Supporting Information

Enantioselective Palladium-Catalyzed (3+2) Spiroannulation of Cyclopropenones with Cyclic 1,3-Diketones: Merging C(sp2)-C(sp2) σ Bond Activation and Desymmetrization

Han-Qi Zhou⁺, Xing-Wei Gu⁺, Xiao-Hua Zhou, Li Li, Fei Ye, Zheng Xu, and Li-Wen Xu^{*}

Content

1. General Information	S1
2. General procedure for the synthesis of 1,3-diones.	S1
3. General procedure for the synthesis of products 3.	S4
Table S1. The effect of P-ligands L1-L10 in the reaction.	S26
Table S2. The screen of temp in the reaction.	S28
Table S3. The effect of P-ligands L11-L16 in the reaction	S28
Table S4. The screen of palladium metal salts in the reaction	S29
Table S5. The screen of the reaction concentration.	S30
Table S6. The effect of P-ligands L17-L20 in the reaction.	S30
Table S7. The screen of solvents in the reaction.	S31
Scheme S1. Substrate scope	S32
4. Transformation of Products.	S34
5. Supplementary Figures	S37
Figure S1. Comparison of ³¹ P NMR of ligand and Pd/L7 comple	ex in the
reaction with 1a and 2a	S37
Figure S2. Proposed catalytic cycles for the model reaction system	S38
Figure S3. Control Experiments	S39
Figure S4. NOESY spectrum of 4. The determination of the strunroduct 4.	icture of S40
Figure S5. NOESY spectrum of 5. The determination of the stru	icture of
product 5.	S40
6. The confirmation of the absolute configuration of chiral product	S41
7. References	S42
8. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra	S43
9. HPLC and UPLC Spectra	S90

1. General Information

Unless specifically stated, all reagents were commercially obtained and where appropriate, purified prior to use. Dichloromethane (DCM), toluene, were freshly distilled from CaH₂, Ether (Et₂O), tetrahydrofuran (THF) and 1, 4-dioxane were dried and distilled from metal sodium and benzophenone. Alcohol solvents were dried and distilled from metal magnesium. Other commercially available reagents and solvents were used directly without purification. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica (200 - 300 mesh). ¹H, ¹³C NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer in CDCl₃. Multiplicities were given as: s (singlet); d (doublet); dd (doublets of doublet); t (triplet); q (quartet) or m (multiplets). High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOF-spectrometer. HPLC was carried out with a Agilent 1260 infinity, Waters AcQuity HPLC or Waters AcQuity UPLC using a chiralcel OD column, a chiralcel MD column.

2. General procedure for the synthesis of 1,3-diones.^{1,2,3}

a): To a stirred mixture of 2-Methyl-1,3-cyclopentanedione in H_2O (1 mol/L) was added portionwise powdered NaHCO₃ (1 equiv.) followed by addition of benzyl bromide (2 equiv.). the reaction suspension was stirred at 80 °C overnight. After cooling down to room temperature, the reaction mixture was extracted with dichloromethane 3 times. The combined solvent was dried over Na₂SO₄. After removing the solvent under vacuum, the crude material was applied onto column chromatography to afford the intermediate product.

b): Dissolve the intermediate product in MeOH followed by addition of $CuBr_2$ (2.2 equiv.). The mixture was refluxed under N₂ for 1 h. It was allowed to cool down and evaporated under vacuum. The residual was subject to column chromatography to give

desired 1,3-dione.

2-(2-bromobenzyl)-2-methylcyclopent-4-ene-1,3-dione (2i):

Yellow Solid, mp 74-77°C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.43 (m, 1H), 7.21 - 7.12 (m, 3H), 7.05 (m, 2H), 3.19 (s, 2H), 1.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.4, 148.5, 135.3, 133.5, 131.9, 128.9, 127.4, 125.4, 77.5, 77.16, 76.8, 51.5, 39.9, 18.5. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₃H₁₁NaO₂: 300.9835, found: 300.9821.

2-([1,1'-biphenyl]-4-ylmethyl)-2-methylcyclopent-4-ene-1,3-dione (2m):

Yellow Solid, mp 112-115°C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 - 7.48 (m, 2H), 7.43 - 7.36 (m, 4H), 7.34 - 7.27 (m, 1H), 7.00 (d, J = 8.8 Hz, 4H), 3.03 (s, 2H), 1.27 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 207.4, 148.9, 140.5, 139.8, 134.7, 130.2, 128.9, 127.4, 127.1, 127.0, 77.5, 77.2, 76.8, 52.6, 40.5, 19.5. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₉H₁₆NaO₂: 299.1043, found: 299.1030.

2-(3-chloro-5-fluorobenzyl)-2-methylcyclopent-4-ene-1,3-dione (2n):

Yellow Solid, mp 64-67°C. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (s, 2H), 7.09 - 6.99 (m, 2H), 6.86 (td, J = 8.2, 2.8 Hz, 1H), 3.12 (s, 2H), 1.25 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 206.4, 161.6 (d, J = 248.5 Hz), 148.5, 135.3 (d, J = 10.1 Hz), 133.0 (d, J = 8.6 Hz), 130.0 (d, J = 3.6 Hz), 117.3 (d, J = 24.5 Hz), 114.1 (d, J = 21.0 Hz). 51.4, 36.7, 18.6. ¹⁹F NMR (500 MHz, CDCl₃) δ -112.7, -112.8, -112.8, -112.8.

2-methyl-2-(3-(trifluoromethyl)benzyl)cyclopent-4-ene-1,3-dione (2t):

Yellow Solid, mp 34-37°C. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.6 Hz, 1H), 7.35 - 7.27 (m, 1H), 7.21 (d, J = 2.0 Hz, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.04 (s, 2H), 3.05 (s, 2H), 1.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.8, 148.9, 135.0 (d, J = 329.9 Hz), 130.8 (q, J = 32.0 Hz), 128.9, 126.5 (q, J = 3.7 Hz), 124.1 (q, J = 3.8 Hz), 124.0 (q, J = 270.6 Hz), 124.0 (q, J = 811.9 Hz), 52.3, 40.1, 19.7. ¹⁹F NMR (500 MHz, CDCl₃) δ -62.8.

4-((1-methyl-2,5-dioxocyclopent-3-en-1-yl)methyl)benzonitrile (2v):

Yellow Solid, mp 116-119°C. ¹H NMR (400 MHz, CDCl₃) δ 7.5 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 12.0 Hz, 4H), 3.05 (s, 2H), 1.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.5, 148.8, 141.1, 132.2, 130.7, 118.6, 111.2, 77.5, 77.2, 76.8, 52.2, 40.1, 19.8.

2-(3-chlorobenzyl)-2-ethylcyclopent-4-ene-1,3-dione (2x):

Yellow Solid, mp 102-105°C. ¹H NMR (400 MHz, CDCl₃) δ 7.07 - 6.94 (m, 4H), 6.84 (s, 1H), 6.78 - 6.67 (m, 1H), 2.86 (s, 2H), 1.75 (q, J = 7.6 Hz, 2H), 0.66 (t, J = 7.6 Hz,

3H). ¹³C NMR (100 MHz, CDCl3) δ 207.3, 150.3, 137.5, 134.2, 129.9, 129.7, 128.2, 127.4, 57.4, 39.6, 27.9, 9.1.

2-ethyl-2-(naphthalen-2-ylmethyl)cyclopent-4-ene-1,3-dione (2y):

Yellow Solid, mp 85-88°C.¹H NMR (400 MHz, CDCl₃) δ 7.68 - 7.56 (m, 2H), 7.51 (d, J = 8.4 Hz, 1H), 7.35 -7.22 (m, 3H), 6.92 (dd, J = 8.4, 1.8 Hz, 1H), 6.82 (s, 2H), 3.02 (s, 2H), 1.79 (q, J = 7.5 Hz, 2H), 0.65 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.7, 150.4, 133.2, 133.1, 132.4, 128.7, 128.1, 127.9, 127.6, 126.2, 125.9, 57.8, 40.5, 27.8, 9.1.

3. General procedure for the synthesis of products 3.

A vial was charged with 1,3-diones 1 (0.2 mmol), cyclopropenone 2 (0.4 mmol), $Pd_2(dba)_3 \cdot CHCl_3$ (5 mol%), (*R*,*R*)-L15 (10 mol%) and evacuated under high vacuum and backfilled with N₂. MCB (0.4 mL) was next added. The mixture was stirred at 25 °C for 18 hours. Upon reaction completion, the crude was purified by column chromatography to give the corresponding product and was analyzed with ¹H NMR to determine the diastereomeric ratio and recovered.

(5*R*,6*S*)-6-benzyl-6-methyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3a):

Yellow solid (70.8 mg, 87% yield), mp 159-162°C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{\rm p}^{25}$ = -119.2 (c = 1.23, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 6.0 Hz, 1H), 7.28 - 7.23 (m, 6H), 7.23 - 7.18 (m, 5H), 7.16 -7.10 (m, 2H), 6.99 - 6.90 (m, 2H), 6.49 (d, *J* = 6.0 Hz, 1H), 3.07 (s, 2H), 0.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.0, 170.6, 159.8, 155.9, 136.2, 131.8, 131.1, 130.1, 129.8, 129.6, 129.2, 129.0, 128.9, 128.4, 128.0, 126.9, 95.2, 58.1, 43.9, 17.9. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₈H₂₂NaO₃: 429.1461, found: 429.1455. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 75:25, 1 mL/min, 211 nm, 92% *ee*, *d.r.* > 19:1); major enantiomer tr = 4.311 min, minor enantiomer tr = 7.746 min.

(5*R*,6*S*)-6-methyl-6-(2-methylbenzyl)-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8diene-2,7-dione (3b):

Yellow solid (68.2 mg, 81% yield), mp 140-143°C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_p^{25}$ = -150.8 (c = 1.47, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 6.0 Hz, 1H), 7.18 (d, *J* = 14.4 Hz, 6H), 7.13 (d, *J* = 15.2 Hz, 2H), 7.06 - 6.90 (m, 6H), 6.56 (d, *J* = 5.6 Hz, 1H), 3.13 - 2.93 (m, 2H), 2.12 (s, 3H), 0.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 204.9, 170.6, 159.9, 155.3, 137.5, 136.7, 134.5, 131.9, 131.6, 130.7, 130.1, 129.9, 129.6, 129.4, 129.2, 129.1, 128.9, 128.5, 127.1, 125.3, 95.6, 58.5, 41.0, 20.4, 16.0. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₉H₂₂NaO₃: 443.1618, found: 443.1632. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 90:10, 1 mL/min, 230 nm, 91% *ee*, *d.r.* = 10:1); major enantiomer tr = 6.690 min, minor enantiomer tr = 9.385 min.

(5*R*,6*S*)-6-methyl-6-(3-methylbenzyl)-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8diene-2,7-dione (3c):

Yellow oil (74.9 mg, 89% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25}$ = -87.0 (c = 2.19, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 6.0 Hz, 1H), 7.23 - 7.09 (m, 8H), 7.06 (m, 1H), 6.94 (d, *J* = 7.6 Hz, 1H), 6.91 - 6.81 (m, 4H), 6.43 (d, *J* = 6.0 Hz, 1H), 2.97 (m, 2H), 2.23 (s, 3H), 0.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.1, 170.6, 159.8, 155.8, 137.5, 136.1, 131.9, 131.9, 130.1, 129.8, 129.6, 129.2, 129.1, 129.0, 128.9, 128.4, 128.1, 127.9, 127.6, 95.2, 58.0, 43.7, 21.5, 18.0. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₉H₂₂NaO₃: 443.1618, found: 443.1636. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 90:10, 1 mL/min, 230 nm, 93% *ee d.r.* > 19:1); major enantiomer tr = 10.037 min, minor enantiomer tr = 5.301 min.

(5R,6S)-6-methyl-6-(4-methylbenzyl)-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-

diene-2,7-dione (3d):

Yellow solid (72.2 mg, 86% yield), mp 128-131°C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25}$ = -337.4 (c = 0.78, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 6.0 Hz, 1H), 7.31 - 7.17 (m, 8H), 7.06 (d, *J* = 7.6 Hz, 1H), 7.04 - 6.93 (m, 5H), 6.50 (d, *J* = 6.0 Hz, 1H), 3.03 (s, 2H), 2.30 (s, 3H), 0.93 (s, 3H). ¹³C NMR (100

MHz, CDCl₃) δ 206.0, 170.6, 159.8, 155.8, 136.4, 136.3, 133.1, 131.8, 131.0, 130.1, 129.8, 129.6, 129.2, 129.0, 128.9, 128.8, 128.4, 95.3, 58.2, 43.8, 21.2, 17.7. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₉H₂₂NaO₃: 443.1618, found: 443.1635. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 90:10, 1 mL/min, 230 nm, 93% *ee*, *d.r.* > 19:1); major enantiomer tr = 11.308 min, minor enantiomer tr = 5.500 min.

(5*R*,6*S*)-6-(2-fluorobenzyl)-6-methyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3e):

Yellow solid (84.5 mg, 99% yield), mp 174-177°C, purified by column chromatography (SiO₂, PE/EA= 4:1). [α]_p²⁵ = -150.2 (c = 1.65, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 5.6 Hz, 1H), 7.23 - 7.15 (m, 6H), 7.15 - 7.09 (m, 3H), 7.04 -6.92 (m, 4H), 6.92 - 6.85 (m, 1H), 6.58 (d, *J* = 6.0 Hz, 1H), 3.06 (d, *J* = 14.0 Hz, 1H), 2.97 (d, *J* = 13.6 Hz, 1H), 0.83 (s, 3H). ¹³C NMR (100 MHz, CHCl₃) δ 204.3, 170.6, 161.5 (d, *J* = 244.0 Hz), 159.7, 154.9, 136.7, 133.1 (d, *J* = 4.0 Hz), 131.5, 130.0, 129.8, 129.6, 129.5, 129.3, 129.2, 129.1, 129.1, 129.0, 128.9, 128.5, 128.4, 123.6 (d, *J* = 3.0 Hz), 123.2 (d, *J* = 16.0 Hz), 115.3 (d, *J* = 22.0 Hz), 95.4, 57.9, 37.9, 15.5. ¹⁹F NMR (500 MHz, CDCl₃) δ -112.8 - -114.0 (m). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₈H₂₁FNaO₃: 447.1367, found: 447.1378. The enantiomeric excess was determined by UPLC with Chiralpark MD column (hexanes:2-propanol = 85:15, 1 mL/min, 211 nm, 92% *ee*, *d.r.* = 9:1); major enantiomer tr = 6.542 min, major enantiomer tr = 4.901 min, minor enantiomer tr = 8.976 min.

(5*R*,6*S*)-6-(4-fluorobenzyl)-6-methyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3f):

Yellow oil (80.5 mg, 95% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25}$ = -407.8 (c = 0.79, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 5.6 Hz, 1H), 7.21 - 7.16 (m, 4H), 7.16 - 7.11 (m, 4H), 7.05 -6.99 (m, 2H), 6.93 - 6.82 (m, 4H), 6.40 (d, *J* = 5.6 Hz, 1H), 2.96 (s, 2H), 0.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.9, 170.5, 161.9 (d, *J* = 243.7 Hz), 159.7, 156.1, 136.3, 132.6 (d, *J* = 7.9 Hz), 131.9 (d, *J* = 3.1 Hz), 131.7, 130.0, 129.9, 129.6, 129.2, 129.1, 129.1, 129.0, 128.4, 114.9 (d, *J* = 20.7 Hz), 95.2, 58.0, 43.3, 17.7. ¹⁹F NMR (500 MHz, CDCl₃) δ -115.9 - -116.1 (m). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₈H₂₁FNaO₃: 447.1367, found: 447.1376. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 90:10, 1 mL/min, 230 nm, 92% *ee*, *d.r.* > 19:1); major enantiomer tr = 5.479 min, minor enantiomer tr = 11.969 min.

(5*R*,6*S*)-6-(4-chlorobenzyl)-6-methyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3g):

Yellow solid (87.3 mg, 99% yield), mp 141-144°C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{D}^{25}$ = -177.9 (c = 2.26, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.0 Hz, 1H), 7.21 - 7.10 (m, 10H), 7.00 (m, 2H), 6.94 - 6.87 (m, 2H), 6.40

(d, J = 5.6 Hz, 1H), 2.94 (m, 2H), 0.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 204.4, 170.5, 159.7, 154.1, 137.3, 135.8, 133.0, 133.0, 131.6, 130.1, 129.8, 129.6, 129.3, 129.2, 129.1, 128.9, 128.7, 128.4, 126.8, 126.6, 95.4, 77.5, 77.3, 77.1, 76.8, 57.9, 43.3, 15.7. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₈H₂₁ClNaO₃: 463.1071, found: 463.1083. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 90:10, 1 mL/min, 230 nm, 92% *ee*, *d.r.* > 19:1); major enantiomer tr = 5.376 min, minor enantiomer tr = 12.495 min.

(5*R*,6*S*)-6-(3-chlorobenzyl)-6-methyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3h):

Yellow oil (80 mg, 91% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25}$ = -92.8 (c = 2.63, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 6.0 Hz, 1H), 7.21 - 7.10 (m, 10H), 7.06 (d, *J* = 2.0 Hz, 1H), 6.98 - 6.85 (m, 3H), 6.43 (d, *J* = 6.0 Hz, 1H), 2.95 (s, 2H), 0.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.7, 170.4, 159.6, 156.1, 138.3, 136.1, 133.8, 131.8, 131.0, 130.1, 129.9, 129.6, 129.3, 129.3, 129.1, 129.1, 129.1, 129.0, 128.4, 127.2, 95.0, 77.5, 77.2, 76.8, 57.7, 43.3, 18.0. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₈H₂₁ClNaO₃: 463.1071, found: 463.1063. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 90:10, 1 mL/min, 230 nm, 91% *ee*, *d.r.* > 19:1); major enantiomer tr = 6.065 min, minor enantiomer tr = 10.430 min.

(5*R*,6*S*)-6-(2-bromobenzyl)-6-methyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3i):

Yellow oil (81.5 mg, 84% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{\rm p}^{35}$ = -52.8 (c = 1.68, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.48 - 7.40 (m, 3H) (major), 7.37 (dd, J = 7.7, 1.7 Hz, 0.4H) (minor), 7.25 - 7.10 (m, 12.5H), 7.07 (dd, J = 7.8, 1.9 Hz, 1.3H), 7.04 - 6.92 (m, 4.2H), 6.65 (d, J = 5.8 Hz, 1H) (major), 6.57 (d, J = 5.8 Hz, 0.2H) (minor), 3.30 - 3.10 (m, 2H) (major), 2.94 - 2.64 (m, 0.5H) (minor), 1.35 (s, 1H) (minor), 0.86 (s, 3H) (major).¹³C NMR (100 MHz, CDCl₃) δ 206.9, 204.5, 170.6, 159.8, 159.1, 156.0, 154.2, 137.4, 136.9, 135.9, 135., 133.1, 133.0, 132.0, 131.7, 131.5, 130.9, 130.2, 130.1, 130.0, 129.7, 129.5, 129.4, 129.3, 129.3, 129.2, 129.1, 129.0, 128.8, 128.6, 128.5, 128.4, 127.3, 126.9, 126.7, 126.7, 96.2, 95.5, 77.5, 77.4, 77.2, 76.8, 58.0, 56.8, 43.4, 37.2, 27.0, 22.9, 15.8, 14.2. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₈H₂₁BrNaO₃: 507.0566, found: 507.0583. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 85:15, 0.6 mL/min, 211 nm, 90% *ee* (major), >99% (minor), *d.r.* = 4:1); major enantiomer tr = 15.182 min, major enantiomer tr = 2.655 min, major enantiomer tr = 8.402 min.

(5*R*,6*S*)-6-(4-bromobenzyl)-6-methyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3j):

Yellow solid (93.1mg, 96% yield), mp 135-138 °C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{\rm p}^{25}$ = -78.1 (c = 2.56, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 5.6 Hz, 1H), 7.40 - 7.34 (m, 2H), 7.31- 7.26 (m, 3H), 7.24 - 7.18 (m, 5H), 7.06 - 6.93 (m, 4H), 6.48 (d, *J* = 5.6 Hz, 1H), 3.01 (m, 2H), 0.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.8, 170.5, 159.6, 156.2, 136.3, 135.3, 132.8, 131.7, 131.1, 130.1, 129.9, 129.5, 129.2, 129.1, 129.1, 129.0, 128. 5, 121.0, 95.1, 77.5, 77.4, 77.2, 76.8, 57.9, 43.5,

17.8. HRMS (ESI) m/z: $[M+Na]^+$ calculated for C₂₈H₂₁BrNaO₃: 507.0566, found: 507.0574. The enantiomeric excess was determined by HPLC with Chiralpark OD column (hexanes:2-propanol = 80:20, 0.5 mL/min, 210 nm, 90% *ee*, *d.r.* = 17:1); major enantiomer tr = 46.783 min, minor enantiomer tr = 52.708 min.

(5*R*,6*S*)-6-(3,5-dimethylbenzyl)-6-methyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8diene-2,7-dione (3k):

Yellow oil (80.8 mg, 93% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25}$ = -117.0 (c = 2.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 6.0 Hz, 1H), 7.21 - 7.15 (m, 4H), 7.14 - 7.09 (m, 4H), 6.92 - 6.84 (m, 2H), 6.76 (s, 1H), 6.66 (d, *J* = 1.6 Hz, 2H), 6.44 (d, *J* = 5.6 Hz, 1H), 3.00 - 2.82 (m, 2H), 2.19 (s, 6H), 0.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.1, 170.6, 159.8, 155.7, 137.3, 136.1, 136.0, 131.9, 130.0, 129.8, 129.6, 129.2, 129.1, 129.0, 128.9, 128.5, 128.4, 95.3, 77.5, 77.2, 76.8, 57.9, 43.4, 21.3, 17.9. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₃₀H₂₆NaO₃: 457.1774, found: 457.1794. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 90:10, 1 mL/min, 230 nm, 92% *ee*, *d.r.* > 19:1); major enantiomer tr = 4.278 min, minor enantiomer tr = 8.875 min.

(5*R*,6*S*)-6-methyl-6-(naphthalen-2-ylmethyl)-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3l):

Yellow solid (89.4 mg, 98% yield), mp 146-149°C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25}$ = -162.9 (c = 2.98, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.75 - 7.67 (m, 2H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.58 (d, *J* = 2.0 Hz, 1H), 7.39 - 7.33 (m, 2H), 7.30 (d, *J* = 6.0 Hz, 1H), 7.19 - 7.14 (m, 3H), 7.13 - 7.06 (m, 4H), 7.04 - 6.98 (m, 2H), 6.87 - 6.80 (m, 1H), 6.38 (d, *J* = 6.0 Hz, 1H), 3.15 (s, 2H), 0.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.2, 170.6, 159.7, 156.0, 136.2, 133.9, 133.2, 132.4, 131.8, 130.1, 123.0, 129.8, 129.5, 129.2, 129.1, 129.1, 129.0, 128.9, 128.4, 127.9, 127.6, 127.4, 126.0, 125.8, 95.2, 77.5, 77.4, 77.2, 76.8, 58.0, 44.0, 18.4. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₃₂H₂₄NaO₃: 479.1618, found: 479.1633. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 90:10, 1 mL/min, 230 nm, 91% *ee*, *d.r.* > 19:1); major enantiomer tr = 7.973 min, minor enantiomer tr = 15.258 min.

(5*R*,6*S*)-6-([1,1'-biphenyl]-4-ylmethyl)-6-methyl-3,4-diphenyl-1-oxaspiro[4.4] nona-3,8-diene-2,7-dione (3m):

Yellow solid (76.9 mg, 80% yield), mp 173-176°C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{\rm p}^{25}$ = -309.8 (c = 1.22, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.54 - 7.47 (m, 2H), 7.44 - 7.39 (m, 2H), 7.38 - 7.31 (m, 3H), 7.25 (m, 1H), 7.20 - 7.08 (m, 10H), 6.93 - 6.85 (m, 2H), 6.43 (d, *J* = 5.6 Hz, 1H), 3.03 (s, 2H), 0.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.1, 170.6, 159.8, 156.0, 140.8, 139.6, 136.2, 135.4, 131.8, 131.5, 130.1, 129.9, 129.6, 129.2, 129.0, 129.0, 128.8, 128.4, 127.3, 127.1, 126.7, 95.2, 77.5, 77.2, 76.8, 58.1, 43.6, 18.1. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₃₄H₂₆NaO₃: 505.1774, found: 505.1794. The enantiomeric excess was determined by HPLC with Chiralpark AD column (hexanes:2-propanol = 80:20, 0.7 mL/min, 210 nm,

93% *ee*, *d.r.* > 19:1); major enantiomer tr = 17.021 min, major enantiomer tr = 14.79 min, minor enantiomer tr = 36.692 min.

(5*R*,6*S*)-6-(2-chloro-4-fluorobenzyl)-6-methyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3n):

Yellow oil (81.1 mg, 88% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25} = -86.6$ (c = 2.21, CHCl₃). ¹H NMR (400 MHz, CHCl₃) δ 7.46 - 7.40 (m, 1H), 7.31 - 7.08 (m, 11H), 7.05 - 6.93 (m, 5H), 6.86 - 6.77 (m, 1H), 6.61 (d, J = 6.0 Hz, 1H) (major), 6.54 (d, J = 6.0 Hz, 0.3H) (minor), 3.30 - 2.96 (m, 2H) (major), 2.78 - 2.55 (m, 0.6H) (minor), 1.12 (s, 0.8H) (minor), 0.83 (s, 3H) (major). ¹³C NMR (100 MHz, CDCl₃) δ 206.6, 204.2, 170.5, 170.4, 162.6 (d, J = 28.0 Hz), 160.3, 160.0, 159.6, 158.9, 155.9, 154.6, 137.1, 136.1 (d, J = 10.0 Hz), 135.8 (d, J = 10.0 Hz), 133.9 (d, J = 8.0 Hz), 133.0 (d, J = 8.0 Hz), 131.5, 131.4, 130.9 (d, J = 3.0 Hz), 130.0 (d, J = 16.0 Hz), 130.0 (d, J = 4.0 Hz), 130.0, 129.4, 129.4, 129.2 (d, J = 1.9 Hz), 129.1 (d, J = 2.6 Hz), 129.0, 129.0, 128.5, 116.9 (d, J = 24.7 Hz), 116.7 (d, J = 24.8 Hz), 113.6 (d, J = 20.9 Hz), 95.9, 95.4, 57.8, 56.6, 40.6, 33.7, 22.5, 15.4. ¹⁹F NMR (500 MHz, CHCl₃) δ -113.1 - -113.3 (m) (major), -113.4 - -113.73 (m) (minor). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₈H₂₀ClFNaO₃: 481.0977, found: 481.0993. The enantiomeric excess was determined by HPLC with Chiralpark AD column (hexanes:2-propanol = 80:20, 0.7 mL/min, 210 nm, 88% ee (major), >99% ee (minor), d.r. = 4:1); major enantiomer tr = 13.850 min, major enantiomer tr = 10.013 min, minor enantiomer tr = 24.598 min.

Methyl 4-(((5*R*,6*S*)-6-methyl-2,7-dioxo-3,4-diphenyl-1-oxaspiro [4.4] nona-3,8dien-6-yl) methyl) benzoate (30):

Yellow solid (92.2 mg, 99% yield), mp 138-141°C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_p^{25}$ = -66.7 (c = 2.74, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 6.0 Hz, 1H), 7.23 - 7.08 (m, 10H), 6.95 - 6.82 (m, 2H), 6.41 (d, *J* = 5.6 Hz, 1H), 3.80 (s, 3H), 3.02 (s, 2H), 0.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.6, 170.4, 167.0, 159.5, 156.1, 141.7, 136.2, 131.6, 131.1, 130.0, 129.9, 129.5, 129.2, 129.2, 129.1, 129.1, 129.0, 128.9, 128.7, 128.4, 95.0, 77.5, 77.2, 76.8, 57.9, 52.1, 43.9, 17.8. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₃₀H₂₄NaO₅: 487.1516, found: 487.1532. The enantiomeric excess was determined by HPLC with Chiralpark OD column (hexanes:2-propanol = 80:20, 0.5 mL/min, 254 nm, 92% *ee*, *d.r.* > 19:1); major enantiomer tr = 76.447 min, major enantiomer tr = 89.884 min, minor enantiomer tr = 53.108 min.

(5*R*,6*S*)-6-methyl-6-(2-nitrobenzyl)-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3p):

Yellow solid (50.8 mg, 56% yield), mp 140-143°C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{\rm D}^{25}$ = 75.2 (c = 1.55, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.93 - 7.86 (m, 1H) (major), 7.85 - 7.79 (m, 0.3H) (mionr), 7.51 - 7.38 (m, 3H), 7.31 (m,

1.5H), 7.25 - 7.17 (m, 8H), 7.16 - 7.10 (m, 2H), 7.09 - 7.03 (m, 1H), 7.01 - 6.92 (m, 2H), 6.58 (d, J = 5.6 Hz, 1H) (major), 6.55 (d, J = 5.6 Hz, 0.2H) (minor), 4.17 - 3.96 (m, 1H), 3.79 (d, J = 14.0 Hz, 1H), 3.31 (s, 0.3H) (minor), 3.22 (d, J = 14.0 Hz, 1H), 3.00 (d, J = 14.0 Hz, 0.2H) (minor), 2.87 (d, J = 14.4 Hz, 0.2H) (minor), 1.96 (s, 1H), 1.20 - 1.13 (m, 1H), 1.09 (d, J = 14.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 206.1, 205.1, 171.3, 170.4, 159.4, 156.2, 154.8, 149.8, 147.9, 136.9, 135.7, 135.0, 134.2, 133.5, 132.9, 132.5, 132.2, 131.7, 131.6, 131.4, 131.0, 130.3, 130.1, 129.9, 129.8, 129.6, 129.3, 129.3, 129.2, 129.1, 129.0, 128.8, 128.5, 128.5, 128.4, 125.5, 125.4, 125.0, 95.8, 95.3, 77.5, 77.2, 76.8, 60.5, 56.9, 40.4, 36.4, 16.2, 14.3. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₈H₂₁NNaO₅: 474.1312, found: 474.1331. The enantiomeric excess was determined by HPLC with Chiralpark OD column (hexanes:2-propanol = 75:25, 1 mL/min, 210 nm, 92% *ee*, *d.r.* = 6:1); major enantiomer tr = 21.442 min, major enantiomer tr = 10.279 min, minor enantiomer tr = 19.485 min.

(5*R*,6*S*)-6-methyl-3,4-diphenyl-6-(thiophen-2-ylmethyl)-1-oxaspiro[4.4]nona-3,8diene-2,7-dione (3q):

Yellow oil (43.6 mg, 53% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). [α]²⁵_p = -10.1 (c = 0.85, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 6.0 Hz, 1H), 7.25 - 7.11 (m, 6H), 7.10 (m, 1.6 Hz, 3H), 6.96 - 6.89 (m, 2H), 6.87 (m, 3.5 Hz, 1H), 6.82 (m, 1.2 Hz, 1H), 6.45 (d, *J* = 6.0 Hz, 1H), 3.30 (d, *J* = 14.8 Hz, 1H), 3.14 (d, *J* = 14.8 Hz, 1H), 0.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.7, 170.4, 159.4, 156.5, 138.0, 135.7, 132.1, 130.4, 129.9, 129.7, 129.2, 129.0, 129.0, 129.0, 128.9, 128.4, 126.8, 125.1, 94.9, 77.5, 77.2, 76.8, 56.9, 37.5, 19.1, 1.1. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₆H₂₀NaO₃S: 435.1025, found: 435.1039. The enantiomeric excess was determined by HPLC with Chiralpark AD column (hexanes:2-propanol = 80:20, 0.7 mL/min, 210 nm, 92% *ee*, d.r. > 19:1); major enantiomer tr = 13.817 min, major enantiomer tr = 13.048 min, minor enantiomer tr = 33.073 min.

(5*R*,6*S*)-6-(but-2-yn-1-yl)-6-methyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3r):

Yellow oil (32.5 mg, 44% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25} = 233.3$ (c = 0.75, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 6.0 Hz, 1H), 7.28 - 7.18 (m, 8H), 7.08 - 7.04 (m, 2H), 6.50 (d, *J* = 5.6 Hz, 1H), 2.64 - 2.51 (m, 1H), 2.38 - 2.27 (m, 1H), 1.77 - 1.71 (m, 3H), 0.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.9, 170.5, 159.0, 156.4, 135.4, 132.6, 130.3, 130.0, 129.6, 129.4, 129.1, 129.1, 128.8, 128.5, 94.2, 79.2, 77.5, 77.2, 76.8, 74.4, 54.2, 26.8, 19.9, 3.9. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₅H₂₀NaO₃: 391.1305, found: 391.1315. The enantiomeric excess was determined by HPLC with Chiralpark AD column (hexanes:2-propanol = 80:20, 1 mL/min, 210 nm, 94% *ee*, *d.r.* > 19:1); major enantiomer tr = 8.653 min, major enantiomer tr = 6.435 min, minor enantiomer tr = 26.965 min.

(5*R*,6*S*)-6-methyl-3,4-diphenyl-6-(3-(trifluoromethyl)benzyl)-1-oxaspiro[4.4] nona-3,8-diene-2,7-dione (3s):

Yellow Oil (91.8 mg, 97% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{D}^{25} = -108.8$ (c = 3.06, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.36 (m, 2H),

7.33 - 7.24 (m, 3H), 7.23 - 7.09 (m, 8H), 6.93 - 6.86 (m, 2H), 6.45 (d, J = 4.6 Hz, 1H), 3.12 - 2.96 (m, 2H), 0.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.6, 170.7, 159.5, 156.3, 137.2, 136.2, 134.6, 131.7, 130.3 (q, J = 31.7 Hz), 130.1, 129.9, 129.6, 129.2, 129.1, 129.0, 128.5, 128.4, 127.6 (q, J = 4.1 Hz), 124.2 (q, J = 270.8 Hz), 123.8 (q, J = 4.1 Hz), 95.0, 57.7, 43.6, 17.6. ¹⁹F NMR (500 MHz, CDCl₃) δ -62.5. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₉H₂₁F₃NaO₃: 497.1335, found: 497.1356. The enantiomeric excess was determined by UPLC with Chiralpark MD column (hexanes:2-propanol = 85:15, 1 mL/min, 211 nm, 92% *ee*, *d.r.* > 19:1); major enantiomer tr = 5.355 min, minor enantiomer tr = 6.841 min.

(5*R*,6*S*)-6-(4-methoxybenzyl)-6-methyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8diene-2,7-dione (3t) :

Yellow solid (72.9 mg, 84% yield), mp 159-162°C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25}$ = -178.0 (c = 2.43, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 6.0 Hz, 1H), 7.22 - 7.09 (m, 8H), 7.00 - 6.95 (m, 2H), 6.93 - 6.86 (m, 2H), 6.75 - 6.68 (m, 2H), 6.40 (d, *J* = 6.0 Hz, 1H), 3.68 (s, 3H), 2.94 (s, 2H), 0.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.1, 170.6, 159.8, 158.4, 155.9, 136.3, 132.0, 131.8, 129.9, 129.8, 129.6, 129.2, 129.2, 129.0, 128.9, 128.4, 128.2, 113.4, 95.3, 77.5, 77.2, 76.8, 58.1, 55.2, 43.3, 17.7. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₉H₂₄NaO₄: 459.1567, found: 459.1579. The enantiomeric excess was determined by UPLC with Chiralpark MD column (hexanes:2-propanol = 85:15, 1 mL/min, 211 nm, 93% *ee*, *d.r.* > 19:1); major enantiomer tr = 7.303 min, major enantiomer tr = 5.483 min, minor enantiomer tr = 9.260 min.

4-(((5R,6S)-6-methyl-2,7-dioxo-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-dien-6yl)methyl) benzonitrile (3u) :

Yellow oil (85.4 mg, 99% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25} = -41.2$ (c = 0.38, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.50 - 7.43 (m, 2H), 7.39 (d, *J* = 6.0 Hz, 1H), 7.22 - 7.10 (m, 10H), 6.94 -6.86 (m, 2H), 6.42 (d, *J* = 6.0 Hz, 1H), 3.08 - 2.93 (m, 2H), 0.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.4, 170.3, 159.4, 156.4, 141.9, 136.2, 131.8, 131.7, 131.5, 130.0, 123.0, 129.5, 129.2, 129.1, 129.0, 128.9, 128.4, 118.9, 110.8, 94.9, 77.5, 77.2, 76.8, 57.8, 44.1, 17.7. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₉H₂₂NO₃: 432.1594, found: 432.1603. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 75:25, 1 mL/min, 211 nm, 91% *ee*, *d.r.* = 17:1); major enantiomer tr = 6.348 min, major enantiomer tr = 13.996 min, minor enantiomer tr = 5.272 min.

(5*R*,6*S*)-6-benzyl-6-ethyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3v):

Yellow solid (26.5 mg, 32% yield), mp 111-114°C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{\rm p}^{25}$ = -19.5 (c = 0.80, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 6.0 Hz, 1H), 7.26 - 7.11 (m, 16H), 7.10 - 7.06 (m, 1H), 7.06 - 7.01 (m, 2H), 6.99 - 6.92 (m, 2H), 6.58 (d, *J* = 6.0 Hz, 0.4H) (minor), 6.36 (d, *J* = 5.6 Hz, 1H) (major),

3.21 - 3.05 (m, 2H), 2.87 (d, J = 15.6 Hz, 0.4H) (minor), 2.50 (d, J = 15.6 Hz, 0.4H) (minor), 1.91 - 1.81 (m, 0.4H) (minor), 1.76 - 1.63 (m, 0.4H) (minor), 1.51 - 1.38 (m, 1H), 1.17 - 1.08 (m, 1H), 1.06 - 0.92 (m, 3H), 0.79 - 0.68 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 205.5, 170.4, 159.5, 157.1, 156.1, 136.5, 136.4, 136.2, 131.9, 130.9, 130.7, 130.1, 123.0, 129.9, 129.5, 129.5, 129.3, 129.3, 129.1, 129.1, 129.1, 128.8, 128.6, 128.5, 128.4, 128.2, 126.9, 126.7, 96.0, 95.4, 65.9, 61.0, 40.6, 34.7, 29.5, 22.3, 10.4, 7.7. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₉H₂₄NaO₃: 443.1618, found: 443.1599. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 75:25, 0.6 mL/min, 211 nm, 72% *ee* (major), 85% *ee* (minor),, *d.r.* = 2:1); major enantiomer tr = 6.994 min, major enantiomer tr = 14.380 min, minor enantiomer tr = 16.758 min.

(5*R*,6*S*)-6-(3-chlorobenzyl)-6-ethyl-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3w):

Yellow solid (31.2 mg, 34% yield), mp 100-103°C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25}$ = -5.8 (c = 1.13, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 5.6 Hz, 0.4H) (minor), 7.28 (d, *J* = 6.0 Hz, 1H) (major), 7.25 - 7.13 (m, 12H), 7.11 (d, *J* = 5.2 Hz, 2H), 7.09 - 6.99 (m, 2H), 6.96 (d, *J* = 7.6 Hz, 2H), 6.94 - 6.91 (m, 1H), 6.61 (d, *J* = 5.6 Hz, 0.4H) (minor), 6.38 (d, *J* = 6.0 Hz, 1H) (major), 3.08 (q, *J* = 14.0 Hz, 2H), 2.83 (d, *J* = 15.6 Hz, 0.4H) (minor), 2.44 (d, *J* = 16.0 Hz, 0.4H) (minor), 1.85 - 1.75 (m, 0.4H) (minor), 1.74 - 1.64 (m, 0.4H) (minor), 1.50 - 1.38 (m, 1H), 1.17 - 1.09 (m, 1H), 1.01 - 0.92 (m, 3H), 0.77 - 0.68 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 205.2, 159.3, 156.3, 151.1, 138.5, 136.4, 134.0, 131.8, 130.8, 130.0, 129.5, 129.4, 129.2, 129.1, 128.8, 128.6, 127.2, 95.3, 77.5, 77.2, 76.8, 61.6, 40.2, 22.4, 7.6. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₉H₂₃ClNaO₃: 477.1228, found: 477.1243.

The enantiomeric excess was determined by UPLC with Chiralpark INB column (hexanes:2-propanol = 75:25, 1 mL/min, 211 nm, 67% *ee* (major), 76% *ee* (minor), *d.r.* = 3:1); major enantiomer tr = 6.039 min, major enantiomer tr = 7.812 min, minor enantiomer tr = 4.176 min, minor enantiomer tr = 4.873 min.

(5*R*,6*S*)-6-ethyl-6-(naphthalen-2-ylmethyl)-3,4-diphenyl-1-oxaspiro[4.4]nona-3,8diene-2,7-dione (3x):

Yellow solid (54.5 mg, 58% yield), mp 168-171°C, purified by column chromatography $(SiO_2, PE/EA = 4:1)$. $[\alpha]_{p}^{25} = -54.4$ (c = 1.57, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.76 - 7.68 (m, 3H), 7.68 - 7.60 (m, 1.4H), 7.60 - 7.51 (m, 1.4H), 7.46 - 7.32 (m, 3H), 7.26 -7.05 (m, 14H), 7.01 -6.89 (m, 3H), 6.60 (d, J = 5.6 Hz, 0.4H) (minor), 6.30 (d, J =5.6 Hz, 1H) (major), 3.35 (d, J = 13.6 Hz, 1H) (major), 3.21 (d, J = 13.6 Hz, 1H) (major), 3.06 (d, J = 16.4 Hz, 0.4H) (minor), 2.61 (d, J = 16.4 Hz, 0.4H) (minor), 1.84 - 1.70 (m, 1.84 - 1.70)0.5H) (minor), 1.60 - 1.45 (m, 1H), 1.32 - 1.21 (m, 1H), 1.08 - 0.93 (m, 3H) (major), 0.80 - 0.70 (m, 1.3H) (minor). ¹³C NMR (100 MHz, CDCl₃) δ 205.8, 205.6, 170.6, 170.4, 159.4, 159.3, 157.3, 156.1, 136.5, 136.2, 134.2, 134.1, 133.3, 132.4, 132.2, 131.9, 131.8, 131.2, 130.7, 130.1, 129.9, 129.8, 129.5, 129.5, 129.2, 129.2, 129.2, 129.1, 129.1, 129.1, 129.0, 128.8, 128.5, 128.4, 128.0, 127.9, 127.8, 127.6, 127.6, 126.3, 126.0, 125.8, 125.8, 95.9, 95.4, 61.9, 60.9, 40.8, 34.9, 29.6, 22.9, 10.3, 7.7. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₃₃H₂₆NaO₃: 493.1774, found: 493.1787. The enantiomeric excess was determined by UPLC with Chiralpark MD column (hexanes:2-propanol = 75:25, 1 mL/min, 211 nm, 84% ee (major), 71% ee (minor), d.r. = 2:1); major enantiomer tr = 4.214 min, major enantiomer tr = 6.356 min, minor enantiomer tr = 3.457 min, minor enantiomer tr = 3.828 min.

(5*R*,6*S*)-6-benzyl-6-methyl-3,4-di-m-tolyl-1-oxaspiro[4.4]nona-3,8-diene-2,7dione (3y):

Yellow solid (86.0 mg, 99% yield), mp 140-143°C, purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25}$ = -63.9 (c = 2.57, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 5.6 Hz, 1H), 7.23 (m, 3H), 7.17 - 7.02 (m, 7H), 6.96 - 6.88 (m, 1H), 6.80 - 6.70 (m, 2H), 6.47 (d, *J* = 6.0 Hz, 1H), 3.06 (s, 2H), 2.25 (s, 3H), 2.16 (s, 3H), 0.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.1, 170.7, 159.8, 156.0, 138.5, 137.9, 136.2, 136.0, 131.8, 131.1, 130.4, 130.1, 129.9, 129.7, 129.5, 129.1, 128.7, 128.1, 128.0, 126.8, 126.6, 126.4, 95.1, 77.5, 77.2, 76.8, 58.0, 43.9, 21.4, 21.4, 17.8. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₀H₂₇O₃: 435.1955, found: 435.1970. The enantiomeric excess was determined by HPLC with Chiralpark OD column (hexanes:2-propanol = 75:25, 1 mL/min, 245 nm, 95% *ee*, *d.r.* = 17:1); major enantiomer tr = 12.601 min, major enantiomer tr = 15.112 min, minor enantiomer tr = 10.183 min.

(5*R*,6*S*)-6-benzyl-6-methyl-3,4-di-p-tolyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3*z*):

Yellow oil (36.1 mg, 42% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{D}^{25} = -53.4$ (c = 0.88, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 5.6 Hz, 1H), 7.26 - 7.18 (m, 3H), 7.16 - 7.11 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz), 7.01 (d, J = 8.0

Hz, 2H), 6.86 (d, J = 8.0 Hz, 2H), 6.48 (d, J = 5.6 Hz, 1H), 3.06 (s, 2H), 2.29 (d, J = 13.2 Hz, 6H), 0.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.2, 171.0, 159.2, 156.1, 140.0, 139.0, 136.3, 136.2, 131.1, 129.7, 129.4, 129.4, 129.2, 129.1, 129.0, 128.0, 126.9, 126.5, 95.2, 77.5, 77.4, 77.2, 76.8, 58.2, 44.2, 21.5, 21.4, 17.7. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₀H₂₇O₃: 435.1955, found: 435.1960. The enantiomeric excess was determined by HPLC with Chiralpark OD column (hexanes:2-propanol = 75:25, 1 mL/min, 210 nm, 85% *ee*, *d.r.* > 19:1); major enantiomer tr = 7.219 min, minor enantiomer tr = 8.456 min.

(5*R*,6*S*)-6-benzyl-3,4-bis(4-fluorophenyl)-6-methyl-1-oxaspiro[4.4]nona-3,8diene-2,7-dione (3aa):

Yellow oil (56.1 mg, 63% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{2s}$ = -80.9 (c = 0.64, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 6.0 Hz, 1H), 7.25 - 7.16 (m, 4H), 7.14 - 7.10 (m, 2H), 7.00 -6.93 (m, 6H), 6.52 (d, *J* = 5.6 Hz, 1H), 3.07 (s, 2H), 0.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.7, 170.3, 164.4 (d, *J* = 28.2 Hz), 161.9 (d, *J* = 26.0 Hz), 158.5, 155.5, 136.5, 136.1, 131.6 (d, *J* = 8.4 Hz), 131.2 (d, *J* = 8.4 Hz), 131.1, 129.4, 128.1, 127.7 (d, *J* = 3.6 Hz), 127.0, 125.0 (d, *J* = 3.2 Hz), 116.5 (d, *J* = 21.7 Hz), 115.8 (d, *J* = 21.4 Hz), 95.2, 58.2, 44.0, 17.8. ¹⁹F NMR (500 MHz, CDCl₃) δ -108.5 - -109.6 (m), -110.6 - -110.9 (m). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₈H₂₀F₂NaO₃: 465.1273, found: 465.1278. The enantiomeric excess was determined by HPLC with Chiralpark OD column (hexanes:2-propanol = 75:25, 1 mL/min, 210 nm, 84% *ee*, *d.r.* > 19:1); major enantiomer tr = 9.642 min, major enantiomer tr = 8.742 min, minor enantiomer tr = 6.601 min.

(1'S,2R)-3,4-diphenyl-2'',3''-dihydro-5H-dispiro[furan-2,2'-cyclopentane1', 1''inden] -3'-ene-5,5'-dione (3ab):

Yellow oil (75.8 mg, 94% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{D}^{25} = -302.0$ (c = 2.53, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 5.8 Hz, 0.4H) (minor), 7.66 (d, J = 5.8 Hz, 1H) (major), 7.26 - 6.91 (m, 17H), 6.86 - 6.79 (m, 0.4H) (minor), 6.77 (d, J = 5.9 Hz, 0.4H) (minor), 6.66 (d, J = 5.9 Hz, 1H) (major),6.59 - 6.50 (m, 1H), 6.36 - 6.29 (m, 0.4H) (minor), 5.74 (d, J = 7.7 Hz, 0.4H) (minor), 4.07 - 3.97 (m, 0.3H) (minor), 3.11 - 2.92 (m, 1.4H), 2.89 - 2.73 (m, 1.4H), 2.70 - 2.61 (m, 0.4H) (minor), 2.46 - 2.35 (m, 0.4H) (minor), 1.95 (s, 2.4H). ¹³C NMR (100 MHz, CDCl₃) δ 205.9, 202.3, 170.6, 170.4, 159.9, 159.0, 157.1, 156.8, 145.4, 143.7, 140.2, 139.6, 138., 138.0, 131.9, 130.9, 130.0, 129.5, 129.1, 129.4, 129.1, 129.1, 129.0, 129.0, 129.0, 128.5, 128.5, 128.3, 128.3, 128.0, 126.2, 126.0, 125.5, 125.4, 125.3, 124.4, 95.0, 94.7, 77.5, 77.4, 77.2, 76.8, 69.8, 68.6, 36.0, 31.6, 31.3, 30.1. HRMS (ESI) m/z: $[M+Na]^+$ calculated for C₂₈H₂₀NaO₃: 427.1305, found: 427.1320. The enantiomeric excess was determined by HPLC with Chiralpark AD column (hexanes:2-propanol = 80:20, 1 mL/min, 210 nm, 83% ee (major), 97% ee (minor), d.r. = 3:1); major enantiomer tr = 8.228 min, major enantiomer tr = 7.479 min, minor enantiomer tr = 19.097 min, minor enantiomer tr = 15.857 min.

(5*R*,6*S*)-6-benzyl-3-isopropyl-6-methyl-4-phenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3ac): Yellow oil (42.5 mg, 57% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{\rm p}^{25}$ = 50.4 (c = 1.52, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (m, 2.1 Hz, 4H), 7.26 - 7.18 (m, 3H), 7.11 - 7.06 (m, 2H), 7.00 -6.96 (m, 2H), 6.41 (d, *J* = 5.6 Hz, 1H), 3.00 (s, 2H), 2.73 - 2.65 (m, 1H), 1.25 (d, *J* = 6.8 Hz, 3H), 1.16 (d, *J* = 7.2 Hz, 3H), 0.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.2, 170.7, 158.7, 156.3, 136.8, 136.4, 135.7, 131.8, 131.0, 129.5, 128.9, 128.7, 128.0, 126.8, 94.9, 77.5, 77.4, 77.2, 76.8, 57.8, 43.7, 25.7, 20.6, 20.2, 17.9. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₀NaO₃: 395.1618, found: 395.1602. The enantiomeric excess was determined by HPLC with Chiralpark OX column (hexanes:2-propanol = 75:25, 1 mL/min, 210 nm, 86% *ee*, *d.r.* > 19:1); major enantiomer tr = 21.392 min, major enantiomer tr = 19.476 min, minor enantiomer tr = 20.405 min.

(5*R*,6*S*)-6-benzyl-6-methyl-3,4-dipropyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (3ad):

Yellow oil (37.1 mg, 55% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{\rm p}^{25}$ = -97.4 (c = 0.89, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.26 - 7.19 (m, 3H), 7.10 - 7.01 (m, 3H), 6.34 (d, *J* = 5.9 Hz, 1H), 3.02 -2.88 (m, 2H), 2.40 - 2.17 (m, 3H), 1.65 - 1.57 (m, 2H), 1.56 - 1.47 (m, 1H), 1.43 - 1.32 (m, 1H), 1.30 - 1.18 (m, 1H), 0.99 - 0.94 (m, 3H), 0.93 (s, 3H), 0.91 - 0.84 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.8, 173.0, 162.7, 156.5, 136.3, 135.0, 130.9, 129.5, 128.1, 127.0, 95.0, 77.5, 77.2, 76.8, 58.5, 45.5, 29.2, 26.5, 22.7, 21.3, 15.8, 14.5, 14.1. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₀NaO₃: 361.1774, found: 361.1756. The enantiomeric excess was determined by HPLC with Chiralpark OX column (hexanes:2-propanol = 85:15, 0.6 mL/min, 210 nm, 65% *ee*, *d.r.* > 19:1); major enantiomer tr = 11.968 min, minor enantiomer tr = 12.653 min.

(*S*)-5'-((tert-butyldimethylsilyl)oxy)-3,4-diphenyl-4'H,5H-spiro[furan-2,1'naphthalene]-4',5-dione (5):

Yellow oil (85.0 mg, 86% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $\left[\alpha\right]_{\rm D}^{25} = 121.7 \text{ (c} = 2.80, \text{ CHCl}_3\text{)}$. ¹H NMR (400 MHz,x[×] CDCl₃) δ 7.79 - 7.73 (m, 0.2H) (minor), 7.52 (d, J = 6.5 Hz, 1H), 7.48 - 7.40 (m, 1.3H), 7.34 - 7.20 (m, 4H), 7.20 -7.05 (m, 3H), 7.01 -6.95 (m, 0.8H), 6.78 -6.70 (m, 2H), 6.65 (d, J = 10.0 Hz, 1H) (major), 6.56 (d, J = 10.0 Hz, 0.2H) (minor), 6.42 (d, J = 10.0 Hz, 0.2H) (minor), 6.37 (d, J = 10.0 Hz, 1H) (major), 1.02 (s, 7H) (major), 0.95 (s, 2H) (minor), 0.29 (s, 0.6H) (minor), 0.21 (s, 2H) (major), 0.17 (s, 2H) (major), 0.13 (s, 0.6H) (minor). ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 206.1, 205.1, 171.3, 170.4, 159.4, 156.2, 154.8, 149.8, 147.9,$ 136.9, 135.7, 135.0, 134.2, 133.5, 132.9, 132.5, 132.5, 132.2, 131.7, 131.6, 131.4, 131.0, 130.3, 130.1, 129.9, 129.8, 129.6, 129.3, 129.3, 129.2, 129.1, 129.0, 128.8, 128.5, 128.5, 128.5, 128.4, 125.5, 125.4, 125.0, 95.8, 95.3, 77.5, 77.2, 76.8, 60.5, 56.9, 40.4, 36.4, 16.2, 14.3. HRMS (ESI) m/z: $[M+Na]^+$ calculated for $C_{23}H_{20}NaO_3$: 517.1806, found: 517.1807. The enantiomeric excess was determined by HPLC with Chiralpark OD column (hexanes:2-propanol = 85:15, 0.6 mL/min, 210 nm, 92% ee(major), 87% ee (minor), r.r. = 4:1); major enantiomer tr = 12.096 min, major enantiomer tr = 13.901 min, minor enantiomer tr = 10.693 min, minor enantiomer tr = 9.097 min.

(5*R*,6*S*)-6-methyl-3,4,6-triphenyl-1-oxaspiro[4.4]nona-3,8-diene-2,7-dione (10):

Yellow oil (17.7 mg, 23% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25} = -338.6$ (c = 0.59, CHCl₃). Major: ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 5.8 Hz, 1H), 7.19 (s, 1H), 7.16 - 7.07 (m, 5H), 7.06 - 6.92 (m, 5H), 6.91 - 6.80 (m, 4H), 6.63 (d, J = 5.8 Hz, 1H), 1.70 (s, 3H). Minor: ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 5.8 Hz, 1H), 7.29 (dd, J = 7.9, 5.7 Hz, 3H), 7.23 - 7.18 (m, 6H), 7.16 - 7.03 (m, 4H), 6.71 (d, J = 5.8 Hz, 1H), 1.12 (s, 3H). Major: ¹³C NMR (100 MHz, CDCl₃) δ 205.3, 160.6, 156.0, 138.7, 136.3, 130.8, 129.5, 129.3, 129.2, 129.0, 128.7, 128.4, 128.1, 127.3, 127.1, 96.7, 77.5, 77.2, 76.8, 58.9, 29.0. Minor: ¹³C NMR (100 MHz, CDCl₃) δ 207.2, 169.3, 158.0, 156.1, 139.1, 136.8, 132.9, 131.4, 130.2, 129.6, 129.3, 129.2, 128.8, 128.6, 128.5, 127.8, 127.7, 94.4, 77.5, 77.2, 76.8, 60.4, 22.7. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₇H₂₀NaO₃: 392.4512, found: 392.4516. The enantiomeric excess was determined by UPLC with Chiralpark ND column (hexanes:2-propanol = 85:15, 0.6 mL/min, 211 nm, 70% *ee* (major), 76% *ee* (minor), *d.r.* = 4:1); major: major enantiomer tr = 6.345 min, minor enantiomer tr = 13.960 min; minor: major enantiomer tr = 11.851 min, minor enantiomer tr = 26.886 min

	+	Pd₂(dba)₃ (5 EO Ligand (10 r Toluene, 80	mol%) nol%) D °C	
1a	2a			3a 🧹
Entry	Ligand	Yield of 3a (%) ^a	<i>ee</i> of 3a (%) ^b	<i>dr</i> of 3a (%) ^c
1 ^d	PPh ₃	29	race	> 19:1
2	L1	nr	/	/
3	L2	30	22	> 19:1
4	L3	nr	/	/
5	L4	16	57	12:1
6	L5	24	62	4:1
7	L6	30	68	7:1
8	L7	34	70	19:1
9	L8	7	30	2:1
10	L9	trace	/	/
11	L10	15	57	7:1

Table S1. The effect of P-ligands L1-L10 in the reaction.^a

All the reactions were run on a 0.1 mmol scale in 1.0 mL solvents for 18 h. ^{*a*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*b*}Determined by HPLC. ^{*c*}Determined by ¹H NMR. ^{*d*}Yield of the isolated product.

Table S2. The screen of temp in the reaction.^a

1a O O Ia	+ 2a	Pd ₂ (dba) ₃ (5 =0	mol%) I%) emp	
Entry	Temp (°C)	Yield of 3a (%) ^a	<i>ee</i> of 3a (%) ^b	<i>dr</i> of 3a (%) ^c
1	80	34	70	16:1
2	60	23	75	13:1
3	50	21	76	16:1
4	40	21	78	16:1
5	rt	15	73	> 19:1
6^{d}	0	44	93	> 19:1
$7^{\rm d}$	rt	61	90	> 19:1

All the reactions were run on a 0.1 mmol scale in 1.0 mL solvents for 18 h. ^{*a*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*b*}Determined by HPLC. ^{*c*}Determined by ¹H NMR. ^{*d*}The reactions were performed with ligand L15.

	+	Pd₂(dba)₃ (5 ►O Ligand (10 m Toluene, rt	mol%) nol%)	
1a	2a			3a 🦳
Entry	Ligand	Yield of 3a (%) ^a	<i>ee</i> of 3a (%) ^b	<i>dr</i> of 3a (%) ^c
1	L11	trace	/	/
2	L12	23	89	13:1
3	L13	29	85	12:1
4	L14	24	83	16:1
5	L15	61	90	> 19:1
6	L16	57	90	19:1

Table S3. The effect of P-ligands L11-L16 in the reaction.^a

All the reactions were run on a 0.1 mmol scale in 1.0 mL solvents for 18 h. ^{*a*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*b*}Determined by HPLC. ^{*c*}Determined by ¹H NMR.

Table S4. The screen of palladium metal salts in the reaction.^a

	+	Pd cat. (5 m =O <u>L15 (10 m</u> Toluene, rt	nol%)	
1a	2a			3a 💛
Entry	Pd cat.	Yield of 3a (%) ^a	<i>ee</i> of 3a (%) ^b	<i>dr</i> of 3a (%) ^c
1	Pd ₂ (dba) ₃	61	90	> 19:1
2	Pd(dba) ₂	59	89	> 19:1
3	Pd ₂ (dba) ₃ ·CHCl ₃	74	90	> 19:1
4	Pd(MeCN) ₂ Cl ₂	nr	/	/
5	PdBr ₂	nr	/	/

All the reactions were run on a 0.1 mmol scale in 1.0 mL solvents for 18 h. ^{*a*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*b*}Determined by HPLC. ^{*c*}Determined by ¹H NMR.

Table S5. The screen of the reaction concentration.^a

	+	Pd₂(dba)₃ [.] CHCl₃ =O <u>L15 (10 ma</u> Toluene, rt	(5 mol%)	
1a	2a			3a 🦾
Entry	Concentration	Yield of 3a (%) ^a	<i>ee</i> of 3a (%) ^b	<i>dr</i> of 3a (%) ^c
1	0.025	61	90	> 19:1
2	0.05	70	90	> 19:1
3	0.1	74	90	> 19:1
4	0.2	81	90	> 19:1
5	0.5	87	90	> 19:1
6	1	78	90	> 19:1

All the reactions were run on a 0.1 mmol scale in X mL solvents for 18 h. ^{*a*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*b*}Determined by HPLC. ^{*c*}Determined by ¹H NMR.

Ta	ıbl	le	S6 .	The	effect	of	P-liga	nds	L1	17	-L2	20 ir	ı the	reactio	n.ª

	+	Pd₂(dba)₃ [.] CHCl₃ ∑ O <u>Ligand (10 n</u> Toluene, rt	(5 mol%) nol%)	
1a	2a			3a 🦳
Entry	Ligand	Yield of 3a (%) ^a	<i>ee</i> of 3a (%) ^b	<i>dr</i> of 3a (%) ^c
1	L15	87	90	> 19:1
2	L17	85	90	> 19:1
3	L18	82	90	> 19:1
4	L19	18	61	19:1
5	L20	32	81	6:1

All the reactions were run on a 0.1 mmol scale in 0.2 mL solvents for 18 h. ^{*a*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*b*}Determined by HPLC. ^{*c*}Determined by ¹H NMR.

Table S7. The screen of solvents in the reaction.^a

Solvent	Yield of 3a (%) ^a	<i>ee</i> of 3a (%) ^b	<i>dr</i> of 3a (%) ^c
Toluene	87	90	> 19:1
o-Xylene	78	90	> 19:1
P-Xylene	85	89	> 19:1
Mesitylene	74	88	> 19:1
PhCF ₃	72	92	> 19:1
THF	32	92	13:1
2-MeTHF	24	90	13:1
DMF	69	94	> 19:1
DMAc	74	92	> 19:1
NMP	67	67	> 19:1
PhCl	87	92	> 19:1
	Solvent Toluene <i>o</i> -Xylene <i>P</i> -Xylene Mesitylene PhCF ₃ THF 2-MeTHF DMF DMF DMAc NMP PhCl	Solvent Yield of 3a (%) ^a Toluene 87 o-Xylene 78 P-Xylene 85 Mesitylene 74 PhCF ₃ 72 THF 32 2-MeTHF 24 DMF 69 DMAc 74 NMP 67 PhCl 87	SolventYield of 3a (%) ^a ee of 3a (%) ^b Toluene8790o-Xylene7890P-Xylene8589Mesitylene7488PhCF37292THF32922-MeTHF2490DMF6994DMAc7492NMP6767PhCl8792

All the reactions were run on a 0.1 mmol scale in 0.2 mL solvents for 18 h. "Determined by ¹H NMR

using dibromomethane as an internal standard. ^bDetermined by HPLC. ^cDetermind by ¹H NMR. ^dYield of the isolated product.

Scheme S1. Substrate scope

3m 80% yield, 93% *ee*, >19: 1 *dr*

3q 53% yield, 92% *ee*, >19: 1 *dr*

3u 99% yield, 91% *ee*, 17: 1 *dr*

3y 99% yield, 95% *ee*, 17: 1 *dr*

3n 88% yield, 88% *ee*, 4: 1 *dr*

3r 44% yield, 94% *ee*, >19: 1 *dr*

3v^a 32% yield, 72% *ee*, 2: 1 *dr*

3z 42% yield, 85% *ee*, >19: 1 *dr*

3o 99% yield, 92% *ee*, >19: 1 *dr*

3s 97% yield, 92% *ee*, >19: 1 *dr*

3w^a 34% yield, 67% *ee*, 3: 1 *dr*

3aa 63% yield, 84% *ee*, >19: 1 *dr*

3p 56% yield, 92% *ee*, 6: 1 *dr*

3t 84% yield, 93% *ee*, >19: 1 *dr*

3x^a 58% yield, 84% *ee*, 2: 1 *dr*

3ab 94% yield, 83% *ee*, 3: 1 *dr*

3ac

57% yield,

86% ee, >19: 1 dr

3ad

55% yield,

65% ee, >19: 1 dr

86% yield, 92% *ee*, 4: 1 *rr*

^aThe reaction temperature is 50 °C.

4. Transformation of Products.

Gram reaction

A vial was charged with 1,3-diones **1a** (0.6g, 3 mmol), cyclopropenone **2a** (1.24g, 0.4 mmol), $Pd_2(dba)_3$ ·CHCl₃ (155mg, 5 mol%), (*R*,*R*)-**L15** (255mg, 10 mol%) and evacuated under high vacuum and backfilled with N₂. PhCl (3 mL) was next added. The mixture was stirred at 25 °C for 18 hours. Upon reaction completion, the crude was purified by column chromatography to give the corresponding product and was analyzed with ¹H NMR to determine the corresponding product ratio and recovered.
Procedure for the synthesis of 6.

Prepared according to a previous reported method using **3a** (0.1mmol, 1.0 equiv), NaOMe (0.1mmol, 1.0 equiv) and 0.5mL of Methanol. The mixture was stirred at 50 °C for 3 days. After the reaction completed, the reaction solution was evaporated under reduced pressure and was the purified by silica gel column chromatography to afford **6**.

Methyl (Z)-3-((1R,2S,5S)-2-benzyl-2-methyl-3-oxo-6-oxabicyclo [3.1.0] hexan-1yl)-2,3-diphenylacrylate (6):

Yellow oil (19.2 mg, 44% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25}$ =63.9 (c = 0.77, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.18 - 7.11 (m, 9H), 7.11 - 7.02 (m, 4H), 6.18 (d, *J* = 7.6 Hz, 2H), 4.67 (m, 1H), 3.45 (s, 3H), 3.11 (d, *J* = 14.0 Hz, 1H), 2.97 - 2.83 (m, 2H), 2.71 (m, 1H), 0.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 212.7, 170.9, 157.7, 136.2, 133.2, 131.9, 131.8, 129.3, 129.3, 128.9, 128.8, 128.6, 128.2, 128.1, 127.8, 126.9, 95.4, 77.5, 77.4, 77.2, 76.8, 75.6, 58.5, 58.1, 39.5, 36.5, 29.8, 19.3. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₉H₂₆NaO₄: 461.1723, found: 461.1748. The enantiomeric excess was determined by UPLC with Chiralpark INA column (hexanes:2-propanol = 75:25, 1 mL/min, 211 nm, 88% *ee*, *d.r.* > 19:1); major enantiomer tr = 3.688 min, minor enantiomer tr = 4.003 min.

Procedure for the synthesis of 7.

Prepared according to a previous reported method⁵, *t*-BuOOH (600 μ L) was diluted with H₂O (3 mL) and extracted with DCM (5 mL), combined the organic layers. **3a** (0.1 mmol, 1 equiv) was dissolved in 0.5 mL of the obtained solution, followed by the addition of DBU (0.02 mmol, 0.2 equiv). The mixture was stirred at 25 °C for 16 hours. After the reaction completed, the reaction solution was evaporated under reduced pressure and was the purified by silica gel column chromatography to afford **7**.

(1S,2R,3S,5R)-3-benzyl-3-methyl-3',4'-diphenyl-5'H-6-oxaspiro[bicyclo[3.1.0] hexane-2,2'-furan]-4,5'-dione (7):

Yellow oil (41.8 mg, 99% yield), purified by column chromatography (SiO₂, PE/EA= 4:1). $[\alpha]_{p}^{25}$ =13.3 (c = 0.80, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.25 - 7.21 (m, 5H), 7.21 - 7.11 (m, 6H), 7.08 - 7.01 (m, 2H), 7.01 - 6.94 (m, 2H), 4.24 (d, *J* = 2.4 Hz, 1H), 3.78 (d, *J* = 2.4 Hz, 1H), 3.71 (d, *J* = 13.2 Hz, 1H), 2.69 (d, *J* = 13.6 Hz, 1H), 0.77 (s,

3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.0, 170.5, 159.0, 136.3, 131.4, 130.9, 130.8, 130.3, 129.8, 129.4, 129.4, 129.0, 128.8, 128.6, 128.1, 126.9, 91.2, 77.5, 77.4, 77.2, 76.8, 59.6, 57.4, 52.1, 44.0, 17.0. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₉H₂₆NaO₄: 445.1410, found: 445.1430. The enantiomeric excess was determined by HPLC with Chiralpark OD column (hexanes:2-propanol = 75:25, 1 mL/min, 211 nm, 90% *ee*, *d.r.* > 19:1); major enantiomer tr = 21.498 min, major enantiomer tr = 18.207 min, minor enantiomer tr = 16.351 min.

5. Supplementary Figures

Figure S1. Comparison of ³¹P NMR of ligand and Pd/L7 complex in the reaction with 1a and 2a.

A): L15 (0.02 mmol, 17.0 mg). **B):** L15 (0.02 mmol, 17.0 mg) and Pd₂(dba)₃·CHCl₃ (0.01 mmol, 10.4 mg) were stirred for 30 mins. **C):** L15 (0.02 mmol, 17.0 mg), Pd₂(dba)₃·CHCl₃ (0.01 mmol, 10.4 mg) and **1a** (0.2 mmol, 40.0 mg) were stirred for 30 mins. **D)** L15 (0.02 mmol, 17.0 mg), Pd₂(dba)₃·CHCl₃ (0.01 mmol, 10.4 mg) and **2a** (0.4 mmol, 82.5 mg) were stirred for 30 mins. **E):** L15 (0.02 mmol, 17.0 mg), Pd₂(dba)₃·CHCl₃ (0.01 mmol, 17.0 mg), Pd₂(dba)₃·CHCl₃ (0.01 mmol, 10.4 mg), **1a** (0.2 mmol, 40.0 mg) and **2a** (0.4 mmol, 82.5 mg) were stirred for 30 mins. **F):** L15 (0.02 mmol, 17.0 mg), Pd₂(dba)₃·CHCl₃ (0.01 mmol, 10.4 mg), **1a** (0.2 mmol, 40.0 mg) and **2a** (0.4 mmol, 82.5 mg) were stirred for 30 mins. **F):** L15 (0.02 mmol, 17.0 mg), Pd₂(dba)₃·CHCl₃ (0.01 mmol, 10.4 mg), **1a** (0.2 mmol, 40.0 mg) and **2a** (0.4 mmol, 82.5 mg) were stirred for 30 mins. **F):** L15 (0.02 mmol, 82.5 mg) were stirred for 30 mins. **F):** L15 (0.02 mmol, 17.0 mg), Pd₂(dba)₃·CHCl₃ (0.01 mmol, 10.4 mg), **1a** (0.2 mmol, 40.0 mg) and **2a** (0.4 mmol, 82.5 mg) were stirred for 30 mins. **F):** L15 (0.02 mmol, 17.0 mg), Pd₂(dba)₃·CHCl₃ (0.01 mmol, 10.4 mg), **1a** (0.2 mmol, 40.0 mg) and **2a** (0.4 mmol, 82.5 mg) were stirred for 30 mins. **F):** L15 (0.02 mmol, 17.0 mg), Pd₂(dba)₃·CHCl₃ (0.01 mmol, 10.4 mg), **1a** (0.2 mmol, 40.0 mg) and **2a** (0.4 mmol, 82.5 mg) were stirred for 24 hours.

Figure S2. Proposed catalytic cycles for the model reaction system.

Figure S4. NOESY spectrum of 4. The determination of the structure of product 4.

Figure S5. NOESY spectrum of 5. The determination of the structure of product 5.

6. The confirmation of the absolute configuration of chiral product.

X-ray structures of **3a** (CCDC 2024499)

7. References

1 Dolbier, W. R.; Matsui, K.; McCullagh, L.; Anapolle, K. J. Org. Chem. 1979, 40, 1979.

2 Gong, Q.; Wen, J.; Zhang, X. Chem. Sci. 2019, 10, 6350-6353.

3 Das, T.; Saha, P.; Singh, V. K.; Org. Lett. 2015, 17, 5088-5091.

4 Zhou, P.; Yang, W.T.; Rahman, A.U.; Li, G.; Jiang, B. J. Org. Chem. 2020, 85, 360-366.

5 Al' mukhametov, A.Z.; Gimazetdinov, A.M.; Miftakhov, M.S. *Mendeleev. Commun.* **2018**, 28, 362-363.

8. ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.{ f1 (ppm)

S49

S65

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 fl (ppm)

112.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 f1 (ppa)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 fl (ppm)

9. HPLC and UPLC Spectra

(5*R*,6*S*)-**3a**

	Time/min	Area	Height	Area%
1	6.868	967677	79832	50.16
2	9.704	961531	54671	49.84

						Time	/mir	1			Area				Hei	ght			A	rea%	6	
-0.0051	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00	10.50	11.00	11.50	12.00	12.50	13.00	13.50	14.00	14.50	15.0
0.000					4	4					4										~ ~ ~ ~ ~	
0.005											6											
0.010						1					8											
0.015																						
0.020					1	1																
0.025																						
0.030-						1																
0.035-					1	1																
0.045						l																
₹ 0.050					1	1																
0.055					1	1																
0.060						1																
0.065					[1																
0.070																						
0.075																						
0.000																						
0.090																						
0.095					8																	
0.100					4																	
1																						

	Time/min	Area	Height	Area%	
1	6.690	1173477	99556	95.42	
2	9.385	56286	3539	4.58	

	Time/min	Area	Height	Area%
1	5.429	1288569	137190	50.00
2	10.380	1288477	67064	50.00
0.060	Å			
0.055	9 4			
0.050				
0.045				
0.040				
0.035				
₹ 0.030				
0.025				
0.020				
0.015				
0.010			2	
0.005			10.00	
0.000			<u> </u>	
3.80 4.00 4.20 4.40 4.60 4.80 5.00	5.29 5.40 5.60 5.60 6.00 6.20 6.40 6.60 6.60 7.00 7.20 7.	40 7.60 7.80 8.60 8.20 8.40 8.80 8.80 9.00 9.20 1	9.40 9.80 9.80 10.00 10.20 10.40 10.80 10.80 11.00 11.20	11.40 11.60 11.60 12.00 12.20 12.40 12.60 12.60 13.00 13.20
	Time/min	Area	Height	Area%
1	5.301	539364	59331	96.34
2	10.037	20475	1265	3.66

(5*R*,6S)-**3d**

	Time/min	Area	Height	Area%
1	5.665	1102053	110646	49.21
2	11.851	1137628	50418	50.79
0 120- 0 10- 0 009- 0 009-	450 5.50 5.50 6.50 7.50	750 8.60 8.50 9.50 9.50	10.00 10.50 11.00 11.50 12.00 12	50 1306 1350 1460 1450 1500
	Time/min	Area	Height	Area%
1	5.500	1115086	116239	96.43
2	11.308	41241	2164	3.57

(5*R*,6*S*)-**3e**

	Time/min	Area	Height	Area%
1	4.901	336030	40138	9.19
2	6.542	3181259	265428	86.98
3	8.976	139966	9546	3.83

	Time/min	Area	Height	Area%
1	5.573	1192700	127985	50.32
2	12.306	1177380	53418	49.68

0.095					
0.090		4			
0.085		3			
0.080		1			
0.075					
0.070					
0.065		J.			
0.060					
0.055					
2 0.045					
0.040					
0.035					
0.030					
0.025					
0.020					
0.015					
0.010				88	
0.005		\wedge		=	
0.000				Δ Δ	
	3.50 4.00 4.	50 5.00 5.50 6.00 6.50 7.00 7.50	8.00 8.50 9.00 9.50 10.00	0 10.50 11.00 11.50 12.00 12.5	0 13.00 13.50 14.00 14.50 15.0
		Time/min	Area	Height	Area%
	1	5.479	831456	90556	95.99
	2	11.969	34713	1823	4.01

	Time/min	Area	Height	Area%
1	5.462	1594435	172094	49.33
2	12.871	1637541	68738	50.67

	Time/min	Area	Height	Area%
1	5.376	973930	106471	96.07
2	12.495	39849	1929	3.93

	Time/min	Area	Height	Area%
1	6.175	1794787	163876	50.39
2	10.791	1767333	90228	49.61

	Time/min	Area	Height	Area%
1	8.183	399387	33650	2.98
2	14.595	6321350	266256	47.15
3	19.777	6305360	201750	47.03
4	25.681	381159	9682	2.84

	Time/min	Area	Height	Area%
1	46.783	132055837	1483753	95.03
2	52.708	6906235	75825	4.97

(5*R*,6*S*)-**3k**

(5*R*,6S)-**3m**

(5*R*,6*S*)-**3n**

(5*R*,6*S*)-**30**

	Time/min	Area	Height	Area%
1	53.108	967280	10217	4.30
2	76.447	20725762	115986	92.09
3	89.884	812283	4571	3.61

(5*R*,6S)-**3p**

(5*R*,6*S*)-**3q**

(5*R*,6S)-**3r**

(5*R*,6*S*)-**3s**

	Time/min	Area	Height	Area%
1	5.355	10767244	1076558	95.86
2	6.841	464829	43005	4.14

(5R,6S)-**3t**

	Time/min	Area	Height	Area%
1	5.483	137833	14201	3.03
2	7.303	4242777	299926	93.39
3	9.260	162320	10820	3.57

(5*R*,6*S*)-**3u**

1.60				\$																			
1.50				9																			
1.40				11																			
1.30																							
1.20				11																			
1.10																							
1.00																							
0.90																							
₹ 0.80																							
0.70																							
0.60																							
0.50			1																				
0.40																							
0.30		24	[
0.20		-5.27	1																8				
0.10		\wedge)	/															13				
0.00		<u> </u>			-													4		Δ			-
	4.50	5.00 5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00	10.50	11.00	11.50	12.00	12.50	13.00	13.50	14.00	14.50	15.00	15.50	16.00

	Time/min	Area	Height	Area%
1	5.272	1287679	130941	5.08
2	6.348	22957370	1631965	90.59
3	13.996	1096891	41574	4.33

(5*R*,6*S*)-**3v**

0 000 <td< th=""><th>00 19.50 20.00 0</th></td<>	00 19.50 20.00 0
0.04 0.05 -0.0	00 19.50 20.00
04 04 04 04 04 04 04 04 04 04	

2	7.526	1876926	164227	22.94
3	14.380	874448	40324	10.69
4	16.758	150936	7069	1.84

(5*R*,6*S*)-**3w**

0.48-	
0.46	é.
0.44	
0.42	
0.40	8
0.38	
0.30	h
0.36	
0.32	
0.30	
0.28	
0.20	
0.24	
₹	
0.20	
0.18	
0.16	
0.10	
0.12	
0.10	
0.08	
0.06	
0.04	
0.02	
0.00	
-0.02	

3.60 3.80 4.00 4.20 4.40	4.60 4.80 5.00 5.20 5.40 5.60 5.80	6.00 6.20 6.40 6.60 6.60 7.00	7.20 7.40 7.60 7.80 8.00 8.20 8.4	40 8.60 8.80 9.00 9.20 9.40 9.60
	Time/min	Area	Height	Area%
1	4.176	2719707	369963	25.74
2	4.873	369548	42696	3.50
3	6.039	6242964	475244	59.09
4	7.812	1233377	79416	11.67

(5R,6S)-**3x**

	Time/min	Area	Height	Area%
1	3.337	206403	32091	9.78
2	3.718	179670	26761	8.51
3	4.043	863427	107927	40.90
4	6.100	861582	74523	40.81

1	
0.20-	4
0.18	
0.16	
0.14	
0.12	
₹ 0.10	
0.08	3 421
0.06	\wedge
0.04	
0.02	
0.00	
	3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.60 8.00 8.20 8.40 8.67

	Time/min	Area	Height	Area%
1	3.457	480457	67746	18.22
2	3.828	80223	11234	3.04
3	4.214	1720880	198362	65.25
4	6.356	355801	30743	13.49

(5*R*,6*S*)-**3y**

(5*R*,6*S*)-**3z**

(5*R*,6*S*)-**3aa**

(5R,6S)-**3ab**

(5*R*,6*S*)-**3ac**

	4			21.51	8		8402	640		276270				.89		
1.50											1					
1.40-											\$					
1.30-											1					
1.20-											11					
1.10																
1.00-																
0.90																
0.80											[]					
at 0.70-																
0.60-																
0.50-																
0.40-																
0.30-										6						
0.20-										- 19.47 405						
0.10																
0.00			•	~						2 	<u> </u>					
	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00	24.00	26.00	28.00	30.00	
				Time/n	nin		Are	ea		Hei	ght		Ar	ea%		
	1			19.47	6		3730	669		131307			7.	.09		
	2			20.40	5		1873	751		61257			3.56			
	3			21.39	2		47042194			1469297				89 35		

(5*R*,6*S*)-**3ad**

1.00	A
0.95	
0.90	(m)
0.85	
0.80	
0.75	
0.70	
0.65	
0.60	
0.55	
_ 0.50	
₹ 0.45	
0.40	
0.36	
0.55	
0.30	
0.25	
0.20	
0.15	2
0.10	4 00
0.05	
0.00	
2	0 270 280 280 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 480 470 480 450 50 510 520 530 540 550 550 550 550 550 60 610

	Time/min	Area	Height	Area%
1	3.688	6413214	965843	93.74
2	4.003	428267	56032	6.26

Major:

	Time/min	Area	Height	Area%
1	6.345	1139653	124925	85.19
2	13.960	198201	10278	14.81

Minor:

