{ppm}\left(4.3 \mathrm{E}-6 \mathrm{~s}^{-1}, 2.7 \mathrm{mM}, 23 \%\right)$, and $166.0\left(4.0 \mathrm{E}-6 \mathrm{~s}^{-1}, 2.7 \mathrm{mM}, 23 \%\right)$. The average observed rate of formation and $\%$ yield are $4.0(4) \mathrm{E}-6 \mathrm{~s}^{-1}$ and 23%.

Figure S56. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction between $\left.\mathrm{PEt}_{3}(24 \mathrm{mM}), \mathrm{Ni}(\mathrm{COD})\right)_{2}(12 \mathrm{mM})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(120 \mathrm{mM})$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}(60 \mathrm{mM})$ and $\mathrm{OPPh}_{3}(12 \mathrm{mM})$ as internal integral standards after 114 h at RT. The phosphorus resonance for the oxidative addition product is assigned as the doublet at 13.8 ppm on the basis of coupling to ${ }^{19} \mathrm{~F}$ in the Ni-F. The starting phosphine is assigned as the resonance at 18.1 ppm .

Figure S57. Time course monitoring of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction between PEt_{3} $(24 \mathrm{mM}), \mathrm{Ni}(\mathrm{COD})_{2}(12 \mathrm{mM})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(120 \mathrm{mM})$ in THF with $\mathrm{CF}_{3} \mathrm{Ph}(60 \mathrm{mM})$ and $\mathrm{OPPh}_{3}(12$ mM) as internal integral standards over the course of 114 h at RT. The observed rate of formation and $\%$ completion for the oxidative addition peak at 13.8 ppm is $2.8 \mathrm{E}-6 \mathrm{~s}^{-1}$ and 3.2 mM (27\%)

Table S1. Summary of observed rates from NMR monitoring experiments

Phosphine	Average kobs	Average yield	kobs from ${ }^{19} \mathrm{~F}$ NMR	yields from ${ }^{19} \mathrm{~F}$ NMR	kobs from 31 P1 NMR	yield from ${ }^{31} \mathrm{P}$ NMR
K1	$1.6(2) \mathrm{E}-4 \mathrm{~s}^{-1}$	$25(3) \%$ at 20 h	$1.4 \mathrm{E}-4 \mathrm{~s}^{-1}$ $1.7 \mathrm{E}-4 \mathrm{~s}^{-1}$ $1.9 \mathrm{E}-4 \mathrm{~s}^{-1}$	30% 25% 22%	$1.4 \mathrm{E}-4 \mathrm{~s}^{-1}$	25%
PCy3	$2.0(1) \mathrm{E}-5 \mathrm{~s}^{-1}$	$66(15) \%$ at 53 h	$2.0 \mathrm{E}-5 \mathrm{~s}^{-1}$ $2.1 \mathrm{E}-5 \mathrm{~s}^{-1}$	56% 58%	$2.0 \mathrm{E}-5 \mathrm{~s}^{-1}$	83%
PEt $_{3}$	$3.7(7) \mathrm{E}-6 \mathrm{~s}^{-1}$	$24(2) \%$ at 114 h	$3.5 \mathrm{E}-6 \mathrm{~s}^{-1}$ $4.3 \mathrm{E}-6 \mathrm{~s}^{-1}$ 23%	23%	$2.8 \mathrm{E}-6 \mathrm{~s}^{-1}$	27%

Figure S58. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of PEt_{3}, $\mathrm{Ni}(\mathrm{COD})_{2}$, and $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF after 1 hour (bottom, black) and 1 week (top, red) at RT. The features around 17 ppm are unreacted $\mathrm{Ni}(\mathrm{COD})_{2} \mathrm{PEt}_{3}$ adducts and the doublet at 13 ppm is the oxidative addition product with ${ }^{1} J_{\text {P-F }}$ coupling.

NMR spectra of the catalytic C-F borylation reactions

Figure S59. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture from one of the catalytic borylation reactions of 1,2-difluorobenzene following standard catalytic conditions detailed in methods section. The peaks at $-102.8,-115.8$, and -140.3 ppm are assigned as $1-\mathrm{Bpin}-2-\mathrm{C}_{6} \mathrm{FH}_{4}, 2,2^{\prime}-\mathrm{F}_{2}-$ $1,1^{\prime}-\mathrm{Ph}_{2}$, and 1,2-difluorobenzene, respectively.

Figure S60. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture from one of the catalytic borylation reactions of 1,3-difluorobenzene following standard catalytic conditions detailed in methods section. The peaks at -111.3 and -115.7 ppm are assigned as 1,3 -difluorobenzene and 1-Bpin-3$\mathrm{C}_{6} \mathrm{FH}_{4}$, respectively.

Figure S61. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture from one of the catalytic borylation reactions of 1,4-difluorobenzene following standard catalytic conditions detailed in methods section. The peaks at -110.1 and -120.9 ppm are assigned as $1-\mathrm{Bpin}-4-\mathrm{C}_{6} \mathrm{FH}_{4}$ and $1,4-$ difluorobenzene, respectively.

Figure S62. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture from one of the catalytic borylation reactions of 1,2,4-trifluorobenzene following standard catalytic conditions detailed in methods section. The peaks at $-116.7,-135.3$ and -145.1 ppm are assigned to $1,2,4$-trifluorobenzene and the peaks at -120.2 and -121.7 ppm are assigned to $2,2^{\prime}, 5,5^{\prime}-\mathrm{F}_{4}-1,1^{\prime}-\mathrm{Ph}_{2}$.

Figure S63. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture from one of the catalytic borylation reactions of 1,3,5-trifluorobenzene following standard catalytic conditions detailed in methods section. The peaks at $-108.8,-112.1$, and -116.4 ppm are assigned as $1,3,5$-trifluorobenzene, $1-$ Bpin-3,5- $\mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{3}$, and 1,3-Bpin-5- $\mathrm{C}_{6} \mathrm{FH}_{3}$, respectively.

GC/MS characterization of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Bpin}$

Figure S64. GC trace of the reaction mixture resulting from one of the catalytic borylation reactions of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$. The peak at a retention time of 6.486 minutes corresponds to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Bpin}$ (see MS below) and the peak at 6.634 minutes corresponds to $\mathrm{B}_{2} \mathrm{pin}_{2}$.

Figure S65. Mass spectrum of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Bpin}$ peak from the reaction mixture GC resulting from one of the catalytic borylation reactions of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$.

Infrared Spectra

Figure S66. IR spectrum (KBr Pellet) of K1.

Figure S67. IR spectrum (DCM Solution) of 2. The equation correlating the stretching frequency in $\mathrm{Rh}(\mathrm{CO})(\mathrm{acac}) \mathrm{L}$ compounds and TEP from $\mathrm{Ni}(\mathrm{CO})_{3} \mathrm{~L}$ is $\mathrm{y}=0.5716 \mathrm{x}+938.47$, where y is TEP and x is $v(C O)_{\text {Rh. }}{ }^{23}$

Figure S68. IR spectrum (KBr pellet) of $\mathbf{2}$.

Figure S69. IR spectrum $\left(\mathrm{CDCl}_{3}\right.$ solution) of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$. Note that the features around $2250 \mathrm{~cm}^{-1}$ are a combination of CO_{2} and solvent stretches.

Figure S70. IR spectrum (KBr pellet) of $[\mathrm{TEA}]\left[1^{\mathrm{Se}}\right]$.

Figure S71. IR spectrum (KBr pellet) of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$.

Figure S72. IR spectra of $\mathbf{2}$ in different solvents. $v_{c o}$ shifts by $\sim 3 \mathrm{~cm}^{-1}$, which is within the instrument error $\left(4 \mathrm{~cm}^{-1}\right)$.

Figure S73. IR spectra of $\operatorname{Rh}(\mathrm{CO})_{2}$ acac in different solvents.

UV-visible spectra

Figure S74. UV-vis traces of the reaction between $\mathrm{Ni}(\mathrm{COD})_{2}(0.36 \mathrm{mM}), 1$ equivalent of K 1 , and 21 equivalents of $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF at RT, with scans taken every 5 minutes for a total of 70 minutes; the spectrum for the first scan is maroon and the spectrum for the last scan is teal. Inset: Exponential fit to the decay of the absorbance at 464 nm with the equation $\mathrm{y}=\mathrm{y}_{0}+\mathrm{A} * \exp \left(\mathrm{R}_{0}{ }^{*} \mathrm{x}\right)$. The fit values are $\mathrm{y}_{0}=0.132(9), \mathrm{A}=0.173(8)$, and $\mathrm{R}_{0}=-2.81 \mathrm{E}-4(3.05 \mathrm{E}-5)$. The kobs determined from this fit is $-2.8 \mathrm{E}-4 \mathrm{~s}^{-1}$.

Figure S75. UV-vis traces of the reaction between $\mathrm{Ni}(\mathrm{COD})_{2}(0.36 \mathrm{mM})$, 2 equivalents of K 1 , and 21 equivalents of $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF at RT, with scans taken every 5 minutes for a total of 90 minutes; the spectrum for the first scan is maroon and the spectrum for the last scan is teal. Inset: Exponential fit to the decay of the absorbance at 464 nm with the equation $\mathrm{y}=\mathrm{y}_{0}+\mathrm{A} * \exp \left(\mathrm{R}_{0} * \mathrm{x}\right)$. The fit values are $\mathrm{y}_{0}=0.510(6), \mathrm{A}=0.280(6)$, and $\mathrm{R}_{0}=-5.68 \mathrm{E}-4(3.98 \mathrm{E}-5)$. The kobs determined from this fit is $-5.6 \mathrm{E}-4 \mathrm{~s}^{-1}$.

Figure S76. UV-vis traces of the reaction between $\mathrm{Ni}(\mathrm{COD})_{2}(0.36 \mathrm{mM}), 3$ equivalents of K 1 , and 21 equivalents of $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF at RT, with scans taken every 5 minutes for a total of 90 minutes; the spectrum for the first scan is maroon and the spectrum for the last scan is teal. Inset: Exponential fit to the decay of the absorbance at 464 nm with the equation $\mathrm{y}=\mathrm{y}_{0}+\mathrm{A} * \exp \left(\mathrm{R}_{0} * \mathrm{x}\right)$. The fit values are $\mathrm{y}_{0}=0.703(6), \mathrm{A}=0.890(5)$, and $\mathrm{R}_{0}=-3.71 \mathrm{E}-4(6.03 \mathrm{E}-6)$. The kobs determined from this fit is $-3.7 \mathrm{E}-4 \mathrm{~s}^{-1}$.

Figure S77. UV-vis traces of the reaction between $\mathrm{Ni}(\mathrm{COD})_{2}(0.36 \mathrm{mM}), 4$ equivalents of K 1 , and 21 equivalents of $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF at RT, with scans taken every 5 minutes for a total of 90 minutes; the spectrum for the first scan is maroon and the spectrum for the last scan is teal. Inset: Exponential fit to the decay of the absorbance at 464 nm with the equation $\mathrm{y}=\mathrm{y}_{0}+\mathrm{A} * \exp \left(\mathrm{R}_{0}{ }^{*} \mathrm{x}\right)$. The fit values are $\mathrm{y}_{0}=1.110(35), \mathrm{A}=0.857(30)$, and $\mathrm{R}_{0}=-3.14 \mathrm{E}-4(2.69 \mathrm{E}-5)$. The kobs determined from this fit is $-3.1 \mathrm{E}-4 \mathrm{~s}^{-1}$.

Figure S78. UV-vis traces of the reaction between $\mathrm{Ni}(\mathrm{COD})_{2}(0.36 \mathrm{mM}), 8$ equivalents of K 1 , and 21 equivalents of $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF at RT, with scans taken every 5 minutes for a total of 90 minutes; the spectrum for the first scan is maroon and the spectrum for the last scan is teal. Inset: Exponential fit to the decay of the absorbance at 464 nm with the equation $\mathrm{y}=\mathrm{y}_{0}+\mathrm{A} * \exp \left(\mathrm{R}_{0}{ }^{*} \mathrm{x}\right)$. The fit values are $\mathrm{y}_{0}=0.609(48), \mathrm{A}=1.825(47)$, and $\mathrm{R}_{0}=-9.44 \mathrm{E}-5(3.20 \mathrm{E}-6)$. The kobs determined from this fit is $-9.4 \mathrm{E}-5 \mathrm{~s}^{-1}$.

Figure S79. UV-vis traces of the reaction of $\mathrm{Ni}(\mathrm{COD})_{2}$ and K 1 without $\mathrm{C}_{6} \mathrm{~F}_{6}$ in THF at RT, with scans taken every 5 minutes for a total of 70 minutes; the spectrum for the first scan is maroon and the spectrum for the last scan is teal.

Calculations

General considerations

The structure of $\mathbf{1}^{\mathrm{Se}}$, $\mathrm{SePPh}_{2} \mathrm{Et}$, and $\mathbf{2}$ were optimized in Orca version 4.0^{24} using the B 3 P Functional, with the def2-TZVP ${ }^{25}$ basis set on C, H, B, and F, and def2-TZVPP ${ }^{25}$ basis set on Rh, Se , and P . Rh also had an ECP applied. Different local minima geometries of the BF_{3} group were found by changing the input geometry, which resulted in optimization to two local minima in the two extremes of the BF_{3} positioning. The "transoid" geometry (with a larger Se-P-C-B dihedral) was the global minimum based on comparison of energy by 3.4 kcal , but both geometries were confirmed as local minima with frequency calculations.

NMR couplings were calculated in Gaussian 16^{26} with the "Mixed" method using mPW1PW91 functional and $6-311++G(2 d, 2 p)$ basis set, similar to methods used in the literature to calculate Se chemical shifts. ${ }^{27}$ The average coupling was weighted for a Boltzmann population
of the cisoid and transoid isomers based on the calculated energy difference which predicts a nearly 100% population of the ground state transoid isomer at room temperature.

We also considered several solvation models to understand to rationalize the trends we observed. While implicit solvation failed to reproduce our observed trends, explicit solvation did match our observations. For these calculations, the starting geometries of $\mathbf{1}^{\mathrm{Se}}$ were used with 10 randomly arranged solvent molecules of either $\mathrm{MeCN}, \mathrm{DCM}$, or CHCl_{3}. The geometry of this model was then optimized with ORCA 5.0^{28} with the BP86 functional, with def2-QZVP basis sets on all atoms as well as the D3BJ dispersion correction. Local minima were found, but we did not perform frequency calculations both due to the size of the system, and the high likelihood of multiple minima of similar energy due to minor changes in solvent coordinates. NMR couplings were then calculated in ORCA 5.0 using the EPR/NMR module with the same basis sets but with the O3LYP functional.

The electric field exerted at phosphorus in $\mathbf{1}^{\mathrm{Se}}$ as a result of the anionic BF_{3} moiety was estimated using a variation of Coulomb's law. The electric field equation was obtained by dividing coulombs law by q_{1} and explicitly separating the vector connecting the points into x, y and z components. ${ }^{29}$ Doing this results in three equations describing the x, y and z components of the electric field where the z-axis vector is defined as the P -Se bond vector. The equation for the z component is shown below.

$$
E_{z}\left(x_{1}, y_{1}, z_{1}\right)=\frac{q_{2}}{4 \pi \epsilon_{0}} \frac{z_{1}-z_{2}}{\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}\right]^{3 / 2}}
$$

The charge of q_{2} is in Coulombs, the constant of proportionality is in V / mC (or equivalently $\mathrm{Nm}^{2} / \mathrm{C}^{2}$), and the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates are in meters. The resulting electric field is in units of V / m.

Two separate optimized geometries for $\mathbf{1}^{\mathrm{Se}}$ were considered, the transoid and cisoid rotamers (see main text and Figures S76 and S77). Both geometries were considered in order to estimate the range of accessible geometries in solution. Starting with optimized geometries, the z -axis was aligned along the $\mathrm{P}=\mathrm{Se}$ bond in Avogadro. ${ }^{30}$ The $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates for the B were used as the location of a negative charge, point 2 , and the coordinates for phosphorus were used as point 1 . An example of the code put into Matlab to calculate the electric field in the transoid geometry (coordinates included in code) is shown below. The electric field calculated at P for this geometry in V / \AA was $\mathrm{E}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(0.5145,0.9015,-1.0672)$. The electric field was analogously calculated at $\operatorname{Se}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(0,0,2.14028)$ in V / \AA and was $(0.1334,0.2338,-0.5423)$. The coordinates for boron and selenium in the cisoid geometry were $\mathrm{B}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(0.52958,2.85487,-0.94860)$ and $\operatorname{Se}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ $=(0,0,2.11743)$. The electric field calculated at P in the cisoid geometry in V / \AA is $\mathrm{E}(\mathrm{x}, \mathrm{y}, \mathrm{z})=$ $(0.2679,1.4444,-0.4799)$. The electric field at Se in the cisoid geometry in V/ \AA was $(0.1014$, $0.5467,-0.5872$). The same code was used to estimate the location for a point charge on the z axis below the phosphine to replicate the electric field. The x and y coordinates were set to 0 and values were entered into the z coordinate until a similar field was predicted. In this case, placing a negative point charge at $(0,0,-3.7)$ resulted in a predicted field at P of $(0,0,-1.0533)$. This negative point charge was included via the "charge" input in Gaussian.

```
%Electric field at P - defining coordinates - transoid
Px = 0;
Py = 0;
Pz = 0;
Bx = 1.07559/10^10; %enter position in Å, converts to m
By = 1.88457/10^10;
Bz = -2.23090/10^10;
CP = 9E9; %constant of proportionality, units in Vm/C
elec = -1.60218E-19; %electron charge in C
%defining distances
PB = (Px-Bx)^^2 +(Py-By)}\mp@subsup{)}{}{\wedge}2+(Pz-Bz)^^2
rPB = PB^(3/2);
%electric field at P from transoid B1 in V/m
EBx = CP*elec* (Px-Bx)/rPB;
EBy = CP*elec* (Py-By)/rPB;
EBz = CP*elec*(Pz-Bz)/rPB;
%electric field from far B1 in V/A
EVAx = EBx/10^10;
EVAy = EBy/10^10;
EVAz = EBz/10^10;
%electric field from far B1 in atomic units
Eaux = EVAx/51.4;
Eauy = EVAy/51.4;
Eauz = EVAz/51.4;
%summary/output
EVm = [EBx, EBy, EBz] %x,y,z components of electric field in V/m
EVA = [EVAx, EVAy, EVAz] %x,y,z components of electric field in V/\AA
Eau = [Eaux, Eauy, Eauz] %x,y,z components of electric field in atomic
units
```


Figure S80. Calculated structure of $\mathbf{1}^{\mathrm{Se}}$ (cisoid structure).

Table S2. Coordinates of optimized structure of $\mathbf{1}^{\text {Se }}$ (cisoid structure)

P	0.00000	0.00000	-0.00000
C	0.79176	-1.51897	-0.68167
C	-1.68430	-0.09969	-0.70597
C	0.95751	1.26436	-0.84601
C	-2.03216	0.57473	-1.87230
C	-3.30535	0.44636	-2.40740
C	-4.24520	-0.36639	-1.78539
C	-3.90466	-1.03762	-0.61612
C	-2.63696	-0.90181	-0.07134
C	0.34564	-2.11211	-1.86055
C	1.04760	-3.15788	-2.44199
C	2.20703	-3.64068	-1.84793
C	2.64957	-3.06779	-0.65874
C	1.94911	-2.01469	-0.08495
H	-0.54693	-1.73898	-2.35402
H	0.69672	-3.58365	-3.37695
H	2.76413	-4.44933	-2.31062
H	3.55125	-3.43509	-0.17762
H	2.29796	-1.55965	0.83836
H	-1.32880	1.27805	-2.30439
H	-3.56414	0.99679	-3.30539
H	-5.24242	-0.46288	-2.20361
H	-4.64233	-1.66290	-0.11985
H	-2.37684	-1.39091	0.86300
B	0.52958	2.85487	-0.94860

H	1.08297	0.90777	-1.87581
H	1.93004	1.18075	-0.34921
F	-0.65839	3.01138	-1.70523
F	1.56441	3.48557	-1.66849
F	0.38517	3.40672	0.32000
Se	0.00000	0.00000	2.11743

Figure S81. Calculated structure of $\mathbf{1}^{\mathrm{Se}}$ with the BF_{3} group rotated down (transoid structure).

Table S3. Coordinates of calculated structure of edited $\mathbf{1}^{\mathrm{Se}}$ (transoid structure).

P	0.00000	0.00000	-0.00000
C	0.99330	-1.39843	-0.66597
C	-1.67140	-0.40144	-0.64511
C	0.47747	1.57885	-0.70985
C	-2.05904	-0.01528	-1.93709
C	-3.32542	-0.36388	-2.41501
C	-4.20617	-1.10123	-1.62104
C	-3.82135	-1.48343	-0.33348
C	-2.56304	-1.12866	0.15402
C	1.22296	-1.52383	-2.04616
C	1.83822	-2.67280	-2.54698
C	2.23379	-3.69978	-1.68536
C	2.03814	-3.56165	-0.30944
C	1.42154	-2.41535	0.19733
H	0.92192	-0.72323	-2.72719
H	2.00752	-2.76313	-3.62528
H	2.69143	-4.61047	-2.08801

H	2.36104	-4.35360	0.37473
H	1.24876	-2.29177	1.27209
H	-1.36256	0.54441	-2.57044
H	-3.62385	-0.04992	-3.42069
H	-5.20049	-1.36658	-1.99654
H	-4.51353	-2.04700	0.30141
H	-2.25464	-1.39203	1.17180
B	1.07559	1.88457	-2.23090
H	1.24869	1.94613	-0.01093
H	-0.41508	2.20718	-0.53519
F	2.43491	1.57068	-2.27037
F	0.88434	3.24873	-2.48413
F	0.40887	1.14985	-3.26352
Se	0.00000	0.00000	2.14028

Table S4. Calculated electric field and $J_{\mathrm{P}-\mathrm{Se}}$ for calculated structures of $1{ }^{\mathrm{Se}}$.

Structure	Electric Field at P from Coulomb's Law $(\mathrm{x}, \mathrm{y}, \mathrm{z})(\mathrm{V} / \AA)$	Electric Field at Se from Coulomb's Law $(\mathrm{x}, \mathrm{y}, \mathrm{z})(\mathrm{V} / \AA)$	Calculated $J_{\mathrm{P}-\mathrm{Se}}$ (Hz)
	$(0.2679,1.4444$, $-0.4799)$	$(0.1014,0.5467$, $-0.5872)$	849

Transoid

Figure S82. Optimized structure of $\mathrm{SePPh}_{2} \mathrm{Et}$

Table S5. Coordinates of calculated structure of $\mathrm{SePPh}_{2} \mathrm{Et}$

P	-1.35788240879875	-0.13006160366219	0.01411152467337
C	0.46035043089732	-0.00894111268972	-0.11297709391472
C	-1.94517319766249	1.58601434389281	-0.16172337078438
C	-1.61801775841252	-0.61050169284086	1.76310436384687
C	-2.01014632290093	2.47292110281823	0.92410985893433
C	-2.41206155900290	3.79576392924933	0.72657268228532
C	-2.74084901275680	4.24437941334151	-0.55433651062815
C	-2.68265886616421	3.36481109808462	-1.63800769868336
C	-2.29720178239310	2.03882087923351	-1.44152423911476
C	1.13167743910790	1.22211021431696	-0.09833764454327
C	2.52599984121426	1.26309941428321	-0.17498367322925
C	3.25881284879158	0.07870400585500	-0.25496759670394
C	2.59497006687365	-1.15128021566608	-0.27269699876603
C 1.20289958940165	-1.19608897060009	-0.21338937206687	
H	0.56785142998232	2.15646750575397	-0.03584727525056
H 3.04127036520655	2.22861672964623	-0.17613907033801	
H 4.35118313528202	0.11411607368298	-0.31698548311317	
H 3.16578660570770	-2.08138803595474	-0.34956853358883	
H 0.67898692040419	-2.15558358314002	-0.27123364941962	
H	-1.74109270514662	2.14154866229593	1.93092698724380

H	-2.47180495620726	4.47777195354649	1.57995780443591
H	-3.05874211021555	5.28023958410241	-0.70753760639855
H	-2.95473464600281	3.71205680917404	-2.63940545838434
H	-2.27331831816806	1.33201706440374	-2.27737773784354
C -3.07492682591919	-0.83763875445270	2.14339590507861	
H -1.12647794003861	0.14336875047400	2.40307130334858	
H -1.02905993305891	-1.53660194524061	1.87501787192442	
H -3.65864309342022	0.09485089645599	2.08972538205654	
H -3.14747222882146	-1.22835025412969	3.17174579213329	
H -3.54324381001111	-1.56577579313832	1.46318209837571	
Se -2.23970119776762	-1.48167646909590	-1.34535256156543	

Figure S83. Optimized structure of 2.
Table S6. Coordinates of calculated structure of $\mathbf{2}$.

C	8.403788	17.368792	2.615641
P	9.705222	18.509041	3.115911
Rh	10.136258	18.933402	5.313363
C	11.221557	17.926186	2.268307
C	9.347099	20.115557	2.288545
O	12.057864	19.603935	4.821644
O	10.615003	19.337603	7.337524
C	8.446174	18.381288	5.731046
C	11.755851	18.531018	1.132847
C	10.200942	21.200914	2.513834

C	8.220460	20.311465	1.492247
C	12.970067	19.954472	5.623701
C	11.726087	19.727819	7.776966
O	7.383820	18.076726	6.041198
C	9.941245	22.438077	1.944732
C	7.951510	21.556867	0.932416
C	14.277143	20.329974	4.968282
C	12.872159	20.025527	7.017917
C	11.802153	19.879283	9.279178
C	8.811293	22.622504	1.153446
B	8.595388	15.744242	2.943153
F	7.324750	15.146053	2.848943
F	9.450987	15.161508	1.986774
F	9.128192	15.529631	4.230298
C	11.858493	16.802787	2.800076
C	12.910173	18.028815	0.541690
C	13.006304	16.301171	2.206666
C	13.539880	16.915029	1.079053
H	8.265032	17.454439	1.531862
H	7.484652	17.707179	3.107181
H	11.272738	19.401040	0.701904
H	11.071467	21.061570	3.147696
H	7.540607	19.486130	1.312565
H	10.616970	23.267955	2.129427
H	7.063383	21.690232	0.321928
H	14.120589	21.199587	4.322298
H	14.601816	19.508033	4.324507
H	15.059281	20.560440	5.693265
H	13.754680	20.343503	7.559616
H	11.578020	18.916231	9.746747
H	11.033490	20.584266	9.608231
H	12.779454	20.225718	9.619559
H	8.602193	23.593992	0.716399
H	11.432442	16.310556	3.667469
H	13.313992	18.511300	-0.343251
H	13.482115	15.419730	2.624111
H	14.440215	16.521415	0.617090

Figure S84. Optimized structure of $\mathbf{1}^{\mathrm{Se}}$ with explicit MeCN solvation.
Table S7. Coordinates of calculated structure of $\mathbf{1}^{\mathrm{Se}}$ with explicit MeCN solvation.

P	-1.215603	-0.313816	-0.472603
Se	-0.452603	0.248122	-2.411729
C	-1.721581	-2.066081	-0.495162
C	-1.493133	-2.908706	0.602266
C	-1.822447	-4.263899	0.517415
C	-2.396733	-4.778258	-0.646201
C	-2.638699	-3.938294	-1.735938
C	-2.293813	-2.591119	-1.663500
C	-2.707716	0.674159	-0.128220
C	-3.966208	0.239733	-0.561081
C	-5.087875	1.052126	-0.388416
C	-4.962674	2.299978	0.226319
C	-3.708347	2.734752	0.667955
C	-2.584152	1.927887	0.490717
C	-0.040690	-0.059408	0.866975
B	-0.510147	-0.196130	2.450299

F	-0.170423	0.992445	3.149852
F	0.129594	-1.303411	3.063515
F	-1.933628	-0.398601	2.594030
H	-1.042836	-2.524385	1.514471
H	-1.633018	-4.910069	1.373390
H	-2.649734	-5.836958	-0.706282
H	-3.078320	-4.330834	-2.651482
H	-2.432730	-1.938092	-2.524644
H	-4.078742	-0.742407	-1.013860
H	-6.062973	0.708223	-0.728742
H	-5.843932	2.925502	0.362265
H	-3.604260	3.701942	1.158719
H	-1.613228	2.268975	0.846775
H	0.364301	0.946397	0.685159
H	0.783835	-0.753565	0.647108
C	-5.442646	-2.227617	-3.477505
C	-5.336566	-0.791763	-3.639717
N	-5.237553	0.358162	-3.768755
H	-5.378838	-2.489664	-2.411015
H	-4.631030	-2.716633	-4.035989
H	-6.407195	-2.575770	-3.868225
C	-2.440901	0.309633	-5.580876
C	-1.092308	0.070320	-6.055856
N	-0.006545	-0.133433	-6.416793
H	-3.113227	-0.472801	-5.950284
H	-2.802497	1.293150	-5.904573
H	-2.436771	0.277555	-4.481624
C	2.646389	-0.449481	-4.347672
C	3.094388	-1.828017	-4.419539
N	3.431963	-2.938858	-4.480810
H	1.996284	-0.223324	-5.205310
H	3.505315	0.232815	-4.348115
H	2.058545	-0.289982	-3.429966
C	-5.153169	-4.562444	1.811660
C	-5.385003	-3.618940	0.734791
N	-5.586309	-2.856525	-0.118124
H	-5.729211	-4.268714	2.697871
H	-4.091691	-4.581615	2.088111
H	-5.451597	-5.570295	1.497872
C	-2.835791	2.383102	4.145979
C	-2.954180	3.808661	3.899754
N	-3.052301	4.947176	3.686635
H	-3.520366	1.836220	3.487325

H	-3.082280	2.154222	5.190130
H	-1.819008	2.027970	3.925770
C	-2.999744	2.934914	-2.821018
C	-3.321985	3.440134	-4.139771
N	-3.590052	3.834529	-5.200567
H	-2.853144	3.760663	-2.115272
H	-2.083266	2.320936	-2.842279
H	-3.812313	2.293239	-2.459085
C	-2.203664	-2.654008	4.974889
C	-2.314015	-3.939191	4.313247
N	-2.413328	-4.964999	3.775761
H	-1.923030	-1.883856	4.243357
H	-1.428567	-2.694293	5.749690
H	-3.169898	-2.394630	5.425166
C	-0.182729	-2.966933	-4.418177
C	-1.554122	-3.073047	-4.870747
N	-2.663566	-3.140890	-5.211907
H	0.122377	-3.883151	-3.899510
H	-0.102686	-2.114996	-3.720387
H	0.485249	-2.791158	-5.268621
C	-6.671189	3.308174	-3.147741
C	-7.588852	3.012575	-2.061968
N	-8.314697	2.767618	-1.187945
H	-6.141664	2.393897	-3.452956
H	-5.933715	4.053741	-2.827386
H	-7.214467	3.707480	-4.012696
C	-5.084714	-0.537145	2.567380
C	-5.391995	-1.470471	3.632964
N	-5.627071	-2.236146	4.475949
H	-5.420149	-0.942859	1.606192
H	-3.999278	-0.375841	2.508936
H	-5.590123	0.421405	2.734982

Figure S85. Optimized structure of $\mathbf{1}^{\mathrm{Se}}$ with explicit DCM solvation.
Table S8. Coordinates of calculated structure of $\mathbf{1}^{\mathrm{Se}}$ with explicit DCM solvation

P	-2.116135	0.987532	0.229504
Se	-2.954463	1.797678	-1.590603
C	-2.211619	-0.819228	0.097613
C	-1.199681	-1.512743	-0.583168
C	-1.327655	-2.880182	-0.817747
C	-2.460240	-3.566243	-0.371599
C	-3.471556	-2.879047	0.301118
C	-3.353379	-1.508392	0.528257
C	-3.142849	1.423475	1.683769
C	-2.962926	0.773611	2.914702
C	-3.764508	1.112543	4.005726
C	-4.750135	2.096078	3.879420
C	-4.918992	2.755379	2.660553
C	-4.118243	2.418084	1.568166
C	-0.429676	1.536481	0.540890
B	0.601136	0.682627	1.516994

F	1.558246	1.567516	2.053702
F	1.277625	-0.331570	0.766092
F	-0.079381	0.026111	2.595216
H	-0.306879	-0.990106	-0.912205
H	-0.532284	-3.407411	-1.340748
H	-2.554500	-4.636278	-0.549579
H	-4.363747	-3.402020	0.639362
H	-4.166033	-0.967010	1.007772
H	-2.196765	0.009247	3.017397
H	-3.618122	0.597313	4.953447
H	-5.377294	2.350763	4.733140
H	-5.669714	3.538224	2.554478
H	-4.251388	2.915878	0.609153
H	-0.562279	2.552734	0.940396
H	0.019468	1.657384	-0.454670
C	-5.969608	-2.017039	-3.073064
Cl	-4.867755	-0.797309	-2.383457
Cl	-6.509231	-3.229418	-1.870345
H	-5.428153	-2.541982	-3.861552
H	-6.852393	-1.495185	-3.445252
C	-1.776886	-1.011407	-3.917404
Cl	-2.429335	-2.640982	-4.256854
H	-0.693943	-1.096877	-3.829627
Cl	-2.131210	0.151098	-5.227299
H	-2.243408	-0.627752	-3.006934
C	-0.674152	-2.993900	2.658287
H	-1.110806	-2.532898	1.774329
Cl	0.480158	-4.239721	2.117588
H	-0.147032	-2.266031	3.273509
Cl	-2.010733	-3.687959	3.632914
C	-2.002481	4.215974	3.938690
Cl	-2.123232	5.875905	4.605239
H	-2.294820	3.520950	4.725543
Cl	-0.359674	3.787055	3.417884
H	-2.657517	4.161415	3.069320
C	-5.220897	1.983551	-4.222838
Cl	-6.401445	1.189694	-5.309250
Cl	-4.958771	3.705000	-4.621753
H	-4.269922	1.459317	-4.325257
H	-5.618409	1.927105	-3.210437
C	-3.285165	5.288915	-0.760646
Cl	-2.103211	5.341202	0.572442
H	-3.066858	6.111391	-1.442497
	-2		

Cl	-4.978068	5.488211	-0.201112
H	-3.202567	4.298299	-1.227013
C	2.116176	-0.180504	-2.177546
Cl	1.838264	-1.846233	-2.786698
H	3.132958	0.102526	-2.451499
Cl	0.994007	0.996050	-2.915390
H	1.946062	-0.185241	-1.095661
C	-5.163820	-1.906251	3.544488
Cl	-5.223204	-1.991502	5.326420
H	-5.416969	-0.888916	3.244560
Cl	-6.323073	-3.016733	2.760089
H	-4.157872	-2.193600	3.233289
C	-6.564644	1.303696	-0.250783
Cl	-7.724446	1.354494	-1.613141
H	-6.718805	2.199660	0.349914
Cl	-6.811969	-0.116883	0.797554
H	-5.554132	1.253672	-0.671819
C	-0.401302	0.743559	5.533800
Cl	-1.148778	-0.870641	5.670191
H	0.644896	0.662864	5.828554
Cl	-1.181494	1.938817	6.620227
H	-0.504369	1.081119	4.501752

Figure S86. Optimized structure of $\mathbf{1}^{\mathrm{Se}}$ with explicit CHCl_{3} solvation.
Table S9. Coordinates of calculated structure of $\mathbf{1}^{\mathrm{Se}}$ with explicit CHCl_{3} solvation

P	-2.134019	0.681238	-0.248353
Se	-2.814572	1.554850	-2.112141
C	-2.188081	-1.128495	-0.354260
C	-1.043674	-1.846713	-0.729424
C	-1.122565	-3.222700	-0.933965
C	-2.335810	-3.889513	-0.763018
C	-3.472790	-3.179021	-0.375973
C	-3.403720	-1.802579	-0.170604
C	-3.221703	1.159688	1.130046
C	-3.146912	0.493779	2.363223
C	-3.927119	0.937330	3.429986
C	-4.778828	2.033082	3.279469
C	-4.851725	2.694992	2.054560
C	-4.079132	2.254822	0.980534
C	-0.453351	1.191386	0.118386
B	0.197734	0.865369	1.589279

F	-0.287471	1.790162	2.558936
F	1.611634	0.978494	1.513798
F	-0.125592	-0.449842	2.058268
H	-0.091052	-1.338552	-0.857215
H	-0.229145	-3.773211	-1.222296
H	-2.393730	-4.965345	-0.923716
H	-4.422327	-3.693280	-0.242051
H	-4.293626	-1.253005	0.129152
H	-2.469349	-0.350867	2.484464
H	-3.859349	0.440735	4.395198
H	-5.377578	2.374401	4.121522
H	-5.505006	3.556699	1.931689
H	-4.132532	2.757930	0.015723
H	-0.465635	2.279180	-0.034577
H	0.142362	0.775196	-0.706034
C	-6.339653	-1.842635	-3.113674
Cl	-5.313514	-0.488811	-2.563738
Cl	-6.892051	-2.852374	-1.748532
H	-5.716602	-2.467821	-3.753964
Cl	-7.724154	-1.274897	-4.088006
C	-2.328466	-1.264991	-4.156277
Cl	-2.985679	-2.931279	-4.149064
Cl	-0.555143	-1.279999	-4.239926
Cl	-3.028756	-0.321761	-5.492509
H	-2.616468	-0.765964	-3.223374
C	0.010889	-3.197076	3.079611
Cl	0.326055	-3.892480	4.692052
Cl	1.078086	-3.938600	1.856622
Cl	-1.697584	-3.385802	2.621544
H	0.229050	-2.128625	3.099328
C	-1.938819	4.351160	3.135991
Cl	-0.338063	5.063819	3.443305
Cl	-3.197716	5.032447	4.217264
H	-1.873757	3.278007	3.313988
H	-2.224834	4.582792	2.109328
C	-5.937370	3.146280	-2.733193
Cl	-7.187171	2.527185	-3.831792
Cl	-4.918970	4.366598	-3.526750
H	-5.278578	2.320006	-2.438195
Cl	-6.669463	3.805247	-1.237050
C	-1.978869	4.970948	-1.241594
Cl	-0.510767	4.928049	-0.239278
Cl	-1.718897	5.938131	-2.716411
	-1		

	-36281	5.598708	-0.299382
Cl	-3.362281		
H	-2.220991	3.940223	-1.545776
C	2.884976	1.225234	-1.218915
Cl	2.361311	-0.275269	-2.043871
Cl	4.666396	1.330431	-1.180932
Cl	2.174394	2.653910	-2.003281
H	2.518728	1.178121	-0.187717
C	-4.706603	-2.498081	4.264596
Cl	-6.035536	-1.523564	4.932598
Cl	-5.216461	-3.342919	2.780700
Cl	-4.080618	-3.643816	5.472684
H	-3.891716	-1.824938	3.994636
C	-7.352896	0.855192	0.532008
Cl	-8.409996	0.409612	-0.822728
Cl	-8.231549	1.880809	1.704523
Cl	-6.668396	-0.575215	1.330325
H	-6.525656	1.448142	0.140035
C	-0.772219	0.489478	5.208282
Cl	-1.738479	-0.980737	5.554662
Cl	0.899158	0.267979	5.765478
Cl	-1.522395	1.927819	5.942119
H	-0.745242	0.646119	4.127642

NBO Analysis

We have considered $\mathbf{1}, \mathbf{1}^{\mathrm{Se}}$, and $\mathbf{2}$ with an NBO/NPA analysis to look for any donor-acceptor interactions between non-adjacent atoms. Using the second-order perturbation analysis we have been unable to find any donor-acceptor interactions $>2 \mathrm{kcal} / \mathrm{mol}$ between B / F and $\mathrm{P} / \mathrm{Se} / \mathrm{Rh}$ in any of the structures we have examined.

We have also used NBO analysis to examine our simplified assumption of a "point charge" centered at B. We have used NBO analysis to look at the sum of the charges on B and the 4 atoms directly bound to it. This sum is -1.62 . In the neutral congener $\mathrm{Ph}_{2} \mathrm{PEt}$ this analogous sum is -0.69 . Comparing these two net values shows that there is almost perfectly an additional -1 charge on the BF_{3} substituted phosphine. Furthermore, comparison of the individual charges on each atom shows that this negative charge is fairly symmetrically distributed, albeit with a slightly larger change going from H to F (more negative) and from C to B (more positive) than is observed in the change of charge on the common methylene carbon. As the electric field at P or Se will be an average of all the charge density, the effects from each individual atom will be averaged. Overall, while there are some subtleties as to the arrangement of the charge, the NBO analysis does support that the estimation of a point charge localized at B is reasonable. This demonstrates that simple electrostatic relationships (Coulomb's Law) and charge assumptions (approximating a BF_{3} as a point charge) provide a good model for solution phase electrostatic effects.

Correlation between $\mathrm{J}_{\mathrm{P}-\mathrm{Se}}$ and TEP

Figure S87. Plot of experimental $J_{\text {P-Se }}$ reported in CDCl_{3} vs. TEP determined using $\mathrm{Ni}(\mathrm{CO})_{3} \mathrm{~L}$ in DCM or $\mathrm{Rh}(\mathrm{CO})(\mathrm{acac}) \mathrm{L}$. Data was fit linearly using $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ with $\mathrm{m}=0.23(2)$ and $\mathrm{b}=$ 1904(17) with $R^{2}=0.84$. Phosphines corresponding to each point are listed in the next table.

Table S10. Additional data points added to main text Figure 2. The linear fit was used to calculate the corresponding TEP or JP-Se from the experimental value. Experimental TEP was determined via the linear correlation between $\mathrm{vco}_{\mathrm{Co}} \mathrm{Rh}(\mathrm{CO})(\mathrm{acac}) \mathrm{L}$ and TEP.

Compound	Experimental TEP	Experimental $J_{\text {P-Se }}$	Calculated TEP	Calculated $J_{\text {P-Se }}$
$\mathbf{2}$	$2061.7 \mathrm{~cm}^{-1}$	-	-	698 Hz
$\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right] \mathrm{CDCl}_{3}$		657	2052.3	
$\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right] \mathrm{DMSO}^{\mathrm{Se}}$		687	2059.1	
$\left[\mathrm{PPh}_{4}\right]\left[\mathbf{3}^{\mathrm{Se}}\right] \mathrm{CDCl}_{3}$		677	2056.8	
$\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right] \mathrm{DMSO}^{2}$		695	2060.9	

Table S11. Phosphines used in the $J_{\mathrm{P}-\mathrm{Se}}$ vs. TEP fit. Data in brackets were determined using $\mathrm{Rh}(\mathrm{CO})(\mathrm{acac}) \mathrm{L}$. All other TEP values were determined using $\mathrm{Ni}(\mathrm{CO})_{3} \mathrm{~L}$, and all $J_{\mathrm{P} \text {-Se }}$ values were measured in CDCl_{3}. Data was collected from references 6,23 , and 31 .

Number	Phosphine	$J_{\text {P-Se }}(\mathrm{Hz})$	TEP (cm^{-1})
1	$\mathrm{P}(p-\mathrm{FPh})_{3}$	743	2071.3
2	PPh_{3}	731	2068.9
3	$\mathrm{P}(\mathrm{Bn})_{3}$	730	2066.4
4	$\mathrm{P}(m-\mathrm{Tol})_{3}$	723	2067.2
5	PPh 2 Et	722	2066.7
6	$\mathrm{P}(p-\mathrm{Tol})_{3}$	720	2066.7
7	$\mathrm{P}\left(\mathrm{MePh}_{2}\right)_{3}$	719	2067.0
8	$\mathrm{P}\left(p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right)_{3}$	714	2066.1
9	$\mathrm{P}(\mathrm{o}-\mathrm{Tol})_{3}$	706	2066.6
10	PMe 2 Ph	705	2065.3
11	$\mathrm{PEt}_{2} \mathrm{Ph}$	709	2063.7
12	PEt_{3}	684	2061.7
13	$\mathrm{P}(\mathrm{nBu})_{3}$	681	2060.3
14	$\mathrm{P}\left({ }^{\text {i Pr }}\right)_{3}$	686	2059.2
15	$\mathrm{PAd}_{2}(\mathrm{nBu})$	693	[2057.1]
16	$\mathrm{P}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)_{3}$	687	2056.1
17	РСуз	675	2056.4
18	PAd_{3}	670	[2052.1]

Further analysis of solvent dependence

Figure S88. Plots of $J_{\mathrm{P} \text {-Se }}$ as a function of solvent dielectric - the $\mathrm{PPh}_{4} \mathrm{Se}$ compounds are compared to their neutral congeners in the top plot and the coupling of $\mathbf{1}^{\mathrm{Se}}$ with two different counterions is compared in the bottom plot. Solvent dielectric for mixtures was estimated using a volume weighted average of the pure solvent dielectrics. We have been unable to find detailed studies of the dielectrics of these binary mixtures, but literature reports suggest that solvent mixtures of low polarity solvents scale approximately linearly with concentration and that using a volume or mole fraction weighted average of the pure solvent dielectric provides a reasonable estimate of the mixture dielectric. ${ }^{32}$ We have chosen to use volume fraction for ease but use of mole fractions results in negligible changes to the values and fits.

Table S12. $J_{\mathrm{P}-\mathrm{Se}}(\mathrm{Hz})$ for $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right],\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$, $\mathrm{SePPh}_{2} \mathrm{Et}, \mathrm{SePPh}_{3}$ at different dielectrics. ${ }^{32}$ To estimate the experimentally accessible electrostatic contribution to donor strength for $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$, the following calculation was performed: $(687-657) /(722-657)^{*} 100=46 \%$. The experimentally accessible electrostatic contribution for $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ is $(695-677) /(735-677) * 100=31 \%$. The coupling predicted by DFT including explicit solvent (Figures S84-S86) is included in the last column.

Solvent	Dielectric	$\begin{gathered} {\left[\mathrm{PPh}_{4}\right]} \\ {\left[\mathbf{1}^{\mathrm{Se}}\right]} \end{gathered}$	$\begin{gathered} {[\mathrm{TEA}]} \\ {\left[\mathbf{1}^{\mathrm{Se}}\right]} \end{gathered}$	$\begin{gathered} {\left[\mathrm{PPh}_{4}\right]} \\ {\left[3^{\mathrm{Se}}\right]} \end{gathered}$	SePPh 2 Et	SePPh_{3}	$\begin{aligned} & \mathbf{1}^{\mathrm{Se}} \mathrm{DFT} \\ & \text { explicit } \\ & \text { solvent } \\ & \hline \end{aligned}$
CDCl_{3}	4.8	657	679	677	720	731	-648
$\begin{gathered} 1: 1 \mathrm{CDCl}_{3}: \\ \mathrm{CD}_{2} \mathrm{Cl}_{2} \end{gathered}$	7	669	682	-	-	-	-
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	9.1	675	687	690	727	735	-675
$\begin{gathered} 1: 1 \\ \text { acetone- } d_{6} \\ : \mathrm{CD}_{2} \mathrm{Cl}_{2} \\ \hline \end{gathered}$	13	682	688	-	-	-	-
acetone- d_{6}	21	686	691	695	739	748	-
$\mathrm{CD}_{3} \mathrm{CN}$	36.6	689	689	700	727	735	-684
DMSO-d6	46.7	687	688	695	722	735	-

Table S13. Fit parameters for the linear fits of $J_{\mathrm{P} \text {-Se }}$ to $1 /(4 \pi \varepsilon)$ of the form $J_{\mathrm{P} \text {-Se }}=\mathrm{a}+\mathrm{b}^{*}(1 /(4 \pi \varepsilon))$.

Phosphine	$\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$	$[\mathrm{TEA}]\left[1^{\mathrm{Se}}\right]$	$\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$	$\mathrm{SePPh}_{2} \mathrm{Et}$	SePPh_{3}
a	$693(1)$	$691(2)$	$700(2)$	$731(5)$	$741(5)$
b	$-2.12(12)^{*} 10^{3}$	$-7(2)^{*} 10^{2}$	$-1.4(2)^{*} 10^{3}$	$-5(6)^{*} 10^{2}$	$-5(5)^{*} 10^{2}$
R^{2}	0.98	0.77	0.92	0.06	0.02

Table S14. $J_{\mathrm{P}-\mathrm{Se}}(\mathrm{Hz})$ for $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ with the addition of various additional salts, the difference is relative to the coupling value for $[\mathrm{PPh} 4]\left[\mathbf{1}^{\mathrm{Se}}\right]$ in the appropriate solvent. NMR spectra are shown in the NMR section.

Salt added	Solvent	Equivalents	$J_{\mathrm{P}-\mathrm{Se}}$ (Hz)	Difference relative to $[\mathrm{PPh} 4]\left[1 \mathbf{1}^{\mathrm{Se}}\right]$
$\mathrm{PPh}_{4} \mathrm{Br}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	3	679	4
PPh 4 Br	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	20	679	4
Tetrabutylammonium chloride	CDCl_{3}	20	671	14
Tetrabutylammonium chloride	CDCl_{3}	1	667	9
Tetrabutylammonium PF_{6}	CDCl_{3}	20	671	14
Tetraethylammonium bromide	CDCl_{3}	20	677	19
Tetraethylammonium bromide	CDCl_{3}	1	672	14
Bis(triphenylphosphine)iminium chloride	CDCl_{3}	20	656	-2

Discussion of the slopes of $J_{\mathrm{P}-\mathrm{Se}}$ versus $\mathbf{1 / (4 \pi \varepsilon)}$ for $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ and $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$

The linear fits of $J_{\mathrm{P}-\mathrm{Se}}$ versus $1 /(4 \pi \varepsilon)$ for $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ and $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ show that Coulomb's law provides a reasonable approximation for how the donor properties of these phosphine selenides vary with different solvents:

$$
F=\frac{q_{1} q_{2}}{4 \pi \varepsilon r^{2}}
$$

Coulomb's law also has dependences on the charges involved in the electrostatic interaction (q_{1} and q_{2}) as well as the distances between those charges. If we make the assumption that the charges in $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ and $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ should be identical (or at least similar), then the ratio of the slopes to the linear fits of $J_{\mathrm{P}-\mathrm{Se}}$ versus $1 /(4 \pi \varepsilon)$ should be proportional to the difference in the square of the point charge-to-test charge distances in the two phosphine selenides. If we use the B‥P distance for this value, the distances are 3.029 and $3.562 \AA$. The ratio of the squares of these distances is 0.72 . This suggests that, simplistically, we might expect that the ratio of the slopes of $J_{\mathrm{P} \text {-Se }}$ versus $1 /(4 \pi \varepsilon)$ for $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ and $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ should be ~ 1.4. The ratio from the linear fits to the data is 1.5 , in good agreement to the predicted ratio from the difference charge-to-charge distance.

Single crystal X-ray crystallography

F1

Figure S89. SXRD structure of K 1 with K^{+}counterion shown.

Figure S90. SXRD structure of $\mathbf{2}$ with $\mathrm{PPh}_{4}{ }^{+}$counterion shown. H-bonding interaction between BF_{3} and PPh_{4} indicated by a dashed line. Two independent molecules of $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})\left(\mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{BF}_{3}\right)\right)$ are present in the asymmetric unit. The closest H -bonding interaction between the second molecule and PPh_{4} is 2.303(2).

Figure S91. SXRD structure of $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$ with $\mathrm{PPh}_{4}{ }^{+}$counterion shown. H-bonding interaction between BF_{3} and PPh_{4} indicated by a dashed line.

Figure S92. Space filling model of the SXRD structure of $\left[\mathrm{PPh}_{4}\right]\left[1^{\mathrm{Se}}\right]$ with $\mathrm{PPh}_{4}{ }^{+}$counterion shown.

Figure S93. SXRD structure of $[T E A]\left[1^{\mathrm{Se}}\right]$ with TEA $^{+}$counterion shown. H-bonding interaction between BF_{3} and TEA indicated by a dashed line.

Figure S94. Space filling model of the SXRD structure of [TEA][1 $\left.{ }^{\text {Se }}\right]$ with TEA^{+}counterion shown.

Figure S95. SXRD structure of $\left[\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$ with $\mathrm{PPh}_{4}{ }^{+}$counterion shown. H-bonding interaction between BF_{3} and PPh_{4} indicated by a dashed line.

Table S15. Selected average bond lengths for SXRD structures.

	$\mathbf{K 1}$	$\mathbf{2}$	$\left[\mathbf{P P h}_{4}\right]\left[\mathbf{1}^{\mathbf{S e}}\right]$	$[\mathbf{T E A}]\left[\mathbf{1}^{\mathbf{S e}}\right]$	$\left[\mathbf{P P h}_{4}\right]\left[\mathbf{3}^{\mathbf{S e}}\right]$
B-P2	$2.858(3)$	$5.685(3)$	$6.283(6)$	-	$5.895(2)$
B-N1				$4.766(2)$	
Se-P1	-	-	$2.129(1)$	$2.1124(4)$	$2.112(5)$
P1-B	-	$3.006(4)$	$3.029(6)$	$2.894(2)$	$3.562(2)$
Se-B			$4.848(6)$	$3.758(2)$	$4.530(2)$
B-K	$3.272(3)$	-	-	-	-
Rh-C1	-	$1.797(3)$	-	-	-
B-C1	-	$3.719(5)$	-	-	-
B-Rh	-	$4.150(4)$	-	-	-
B-O	-	$3.955(4)$	-	-	-

Discussion of van der Waals radii in 2

Given that the van der Waals radii of B, C, O and Rh are 205, 196, 171, and 232 pm, the sum of the covalent radii for $\mathrm{B} \cdots \mathrm{C}, \mathrm{B} \cdots \mathrm{O}$, and $\mathrm{B} \cdots \mathrm{Rh}$ are 401,376 , and 437 respectively. ${ }^{33}$ The interatomic distances for $\mathrm{B} \cdots \mathrm{C}, \mathrm{B} \cdots \mathrm{O}$, and $\mathrm{B} \cdots \mathrm{Rh}$ in the crystal structure of 2 are 371.9(4), 395.5(4) and 415.0(4) pm. Dividing the interatomic distances by the sum of the covalent radii gives $0.93,1.05$, and 0.95 for $\mathrm{B} \cdots \mathrm{C}, \mathrm{B} \cdots \mathrm{O}$, and $\mathrm{B} \cdots \mathrm{Rh}$, respectively. Although the interatomic distances between $\mathrm{B} \cdots \mathrm{C}$ and $\mathrm{B} \cdots \mathrm{O}$ are significantly shorter than that between $\mathrm{B} \cdots \mathrm{Rh}$, the lengths normalized for the sum of covalent radii are similar.

Table S16. Refinement data for crystal structures of K1, 2, $\left[\mathrm{PPh}_{4}\right]\left[\mathbf{1}^{\mathrm{Se}}\right]$, [TEA][1 $\left.1^{\mathrm{Se}}\right]$, and [$\left.\mathrm{PPh}_{4}\right]\left[3^{\mathrm{Se}}\right]$.

Identification code	K1	2	[PPh_{4}][1 ${ }^{\text {Se }}$]
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BF}_{3} \mathrm{KO}_{0.5} \mathrm{P}$	$\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{BF}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Rh}$	$\mathrm{C}_{36.96} \mathrm{H}_{31.91} \mathrm{~B}_{0.95} \mathrm{~F}_{2.87} \mathrm{I} 0.05$ $\mathrm{P}_{2} \mathrm{Se}_{0.95}$
Formula weight	342.21	836.40	683.86
Temperature/K	100(2)	100(2)	100(2)
Crystal system	triclinic	Triclinic	Orthorhombic
Space group	P-1	P-1	Pna2
a/A	5.6907(4)	9.1533(6)	14.5444(7)
b/A	21.5917(16)	13.0253(9)	19.8328(10)
c / \AA	26.847(2)	33.273(2)	11.0256 (6)
$\alpha /{ }^{\circ}$	78.847(2)	83.172(2)	90
$\beta /{ }^{\circ}$	89.976(2)	88.634(2)	90
γ°	89.948(2)	79.181(2)	90
Volume/ \AA^{3}	3231.9(4)	3868.8(4)	3180.4(3)
Z	8	4	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.407	1.436	1.428
μ / mm^{-1}	0.450	0.578	1.316
F(000)	1408.0	1712.0	1396
Crystal size $/ \mathrm{mm}^{3}$	$0.35 \times 0.25 \times 0.09$	$0.47 \times 0.26 \times 0.17$	$0.42 \times 0.14 \times 0.138$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.96 to 46.752	4.53 to 48.298	4.226 to 52.934
Index ranges	$\begin{aligned} & -6 \leq \mathrm{h} \leq 6,-24 \leq \mathrm{k} \leq 24, \\ & -29 \leq 1 \leq 29 \end{aligned}$	$\begin{aligned} & -10 \leq \mathrm{h} \leq 9,-14 \leq \mathrm{k} \leq \\ & 14,-37 \leq 1 \leq 38 \end{aligned}$	$\begin{aligned} & -18 \leq \mathrm{h} \leq 18,-24 \leq \mathrm{k} \leq \\ & 24,-13 \leq 1 \leq 13 \end{aligned}$
Reflections collected	54508	43102	82448
Independent reflections	$\begin{aligned} & 9397\left[\mathrm{R}_{\mathrm{int}}=0.0722,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0549\right] \end{aligned}$	$\begin{aligned} & 12044\left[\mathrm{R}_{\mathrm{int}}=0.0802,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0838\right] \end{aligned}$	$\begin{aligned} & 6480\left[\mathrm{R}_{\text {int }}=0.0748,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0434\right] \end{aligned}$
Data/restraints/paramet ers	9397/2441/1070	12044/0/959	6480/13/407
Goodness-of-fit on F^{2}	1.016	1.014	1.071
Final R indexes $[I>=2 \sigma$ (I)]	$\begin{aligned} & \mathrm{R}_{1}=0.0430, \mathrm{wR}_{2}= \\ & 0.0798 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0424, \mathrm{wR}_{2}= \\ & 0.0703 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0401, \mathrm{wR}_{2}= \\ & 0.0744 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.0748, \mathrm{wR}_{2}= \\ & 0.0897 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0840, \mathrm{wR}_{2}= \\ & 0.0802 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0545, \mathrm{wR}_{2}= \\ & 0.0788 \end{aligned}$
Largest diff. peak/hole e \AA^{-3}	0..0/-0.26	0.72/-0.53	1.13/-0.32
Flack parameter	-	-	0.015(4)

Identification code	[TEA] $\left[1^{\text {Se }}\right.$]	[PPh_{4}][3 ${ }^{\mathrm{Se}}$]
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{BF}_{3} \mathrm{NPSe}$	$\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{BF}_{3} \mathrm{P}_{2} \mathrm{Se}$
Formula weight	476.2	747.40
Temperature/K	100(2)	100(2)
Crystal system	orthorhombic	triclinic
Space group	Pca21	P-1
a / \AA	18.1513(9)	9.6724(5)
b/Å	10.6673(5)	12.8821(6)
c / \AA A	11.7071(6)	14.5407(7)
$\alpha /{ }^{\circ}$	90	84.9610(10)
$\beta /{ }^{\circ}$	90	77.687(2)
$\gamma{ }^{\circ}$	90	74.085(2)
Volume/ \AA^{3}	2266.8(2)	1701.43(15)
Z	4	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.390	1.459
μ / mm^{-1}	1.722	1.245
$\mathrm{F}(000)$	981	764.0
Crystal size/mm ${ }^{3}$	$0.433 \times 0.259 \times 0.165$	$0.303 \times 0.218 \times 0.13$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.428-62.256	4.466 to 56.758
Index ranges	$\begin{aligned} & -26 \leq h \leq 26,-15 \leq k \leq 15,- \\ & 16 \leq 1 \leq 17 \end{aligned}$	$\begin{aligned} & -12 \leq \mathrm{h} \leq 12,-17 \leq \mathrm{k} \leq 17,- \\ & 19 \leq 1 \leq 19 \end{aligned}$
Reflections collected	59551	62543
Independent reflections	$\begin{aligned} & 7176\left[\mathrm{R}_{\text {int }}=0.0245, \mathrm{R}_{\text {sigma }}=\right. \\ & 0.026] \end{aligned}$	$\begin{aligned} & 8501\left[R_{\text {int }}=0.0322, R_{\text {sigma }}=\right. \\ & 0.0207] \end{aligned}$
Data/restraints/parameters	7176/1/258	8501/0/442
Goodness-of-fit on F^{2}	1.082	1.074
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0204, \mathrm{wR}_{2}=0.0518$	$\mathrm{R}_{1}=0.0293, \mathrm{wR}_{2}=0.0701$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0219, \mathrm{wR}_{2}=0.0523$	$\mathrm{R}_{1}=0.0353, \mathrm{wR}_{2}=0.0727$
Largest diff. peak/hole / e \AA^{-3}	0.64/-0.15	0.55/-0.32
Flack parameter		

Catalytic C-F borylation trial reactions

Table S17. Initial scan of additives for C-F borylation of 1,3 difluorobenzene.

Other Conditions explored		
Variation	Time (h)	Yield borylated product
$\mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)(8-8.5 \text { equiv. })+$ MeOH (20 equiv.) in 2 mL THF	6	53\%
$\begin{gathered} \mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)(8-8.5 \text { equiv.) }+ \\ \mathrm{H}_{2} \mathrm{O}(20 \text { equiv.) }+\mathrm{Zn} \text { dust (1 equiv.) } \end{gathered}$	16	29\%
$\mathrm{Ba}(\mathrm{OH})_{2}$	13	17\%
$\mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)(16-17$ equiv.)	7	0\%
$\mathrm{CsOH} \times \mathrm{H}_{2} \mathrm{O}$ (15-20\% $\mathrm{H}_{2} \mathrm{O}$) (8-8.5 equiv.)	24	32\%
$\mathrm{CsOH} \times \mathrm{H}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)(2-2.1$ equiv.)	7	29\%
$\begin{gathered} \mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)(4-4.3 \text { equiv. })+ \\ \mathrm{CsF} \text { (5 equiv.) } \end{gathered}$	24	35\%
TMSOAc	7	0\%
TMAF + LiOH	24	6\%
LiOH	24	17\%

Reaction conditions unless otherwise stated $-1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}\left(40 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 11\right.$ equiv.), $\mathrm{Ni}(\mathrm{COD})_{2}$ ($10 \mathrm{mg}, 0.036$ mmol), K 1 ($22 \mathrm{mg}, 0.072 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{pin}_{2}\left(92 \mathrm{mg}, 0.36 \mathrm{mmol}, 10\right.$ equiv.), additive ($0.36 \mathrm{mmol}, 10$ equiv.) and $\mathrm{CF}_{3} \mathrm{Ph}(20$ $\mu \mathrm{L}, 0.16 \mathrm{mmol}, 4.5$ equiv) were dissolved in 1 mL of THF and heated with stirring at $50^{\circ} \mathrm{C}$ for the specified time. Yields determined by integration of ${ }^{19} \mathrm{~F}$ NMR peak of 1-Bpin-3- $\mathrm{C}_{6} \mathrm{FH}_{4}$ and comparison to the internal standard $\mathrm{CF}_{3} \mathrm{Ph}$. Yields are relative to the theoretical yield (0.4 mmol) determined using 1,3 $\mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}$.

Table S18. Variation of reaction conditions with $\mathrm{H}_{2} \mathrm{O}$ as an additive.

Variation of reaction conditions with $\mathrm{H}_{2} \mathrm{O}$		
Additive/Variation	Time (h)	Yield borylated product
No additive	7	11\%
TMAF • $4 \mathrm{H}_{2} \mathrm{O}$	7	0\%
TMAOH $\cdot 5 \mathrm{H}_{2} \mathrm{O}$	7	0\%
$\mathrm{Ba}(\mathrm{OH})_{2}$	16	42\%
$\mathrm{Ca}(\mathrm{OH})_{2}$	16	25\%
LiOH	13	20\%
CsF	7	20\%
$\begin{gathered} \mathrm{CsOH} \times \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)(8- \\ 8.5 \text { equiv. }) \end{gathered}$	7	36\%
$\begin{gathered} \mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)(4- \\ 4.25 \text { equiv. }) \end{gathered}$	13	34\%
$\begin{gathered} \mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)(8- \\ 8.5 \text { equiv. })+\mathrm{H}_{2} \mathrm{O}(40 \text { equiv. }) \end{gathered}$	13	36\%
$\begin{gathered} \mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)(8- \\ 8.5 \text { equiv. })+\mathrm{H}_{2} \mathrm{O}(10 \text { equiv. }) \end{gathered}$	13	34\%
Reaction conditions unless otherwise stated $-1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}(40 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$, 11 equiv.), Ni(COD) $(10 \mathrm{mg}$, 0.036 mmol), $\mathrm{K} 1\left(22 \mathrm{mg}, 0.072 \mathrm{mmol}\right.$), $\mathrm{B}_{2} \mathrm{pin}_{2}(92 \mathrm{mg}, 0.36 \mathrm{mmol}, 10$ equiv.), additive ($0.36 \mathrm{mmol}, 10$ equiv.), $\mathrm{CF}_{3} \mathrm{Ph}\left(20 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 4.5\right.$ equiv) and $\mathrm{H}_{2} \mathrm{O}(10 \mu \mathrm{~L}, 0.72 \mathrm{mmol}, 20$ equiv.) were dissolved in 1 mL of THF and heated with stirring at $50^{\circ} \mathrm{C}$ for the specified time. Yields determined by integration of ${ }^{19} \mathrm{~F}$ NMR peak of 1-Bpin-3- $\mathrm{C}_{6} \mathrm{FH}_{4}$ and comparison to the internal standard $\mathrm{CF}_{3} \mathrm{Ph}$. Yields are relative to the theoretical yield (0.4 mmol) determined using $1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}$.		

Table S19. Variation of reaction conditions with alcohols as additives

Variation of reaction conditions with alcohols		
Alcohol	Time (h)	Yield borylated product
$\mathrm{MeOH}(50$ equiv. $)$	16	36%
'PrOH	16	31%
$t^{t} \mathrm{BuOH}$	16	34%
PhOH	16	0
$\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$	16	0
$\mathrm{EtOH}^{\mathrm{Et}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}}$	16	35%

Reaction conditions unless otherwise stated $-1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}\left(40 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 11\right.$ equiv.), $\mathrm{Ni}(\mathrm{COD})_{2}$ (10 mg , $0.036 \mathrm{mmol})$, $\mathrm{K} 1\left(22 \mathrm{mg}, 0.072 \mathrm{mmol}\right.$), $\mathrm{B}_{2} \mathrm{pin}_{2}\left(92 \mathrm{mg}, 0.36 \mathrm{mmol}, 10\right.$ equiv.), $\mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)$ ($54 \mathrm{mg}, 0.29-0.31 \mathrm{mmol}, 8-8.5$ equiv.), $\mathrm{CF}_{3} \mathrm{Ph}(20 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 4.5$ equiv.) and alcohol ($0.72 \mathrm{mmol}, 20$ equiv.) were dissolved in 1 mL of THF and heated with stirring at $50^{\circ} \mathrm{C}$ for the specified time. Yields determined by integration of ${ }^{19} \mathrm{~F}$ NMR peak of 1-Bpin-3- $\mathrm{C}_{6} \mathrm{FH}_{4}$ and comparison to the internal standard $\mathrm{CF}_{3} \mathrm{Ph}$. Yields are relative to the theoretical yield (0.4 mmol) determined using $1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}$.

Table S20. Variation of reaction conditions with MeOH as an additive

Variation of reaction conditions with MeOH		
Additive/Variation	Time (h)	Yield borylated product
$\mathrm{Ba}(\mathrm{OH})_{2}$	16	23%
$\mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)(8-$		
8.5 equiv.) $)$		

Table S21. Variation of reaction time with MeOH and CsOH additives and control reactions

Variable times and controls		
Variation	Time (h)	Yield borylated product
None	1	47\%
None	2	55\%
None	4	54\%
None	6	55\%
PEt_{3} (2 equiv.) no K1	4	0\%
$\mathrm{PPh}_{2} \mathrm{Et}$ (2 equiv.) no K1	4	0\%
PCy3 (2 equiv.), no K1	4	0\%
Reaction conditions unless otherwise stated $1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}(40 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 11$ equiv.), $\mathrm{Ni}(C O D)_{2}(10 \mathrm{mg}, 0.036 \mathrm{mmol}), \mathrm{K} 1(22 \mathrm{mg}, 0.072 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{pin}_{2}(184 \mathrm{mg}, 0.72 \mathrm{mmol}, 20$ equiv.), $\mathrm{CsOH} \cdot \mathrm{XH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)\left(54 \mathrm{mg}, 0.29-0.31 \mathrm{mmol}, 8-8.5\right.$ equiv.), $\mathrm{CF}_{3} \mathrm{Ph}(20 \mu \mathrm{~L}, 0.16$ mmol, 4.5 equiv) and MeOH ($30 \mu \mathrm{~L}, 0.72 \mathrm{mmol}, 20$ equiv.) were dissolved in 1 mL of THF and heated with stirring at $50^{\circ} \mathrm{C}$ for the specified time. Yields determined by integration of ${ }^{19} \mathrm{~F}$ NMR peak of 1-Bpin-3- $\mathrm{C}_{6} \mathrm{FH}_{4}$ and comparison to the internal standard $\mathrm{CF}_{3} \mathrm{Ph}$. Yields are relative to the theoretical yield (0.4 mmol) determined using $1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}$.		

Table S22. Variation of addition order and additives

Other Conditions explored		
Variation	Time (h)	Yield borylated product
None	4	55
$\mathrm{LiOH}\left(10\right.$ equiv.), no $\mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}(15-20 \%$ $\left.\mathrm{H}_{2} \mathrm{O}\right)$	4	35
Addition order*: combine MeOH and $\mathrm{CsOH} \cdot \mathrm{XH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)$ in THF, add $\mathrm{B}_{2} \mathrm{pin}_{2}$, fluoroarenes, then Ni complex	4	56
Addition order*: combine MeOH and $\mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)$ in THF, then add Ni complex, then $\mathrm{B}_{2} \mathrm{Pin}_{2}$ and fluoroarenes	4	53
Addition order*: combine MeOH and LiOH (20 equiv.) in THF, add $\mathrm{B}_{2} \mathrm{pin}_{2}$, fluoroarenes, then Ni complex, no $\mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}$	4	34
B_{2} neop ${ }_{2}$ (20 equiv.), no $\mathrm{B}_{2} \mathrm{pin}_{2}$	4	32
$\mathrm{B}_{2} \mathrm{Cat}_{2}$	2	0
LiOMe (10 equiv.), no $\mathrm{CsOH} \times \mathrm{XH}_{2} \mathrm{O}$	4	29
LiOMe (10 equiv.), no $\mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}$, no MeOH	4	10
No CsOH• $\mathrm{HH}_{2} \mathrm{O}$	2	8
$\mathrm{No} \mathrm{CsOH} \times \mathrm{H}_{2} \mathrm{O}$, no MeOH	2	6
RT	22	44
$100^{\circ} \mathrm{C}$	2	48
Reaction conditions unless otherwise stated $-1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}(40 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 11 \text { equiv.), Ni(COD) })_{2}(10 \mathrm{mg}, 0.036$ $\mathrm{mmol}), \mathrm{K} 1(22 \mathrm{mg}, 0.072 \mathrm{mmol})$, B_{2} pin $\mathrm{m}_{2}\left(184 \mathrm{mg}, 0.72 \mathrm{mmol}, 20\right.$ equiv.), $\mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)(54 \mathrm{mg}, 0.29-0.31$ mmol, 8-8.5 equiv.) and $\mathrm{CF}_{3} \mathrm{Ph}(20 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 4.5$ equiv) were dissolved in 1 mL of THF and heated with stirring at $50^{\circ} \mathrm{C}$ for the specified time. Yields determined by integration of ${ }^{19} \mathrm{~F}$ NMR peak of 1 -Bpin- $3-\mathrm{C}_{6} \mathrm{~F} \mathrm{H}_{4}$ and comparison to the internal standard $\mathrm{CF}_{3} \mathrm{Ph}$. Yields are relative to the theoretical yield (0.4 mmol) determined using $1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}$. *Standard order of addition: combine Ni(COD) $)_{2}, \mathrm{~K} 1$, and $\mathrm{B}_{2} \mathrm{Pin} 2$ in 1 mL THF. Add $\mathrm{CF}_{3} \mathrm{Ph}$, then $1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}$, then $\mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)$ and finally MeOH before placing on hot plate.		

Table S23. Variation of cations.

Alternative cations		
Variation	Time (h)	Yield borylated product
Combine K 1 and $\mathrm{PPh}_{4} \mathrm{Br}$ (2 equiv.) in THF, filter and dry to isolate crude $\mathrm{PPh}_{4} 1$, use instead of K1	2	8
Combine K1 and TBACI (2 equiv.) in THF, filter and dry to isolate crude TBA1, use instead of K1	2	46
Combine K1 and TEABr (2 equiv.) in THF, filter and dry to isolate crude TEA1, use instead of K1	2	35
Add 18-crown-6 (2 equiv.)	2	43
Reaction conditions unless otherwise stated $-1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}(40 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 11 \text { equiv.), Ni(COD) })_{2}(10 \mathrm{mg}, 0.036$ $\mathrm{mmol}), \mathrm{K} 1(22 \mathrm{mg}, 0.072 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{pin}_{2}\left(184 \mathrm{mg}, 0.72 \mathrm{mmol}, 20\right.$ equiv.), $\mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)(54 \mathrm{mg}, 0.29-0.31$ $\mathrm{mmol}, 8-8.5$ equiv.) and $\mathrm{CF}_{3} \mathrm{Ph}(20 \mu \mathrm{LL}, 0.16 \mathrm{mmol}, 4.5$ equiv) were dissolved in 1 mL of THF and heated with stirring at $50^{\circ} \mathrm{C}$ for the specified time. Yields determined by integration of ${ }^{19} \mathrm{~F}$ NMR peak of $1-$-Bpin- $-3-\mathrm{C}_{6} \mathrm{FH} 4$ and comparison to the internal standard $\mathrm{CF}_{3} \mathrm{Ph}$. Yields are relative to the theoretical yield (0.4 mmol) determined using $1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}$. *Standard order of addition: combine Ni(COD $)_{2}$, K 1 , and $\mathrm{B}_{2} \mathrm{pin} 2$ in 1 mL THF. Add $\mathrm{CF}_{3} \mathrm{Ph}$, then $1,3 \mathrm{C}_{6} \mathrm{~F}_{2} \mathrm{H}_{4}$, then $\mathrm{CsOH} \cdot \mathrm{xH}_{2} \mathrm{O}\left(15-20 \% \mathrm{H}_{2} \mathrm{O}\right)$ and finally MeOH before placing on hot plate.		

Table S24. Variation of reaction solvent.

Solvent variation		
Variation	Time (h)	Yield borylated product
Dioxane $(\varepsilon=2.25)$ instead of THF $(\varepsilon=7.58)$	2	43
Toluene $(\varepsilon=2.38)$ instead of THF $(\varepsilon=7.58)$	2	20
Diethyl ether $(\varepsilon=4.33)$ instead of THF $(\varepsilon=$	2	10
$7.58)$		

References

1. Molander, G. A.; Ham, J. Synthesis of Functionalized Organotrifluoroborates via Halomethyltrifluoroborates. Org. Lett. 2006. 8 (10), 2031-2034.
2. Gott, A. L.; Piers, W. E.; Dutton, J. L. McDonald, R,; Parvez, M., Dimerization of Ethylene by Palladium Complexes Containing Bidentate Trifluoroborate-Functionalized Phosphine Ligands. Organometallics 2011, 30 (16), 4236-4249.
3. Kim, Y.; Jordan, R. F.; Synthesis, Structures, and Ethylene Dimerization Reactivity of Palladium Alkyl Complexes that Contain a Chelating Phosphine Trifluoroborate Ligand. Organometallics 2011, 30, 4250-4256.
4. J-W.; Wang, L-N.; Li, M.; Tang, P-T.; Luo, X-P.; Jurmoo, M.; Liu, Y-J.; Zeng, M-H. Ruthenium-Catalyzed Gram-Scale Preferential C-H Arylation of Tertiary Phosphine. Org. Lett. 2019, 21 (8), 2885-2889.
5. Allen, D. W.; Taylor B. F. The chemistry of heteroarylphosphorus compounds. Part 15. Phosphorus-31 nuclear magnetic resonance studies of the donor properties of heteroarylphosphines towards selenium and platinum(II). J. Chem. Soc., Dalton Trans. 1982, 5154.
6. Niemayer, Z. L.; Milo A.; Hickey, D. P.; Sigman, M. S. Parameterization of phosphine ligands reveals mechanistic pathways and predicts reaction outcomes. Nat. Chem. 2016, 8(6), 610-617.
7. Shen, Y.; Pan, Y.; Liu, J.; Sattasathuchana, T.; Baldrige, K. K.; Duttwyler, S. Synthesis and full characterization of an iridium B-H activation intermediate of the monocarba-closododecaborate anion. Chem. Commun. 2017, 53, 176-179.
8. Chen, S.; Manoury, E.; Poli, R. Slow Exchange of Bidentate Ligands between Rhodium(I) Complexes: Evidence of Both Neutral and Anionic Ligand Exchange. Eur. J. Inorg. Chem. 2014, 34, 5820-5826.
9. Bresler, L. S.; Buzina, N. A.; Varshavsky, Y. S.; Kiseleva, N. V.; Cherkasova, T. G. Carbon13 nuclear magnetic resonance spectra of rhodium carbonyl complexes. J. Organomet. Chem., 1979, 171, 229-235.
10. Bootle-Wilbraham, A.; Head, S.; Longstaff, J.; Wyatt, P Alane - A chemoselective way to reduce phosphine oxides. Tetrahedron Lett., 1999, 40, 5267-5270.
11. Sheldrick, G. M. SHELXT- Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3-9.
12. Dolomanov, O.V.; Bourhis, L. J.; Gildea, R. J.; Howard, A. K.; and Puschmann, H.,. Olex2, a complete structure solution, refinement, and analysis program. J. Appl. Cryst. 2009. 42, 339
13. (a) Sheldrick, G. M. A Short History of SHELX. Acta Cryst. 2008, A64, 112-122. (b) Sheldrick, G. M. Crystal structure refinement with SHELX. Acta Cryst. 2015, C71, 3-8.
14. (a) Diaz, A. A.; Buster, B.; Schomish, D.; Khan, M. A.; Baum, C. J.; Wehmschulte, R. J. Size Mattters: Room Temperature P-C Bond Formation Through C-F Activation in mTerphenyldiiodophosphine. Inorg. Chem, 2008, 47 (7), 2858-2863. (b) Kreienbrink, A.; Sarosi, M. B.; Rys, E. G.; Lonnecke, P.; Hey-Hawkins, E. Carborane-substituted 1,2-Diphosphetanes. Angew. Chem. Int. Ed. 2011, 50 (20), 4701-4703.
15. Cronin, L.; Higgitt, C. L.; Karch, R.; Perutz, R. N. Rapid Intermolecular Carbon-Fluorine Bond Activation of Pentafluoropyridine at $\mathrm{Ni}(0)$: Comparative Reactivity of Fluorinated Arenes and Fluorinated Pyridine Derivatives. Organometallics 1997, 16(22), 4920-4928.
16. Amin, N.; Claridge, T. Quantitative NMR Spectroscopy. 2017. http://nmrweb.chem.ox.ac.uk/Data/Sites/70/userfiles/pdfs/quantitative-nmr.pdf
17. Zhou, J.; Kuntze-Fechner, M. W.; Bertermann, R.; Paul, U. S. D.; Berthel, J. H. J.; Friedrich, A.; Du, Z.; Marder, T. B.; Radius, U. Preparing (Multi)Fluoroarenes as Building Blocks for Synthesis: Nickel-Catalyzed Borylation of Polyfluoroarens via C-F Bond Cleavage. J. Am. Chem. Soc. 2016, 138, 5250-5253.
18. Bao, F.; Liu, Z.; Bai, H.; Zhang, H.; Liu, P.; Zhang, Q.; Chai, G. Palladium/Sensory Component-Catalyzed Homocoupling Reactions of Aryl Halides. Synlett. 2020, 31, 1501-1506.
19. Zick, M. E.; Lee, J.-H.; Gonzalez, M. I.; Velasquez, E. O.; Uliana, A. A.; Kim, J.; Long, J. R.; Milner, P. J. Fluoroarene Separations in Metal-Organic Frameworks with Two Proximal Mg^{2+} Coordination Sites. J. Am. Chem. Soc. 2021, 143, 1948-1958.
20. Firth, J. D.; Hammarback, L. A.; Burden, T. J.; Eastwood, J. B.; Donald, J. R.; Horbaczewskyj, C. S.; McRobie, M. T.; Tramaseur, A.; Clark, I. P.; Towrie, M.; Robinson, R.; Krieger, J.-P.; Lynam, J. M.; Fairlamb, I. J. S. Light- and Manganese-Initiated Borylation of Aryl Diazonium Salts: Mechanistic Insight on the Ultrafast Time-Scale Revealed by Time-Resolved Spectroscopic Analysis. Chem.-Eur. J. 2021, 27, 3979-3985.
21. Feofanov, M.; Akhmetov, V.; Takayama, R.; Amsharov, K. Catalyst-Free Synthesis of OHeteroacenes by Ladderization of Fluorinated Oligophenylenes. Angew. Chem. Int. Ed. 2020, 60, 5199-5203.
22. (a) Sigvartsen, T.; Gestblom, B.; Noreland, E.; Songstad J. Conductometric and Dielectric Behaviour of Solutions of Tetrabutylammonium Perchlorate in Solvents of Low and Medium Permittivity. Acta Chemica Scandinavica 1989, 43, 103-115.(b) Gestblom, B.; Songstad, J. Solvent Properties of Dichloromethane. VI. Dielectric Properties of Electrolytes in Dichloromethane. Acta Chemica Scandanavica 1987, 41B, 396-409.
23. Chen, L.; Ren, P.; Carrow, B. P. Tri(1-adamantyl)phosphine: Expanding the Boundary of Electron-Releasing Character Available to Organophosphorus Compounds. J. Am. Chem. Soc. 2016, 138, 6392-6395.
24. Neese, F."The ORCA program system" Wiley interdisciplinary Reviews - Computational Molecular Science, 2012, 2, 73-78.
25. Weigend F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297.
26. Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
27. Struppe, J.; Zhang, Y.; Rozovsky, S. ${ }^{77}$ Se Chemical Shift Tensor of L-selenocystine: Experimental NMR Measurements and Quantum Chemical Investigations of Structural Effects. J. Phys. Chem. B. 2015, 119 (9), 3643-3650.

28 Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C., The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152 (22).
29. Feynman, R.P.; Leighton, R. B.; Sands, M. L. Chapter 4: Electrostatics. In The Feynman Lectures on Physics: Mainly Electromagnetism and Matter [Online]; Gottlieb, M. A., Pfeiffer, R., Eds.; Basic Books, USA, 2011. https://www.feynmanlectures.caltech.edu/info/ (accessed October 2020).
30. Avogadro: an open-source molecular builder and visualization tool. Version 1.2.0 http://avogadro.cc/, Marcus D Hanwell, Donald E Curtis, David C Lonie, Tim Vandermeersch, Eva Zurek and Geoffrey R Hutchison; "Avogadro: An advanced semantic chemical editor, visualization, and analysis platform" Journal of Cheminformatics 2012, 4, 17.
31. Tolman, C. A. Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis. Chem. Rev. 1977, 77, 313-348.
32. (a) See Figure 2 in Wang, P. Anderko, A. Computation of dielectric constants of solvent mixtures and electrolyte solutions. Fluid Phase Equilibr. 2001, 186 (1-2), 103-122. (b) Jouyban, A.; Soltanpour, S.; Chan, H.-K. A Simple Relationship between Dielectric Constant of Mixed Solvents with Solvent Composition and Temperature Int. J. Pharm. 2004, 269, 353-360. (c) Jouyban, A.; Soltanpour, S. Prediction of Dielectric Constants of Binary Solvents at Various Temperatures J. Chem. Eng. Data 2010, 55, 2951-2963.
33. Batsanov, S. S. Van der Waals Radii of Elements Inorganic Materials 2001, 37, 871-885.

