Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Ba₄Ca(B₂O₅)₂F₂: π-Conjugation of B₂O₅ in the Planar Pentagonal Layer Achieving Large Second Harmonic Generation of *Pyro*-borate

Shuaishuai Li, [‡] ^a Xiaomeng Liu, ^{‡b} Hongping Wu,^a Zhongfu Song,^a Hongwei Yu,^{*a} Zheshuai Lin,^{*b} Zhanggui Hu,^a Jiyang Wang,^a and Yicheng Wu^a

^aTianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.

^bBeijing Center for Crystal R&D, Key Lab of Functional Crystals and Laser Technology of Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

CONTENTS

Experimental Details
Table S1 Crystal data and structure refinement for Ba ₄ Ca(B ₂ O ₅) ₂ F ₂ S6
Table S2 Atomic coordinates, equivalent isotropic displacement parameters
Table S3 Selected bond distances(Å) and angles (deg) for Ba ₄ Ca(B ₂ O ₅) ₂ F ₂ S8
Table S4 Anhydrous borates with isolated B ₂ O ₅ groupsS10
Table S5a The calculated SHG coefficientsS12
Table S5b The real-space atom-cutting of Ba ₄ Ca(B ₂ O ₅) ₂ F ₂ S12
Figure. S1 Experimental and calculated X-ray diffraction patternsS13
Figure. S2 The TG-DSC curves
Figure S3. The experimental XRD at different temperatures
Figure S4. The different types of coordination environments of cationsS16
Figure S5. The distorted FBa ₄ tetrahedra and 2D [F ₂ Ba ₄] infinite layersS17
Figure S6 The structural evolution from KBBF to Ba ₄ Ca(B ₂ O ₅) ₂ F ₂ S18
Figure S7. The arrangements of B ₂ O ₅ units in α-Li ₄ B ₂ O ₅ and Ba ₄ Ca(B ₂ O ₅) ₂ F ₂ S19
Figure S8. The IR spectrum
Figure S9. The UV-vis-NIR diffuse reflectance spectrum
Figure S10. The band-resolved SHG of Ba ₄ Ca(B ₂ O ₅) ₂ F ₂ and α-Li ₄ B ₂ O ₅ S22
References

Experimental Details.

Reagents.

Na₂CO₃, CaO (Tianjin Fuchen Chemical Co., Ltd, 99.0%), NH₄F (Aladdin Reagent Co., Ltd, 99.99%), Ba(OH)₂·8H₂O, BaCO₃, BaF₂, H₃BO₃, and PbF₂ (Aladdin Chemistry Co., Ltd., 99.5%) were used as received without any further treatment.

Syntheses

The single crystals of $Ba_4Ca(B_2O_5)_2F_2$ were obtained via high-temperature solution method with a mixture of Na_2CO_3 (0.021 g), $BaCO_3$ (0.303 g), BaF_2 (0.173 g), CaO (0.038 g), H_3BO_3 (0.295 g), and PbF_2 (0.167 g) in the stoichiometric ratio of 0.6:4.5:2.9:2:14:2. The mixture was put into a platinum crucible, which was put in a vertical programmable temperature furnace. To obtain a homogeneous melt, the samples were heated to 900 °C and held for 12 hours, then cooled to 850 °C rapidly, after which they were cooled to 450 °C at a rate of 5 °C/h, subsequently cooled to room temperature by switching off the furnace. During the process of spontaneous crystallization, small single crystals were formed in the platinum crucible. Several colorless crystals could be obtained from the reaction products for further characterization by single-crystal X-ray diffraction measurements.

The polycrystalline samples of $Ba_4Ca(B_2O_5)_2F_2$ were synthesized by the conventional solid-state reaction method. $BaCO_3$ (0.614g, 3mmol), BaF_2 (0.200g, 1.1mmol), $CaCO_3$ (0.103g, 1mmol), and H_3BO_3 (0.282g, 4.4mmol), were mixed in a ceramic crucible thoroughly and preheated at 600 °C for 12 h to decompose CO_2 and H_2O . Then the mixture was calcined at 780°C for 15 h with several intermediate grindings. The phase purity of $Ba_4Ca(B_2O_5)_2F_2$ was confirmed by powder X-ray diffraction (PXRD) analysis.

Powder X-ray Diffraction (PXRD).

The phase purity of $Ba_4Ca(B_2O_5)_2F_2$ was checked out with a SmartLab9KW X-ray diffractometer (XRD) equipped with Cu-Ka radiation ($\lambda = 1.5418$ Å) at room temperature. The measured 2 θ range was 10°-70° with a scan step size of 0.01° and a step time of 2 s.

Single-Crystal Structure Determination.

The crystal data of $Ba_4Ca(B_2O_5)_2F_2$ was collected on a Bruker SMART APEX II 4K CCD diffractometer with Mo K α radiation ($\lambda = 0.71073$ Å) at 293(2) K, and integrated with the SAINT program¹. The crystal structure was solved by the direct method and refined by the SHELXTL system². The atomic positions of the structure were refined with anisotropic displacement parameters and secondary extinction correction. PLATON³ was used to check the structure for missing symmetry elements, and no higher symmetry was found.

UV-vis-NIR diffuse reflectance spectroscopy

The UV-vis-NIR diffuse reflectance data was collected using a Shimadzu SolidSpec-3700DUV spectrophotometer in the range 190 – 2500 nm. The Teflon was used as a reference. The absorption (K/S) data is calculated from Kubelka-Munk function $F(R) = (1-R)^2/2R = K/S$, where R represents the reflectance, K the absorption, and S the scattering.^{4,5}

Second-harmonic generation Measurement.

Powder SHG measurements were performed by the Kurtz–Perry method ⁶ with 1064 nm Nd:YAG solidstate laser. Polycrystalline powder of Ba₄Ca(B₂O₅)₂F₂ was ground and sieved into several particle size ranges: 25–53, 53–75, 75–106, 106–120, 120–150, 150–180, and 180-212 μ m, to investigate its phasematching behavior. Polycrystalline KH₂PO₄ (KDP) was also sieved into similar particle sizes as the standard. **Infrared Spectroscopy**

A Nicolet iS50 FT-IR spectrometer was used to record the IR spectrum of $Ba_4Ca(B_2O_5)_2F_2$ in the range of 400-4000 cm⁻¹. A sample of ~10 mg was used for testing.

Thermal Analysis.

Differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis were carried out on a NETZSCH STA 449C thermal analysis instrument. With the help of flowing nitrogen atmosphere condition, powder sample (~9 mg) was heated from 25 to 1000 °C at a rate of 5 °C/min

Computational Methods

The first-principles calculations for Ba₄Ca(B₂O₅)₂F₂ and α -Li₄B₂O₅ crystals are performed by the planewave pseudopotential⁷ method implemented in the CASTEP package⁸ based on the density functional theory (DFT)⁹. The exchange-correlation functional was chosen as the Perdew-Burke-Emzerhof (PBE) functional within the generalized gradient approximation (GGA)¹⁰. The plane-wave energy cutoff was set as 900 eV and self-consistent-field tolerance was set as 1 × 10–6 eV/atom. The Monkhorst-Pack *k*-point meshes with a density of (3×3×3) and (2×5×1) points in the Brillouin zone were chosen for Ba₄Ca(B₂O₅)₂F₂ and α -Li₄B₂O₅, respectively.¹¹ Based on the experimentally obtained crystal structures, the electronic band structure of Ba₄Ca(B₂O₅)₂F₂ and α -Li₄B₂O₅ were calculated. And their nonlinear optical properties were calculated by the scissors-corrected PBE method.¹² Then, the second-order susceptibility $\chi^{(2)}$ and the SHG coefficient d_{ij} were calculated using an expression originally proposed by Rashkeev et al.¹³ and developed by Lin et al.¹⁴ Furthermore, in order to more intuitively identify the orbitals that contribute to the SHG effect in the real space, the SHG-weighted charge density analysis tool and band-resolved analysis¹⁵ were employed. Moreover, in order to analyze the contribution of an ion (or ionic group) to the SHG effect, a real-space atom-cutting technique was adopted.¹⁶

Empirical formula	$Ba_4Ca(B_2O_5)_2F_2$
Formula weight	830.68
Temperature	299(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
space group	<i>P</i> 2 ₁
Unit cell dimensions	a = 8.3888(5) Å
	b = 8.8692(6) Å
	c = 8.5608(6) Å
	$\beta = 106.684(2)^{\circ}$
Volume	610.13(7) Å ³
Ζ	2
Density (g/cm ³)	4.522
Absorption coefficient (mm ⁻¹)	13.225
F(000)	724
Crystal size	$0.056~mm \times 0.058~mm \times 0.074~mm$
Theta range for data collection	2.48 to 27.51°
Limiting indices	-10≤h≤10, -11≤k≤11, -11≤l≤11
Reflections collected / unique	5780 / 2787 [R(int) = 0.0260]
Completeness to $\theta = 25.242^{\circ}$	100.0 %
Data/restraints/parameters	2787 / 1 / 190
Goodness-of-fit on F ²	1.042
Final <i>R</i> indices $[F_o^2 > 2\sigma(F_o^2)]^{[a]}$	$R_1 = 0.0276, wR_2 = 0.0619$
<i>R</i> indices (all data) ^[a]	$R_1 = 0.0296, wR_2 = 0.0635$
Flack parameter	0.02(3)
Largest peak and hole	1.70/-1.18 eÅ ⁻³

Table S1. Crystal data and structure refinement for $Ba_4Ca(B_2O_5)_2F_2$

 ${}^{[a]}R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o| \text{ and } wR_2 = [\Sigma w (F_o{}^2 - F_c{}^2)^2 / \Sigma w \; F_o{}^4]^{1/2} \text{ for } F_o{}^2 > 2\sigma (|F_o{}^2)$

Atoms	X	у	Z	U(eq)	BVS
Ba(1)	1857(1)	5745(1)	3316(1)	18(1)	1.67
Ba(2)	2160(1)	4054(1)	8666(1)	16(1)	1.93
Ba(3)	2584(1)	-527(1)	9914(1)	17(1)	1.87
Ba(4)	2519(1)	10525(1)	4884(1)	14(1)	1.97
Ca(1)	5108(3)	7516(3)	7499(3)	14(1)	2.45
B(1)	4812(18)	3585(18)	6355(19)	18(3)	3.10
B(2)	1111(15)	7210(17)	6679(17)	16(3)	3.02
B(3)	4775(17)	6404(18)	1409(16)	13(3)	3.10
B(4)	-470(16)	6996(16)	8784(16)	16(3)	2.88
O(1)	5752(16)	8462(15)	5261(14)	51(3)	1.95
O(2)	635(11)	6161(13)	9894(12)	36(3)	1.78
O(3)	7893(10)	7187(11)	8701(11)	22(2)	1.96
O(4)	782(10)	5803(10)	6064(10)	21(2)	2.03
O(5)	4530(13)	4963(14)	1601(18)	48(4)	2.03
O(6)	2348(11)	8102(11)	6508(13)	30(2)	2.04
O(7)	4921(13)	7156(15)	102(14)	40(3)	1.92
O(8)	61(14)	7819(11)	7544(14)	36(3)	2.02
O(9)	4790(14)	7166(13)	2893(14)	40(3)	2.13
O(10)	4964(15)	4919(15)	7120(20)	72(5)	1.92
F(1)	1471(9)	1344(9)	7391(9)	21(2)	1.09
F(2)	1377(10)	8621(10)	2429(10)	30(2)	0.95

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (A² $x \ 10^3$) for Ba₄Ca(B₂O₅)₂F₂. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table S3. Bond lengths (Å) and angles (deg) for $Ba_4Ca(B_2O_5)_2F_2$

8 () 8		- +/	
Ba1–F2	2.659(9)	Ba4-F1#10	2.644(7)
Ba1–F1#1	2.733(7)	Ba4–F2	2.651(8)
Ba1–O4	2.751(8)	Ba4O4#1	2.664(8)
Ba1-O2#2	2.837(10)	Ba409#11	2.893(12)
Ba1O1#3	2.864(13)	Ba401#11	3.002(13)
Ba1–O9	2.879(10)	Ba4-O10#11	3.124(17)
Ba1–O8#4	3.031(10)	Ba4–O1	3.210(13)
Ba1–O5	3.091(12)	Ba4O8#1	3.250(11)
Ba2–F1	2.635(8)	Ca1–O6	2.285(9)
Ba2–O2	2.647(9)	Ca1–O3	2.285(8)
Ba2–O4	2.688(9)	Ca1-O5#11	2.294(12)
Ba2–O3#5	2.808(9)	Cal-O1	2.294(11)
Ba2–O5#6	2.837(14)	Ca1-O7#6	2.301(11)
Ba2–F2#4	2.869(8)	Ca1–O10	2.325(13)
Ba2–O7#3	2.908(12)	B1O1#3	1.332(19)
Ba2–O10	3.110(16)	B1-O10	1.34(2)
Ba3–F1	2.670(8)	B1–O9#3	1.409(19)
Ba3–F2#7	2.736(8)	B2–O6	1.346(16)
Ba3–O3#5	2.763(9)	B2–O4	1.352(18)
Ba3-O10#5	2.801(15)	B2–O8	1.410(17)
Ba3–O7#7	2.812(12)	B3–O5	1.312(17)
Ba3–O8#8	2.878(12)	B3–O7	1.338(17)
Ba3–O5#3	3.088(12)	B3–O9	1.436(18)
Ba3–O6#8	3.113(11)	B4–O2	1.343(16)
Ba3–O2#9	3.134(11)	B4–O3#12	1.364(15)
Ba3–O7#3	3.172(12)	B4–O8	1.460(16)
Ba4–O6	2.585(9)	O4–Ba1–O2#2	140.4(2)
O4–Ba1–O1#3	90.6(3)	O2–Ba2–O4	77.3(3)
O2#2-Ba1-O1#3	122.2(3)	O2–Ba2–O3#5	88.7(3)
O4–Ba1–O9	127.0(3)	O4–Ba2–O3#5	154.6(2)
O2#2-Ba1-O9	83.2(3)	O2–Ba2–O5#6	75.1(3)
O1#3-Ba1-O9	81.0(4)	O4–Ba2–O5#6	126.5(3)
O4–Ba1–O8#4	86.7(3)	O3#5-Ba2-O5#6	68.0(3)
O2#2-Ba1-O8#4	81.5(3)	O2–Ba2–O7#3	135.8(3)
O1#3-Ba1-O8#4	75.9(3)	O4–Ba2–O7#3	138.7(3)
O9–Ba1–O8#4	139.3(3)	O3#5–Ba2–O7#3	64.7(3)
O4–Ba1–O5	150.6(3)	O5#6–Ba2–O7#3	62.6(3)
O2#2-Ba1-O5	68.6(3)	O2-Ba2-O10	120.4(4)
O1#3-Ba1-O5	61.9(3)	O4–Ba2–O10	72.7(3)
O9–Ba1–O5	43.6(3)	O3#5-Ba2-O10	132.5(3)
O8#4–Ba1–O5	95.7(3)	O5#6-Ba2-O10	83.3(4)
O3#5–Ba3–O7#7	142.8(3)	O7#3-Ba2-O10	68.7(3)
O3#5-Ba3-O10#5	69.3(4)	O6-Ba4-O4#1	91.6(3)

O10#5-Ba3-O7#7	74.5(4)	O4#1-Ba4-O1	149.1(3)
O3#5–Ba3–O8#8	125.4(3)	O9#11-Ba4-O1	75.1(3)
O10#5-Ba3-O8#8	155.7(3)	O1#11-Ba4-O1	95.41(11)
O7#7-Ba3-O8#8	91.6(3)	O10#11-Ba4-O1	43.3(3)
O3#5–Ba3–O5#3	106.6(3)	O6-Ba4-O8#1	137.3(3)
O10#5-Ba3-O5#3	84.3(4)	O4#1-Ba4-O8#1	45.9(3)
O7#7-Ba3-O5#3	60.6(3)	O9#11-Ba4-O8#1	110.9(3)
O8#8-Ba3-O5#3	106.4(3)	O1#11-Ba4-O8#1	70.8(3)
O3#5-Ba3-O6#8	139.9(3)	O10#11-Ba4-O8#1	100.8(3)
O10#5-Ba3-O6#8	137.6(4)	O1-Ba4-O8#1	144.0(3)
O7#7-Ba3-O6#8	67.9(3)	O6–Ca1–O3	172.8(4)
O8#8-Ba3-O6#8	45.9(2)	O6-Ca1-O5#11	86.1(4)
O5#3-Ba3-O6#8	60.5(3)	O3-Ca1-O5#11	87.1(4)
O3#5-Ba3-O2#9	47.8(2)	O6–Ca1–O1	93.6(4)
O10#5-Ba3-O2#9	107.7(4)	O3–Ca1–O1	88.1(4)
O7#7-Ba3-O2#9	160.6(3)	O5#11-Ca1-O1	83.9(5)
O8#8-Ba3-O2#9	79.1(3)	O6–Ca1–O7#6	92.7(4)
O5#3-Ba3-O2#9	138.3(3)	O3–Ca1–O7#6	83.8(4)
O6#8-Ba3-O2#9	114.3(2)	O5#11-Ca1-O7#6	81.1(5)
O3#5-Ba3-O7#3	61.7(2)	O1–Ca1–O7#6	163.3(5)
O10#5-Ba3-O7#3	65.5(4)	O6–Ca1–O10	99.6(4)
O7#7-Ba3-O7#3	95.66(3)	O3–Ca1–O10	86.7(4)
O8#8-Ba3-O7#3	137.1(3)	O5#11-Ca1-O10	168.9(6)
O5#3–Ba3–O7#3	45.1(3)	O1–Ca1–O10	105.1(6)
O6#8-Ba3-O7#3	98.8(3)	O7#6–Ca1–O10	89.0(6)
O2#9-Ba3-O7#3	102.8(3)	O1#3-B1-O10	122.3(15)
O6-Ba4-O9#11	102.6(3)	O1#3-B1-O9#3	111.6(13)
O4#1-Ba4-O9#11	134.4(3)	O10-B1-O9#3	126.1(14)
O6-Ba4-O1#11	147.7(3)	O6–B2–O4	125.3(12)
O4#1-Ba4-O1#11	112.3(3)	O6–B2–O8	116.7(12)
O9#11-Ba4-O1#11	45.2(3)	O4–B2–O8	118.0(11)
O6-Ba4-O10#11	107.6(3)	O5–B3–O7	130.2(15)
O4#1-Ba4-O10#11	131.0(3)	O5–B3–O9	108.0(13)
O9#11-Ba4-O10#11	85.7(3)	O7–B3–O9	121.7(14)
O1#11-Ba4-O10#11	73.5(3)	O2–B4–O3#12	125.8(12)
O6–Ba4–O1	69.4(3)	O2–B4–O8	119.8(11)
O3#12-B4-O8	114.4(11)		

Symmetry transformations used to generate equivalent atoms:

#1: -X, 0.5+Y, 1-Z; #2: +X, +Y, -1+Z; #3: 1-X, -0.5+Y, 1-Z; #4: -X, -0.5+Y, 1-Z; #5: 1-X, -0.5+Y, 2-Z; #6: +X, +Y, 1+Z; #7: +X, -1+Y, 1+Z; #8: +X, -1+Y, +Z; #9: -X, -0.5+Y, 2-Z; #10: +X, 1+Y, +Z; #11: 1-X, 0.5+Y, 1-Z; #12: -1+X, +Y, +Z; #13: 1-X, 0.5+Y, 2-Z; #14: +X, 1+Y, -1+Z; #15: -X, 0.5+Y, 2-Z; #16: 1+X, +Y, +Z;

Table S4. Summary of NLO crystals with B_2O_5 groups concerning on the two critical properties, SHG effect and absorption edge. $Ba_4Ca(B_2O_5)_2F_2$ exhibits the largest SHG effect in the DUV compounds with B_2O_5 groups.

X cations include transition metals or second-order Jahn-Teller effect (SOJT) cations.

Compounds	Space group	X cations	B-O groups	SHG effect (×KDP)	Cut-off edge (nm) Or Band gap
$Ba_4Ca(B_2O_5)_2F_2$	<i>P</i> 2 ₁	/	B_2O_5	2.2	<190
$\alpha\text{-}Li_4B_2O_5{}^{17}$	$Pca2_1$	/	B_2O_5	0.3	178
$Li_6CuB_4O_{10}{}^{18}$	<i>P</i> 1	Cu^{2+}	B_2O_5	1.0	610
BaCuB ₂ O ₅ ¹⁹	<i>C</i> 2	Cu ²	B_2O_5	N/A	N/A
KSbB ₂ O ₆ ²⁰	Cc	Sb ⁵⁺	B_2O_5	weak	3.63eV
KSbOB ₂ O ₅ ²¹	$Pmn2_1$	$\mathrm{Sb}^{\mathrm{5+}}$	B_2O_5	N/A	N/A
RbSbB ₂ O ₆ ²²	Cc	Sb ⁵⁺	B_2O_5	weak	3.64 eV
RbSbB ₂ O ₆ ²³	$Pmn2_1$	$\mathrm{Sb}^{\mathrm{5+}}$	B_2O_5	^b 0.9	N/A
KNbB ₂ O ₆ ²⁴	$Pna2_1$	Nb ⁵⁺	B_2O_5	7.0	265
CsNbOB ₂ O ₅ ²⁴	$Pmn2_1$	Nb^{5+}	B_2O_5	5.0	277
RbNbB ₂ O ₆ ²⁴	$Pna2_1$	Nb^{5+}	B_2O_5	5.0	270
KTaOB ₂ O ₅ ²³	$Pmn2_1$	Ta ⁵⁺	B_2O_5	^b 0.9	N/A
RbTaOB ₂ O ₅ ²³	$Pmn2_1$	Ta ⁵⁺	B_2O_5	^b 1.0	N/A
CsTaOB ₂ O ₅ ²³	$Pmn2_1$	Ta ⁵⁺	B_2O_5	^b 1.0	N/A
RbTlB ₂ O ₆ ²⁴	/	Tl^+	B_2O_5	N/A	N/A
TINbB ₂ O ₆ ²⁵	$Pna2_1$	Tl+,Nb ⁵⁺	B_2O_5	N/A	N/A
$TlTaB_2O_6{}^{25}$	$Pmn2_1$	Tl ⁺ ,Ta ⁵⁺	B_2O_5	N/A	N/A

Table S4a. Summary of NLO crystals with only B_2O_5 groups.

b: 44×SiO₂=1×KDP

Compounds	Space group	X cations	B-O groups	SHG effect (×KDP)	Cut-off edge (nm) Or Band gap
NaBe ₄ B ₄ O ₁₁ ²⁶	<i>P</i> 1	/	°B ₂ O ₅ +BO ₃	1.3	171
Na5LiBe12B12O3326	Pc	/	^c B ₂ O ₅ +BO ₃	1.4	169
Ba ₅ (BO ₃) ₂ (B ₂ O ₅) ²⁷	P212121	/	B ₂ O ₅ +BO ₃	N/A	N/A
$\alpha \text{-Pb}_{2}Ba_{4}Zn_{4}B_{14}O_{31}{}^{28}$	<i>P1</i>	Pb^{2+}	$^{c}B_{2}O_{5}+B_{6}O_{13}$	0.6	289
$\beta \text{-Pb}_{2}Ba_{4}Zn_{4}B_{14}O_{31}{}^{28}$	Сс	Pb^{2+}	$^{c}B_{2}O_{5}+B_{6}O_{13}$	1.1	303
$\gamma \text{-}Pb_{2}Ba_{4}Zn_{4}B_{14}O_{31}{}^{28}$	P3 ₂	Pb^{2+}	$^{c}B_{2}O_{5}+B_{6}O_{13}$	N/A	3.47 eV
$Pb_{3}Ba_{7}B_{7}O_{20}F^{29}$	$Pmn2_1$	Pb^{2+}	B ₂ O ₅ +BO ₃	5.0	286
$Pb_4O(BO_3)_2{}^{30}$	Aba2	Pb^{2+}	^c B ₂ O ₅ +BO ₃	3.0	280
Bi ₂ ZnOB ₂ O ₆ ³¹	Pba2	Bi ³⁺	$B_2O_5+B_2O_7$	3~4	330

Table S4b. Summary of NLO crystals with B_2O_5 groups and other B-O groups.

c: means that B_2O_5 dimers serve as a connection in the structure and contribute little to the total SHG effects.

N/A means not given in the related reference.

		1 (2 5)2 2 1 2 3	
Compounds		Eg (eV)	
	PBE	PBE0	
			$d_{16}=0.197$
			d_{14} =-0.298
$Ba_4Ca(B_2O_5)_2F_2 (P2_1)$	3.985	3.985 6.343	d_{22} =-0.524
			$d_{23}=0.423$
			d_{15} =-0.016
α -Li ₄ B ₂ O ₅ (<i>Pca</i> 2 ₁)	4 36	6.966	d_{24} =-0.102
	1.50	(experimental)	$d_{33}=0.034$

Table S5a.	. The calculated	I SHG coefficients	s of Ba ₄ Ca(B ₂	$_{2}O_{5})_{2}F_{2}$ and	$ \alpha - Li_4 B_2 O_5 $
------------	------------------	--------------------	--	---------------------------	-----------------------------

Table S5b. The real-space atom-cutting of $Ba_4Ca(B_2O_5)_2F_2$.					
	d_{16}	d_{14}	d_{22}	d_{23}	
Ba	0.074	-0.083	-0.062	0.146	
Ca	0.009	-0.018	-0.005	0.020	
B_2O_5	0.047	-0.104	-0.240	0.082	
F	-0.0007	-0.010	-0.023	0.002	
$Ba_4Ca(B_2O_5)_2F_2$	0.197	0.298	-0.524	0.423	

Figure S1. The experimental and calculated sample XRD patterns of $Ba_4Ca(B_2O_5)_2F_2$.

Figure S2. The TG-DSC curves of $Ba_4Ca(B_2O_5)_2F_2$.

Figure S3. The experimental XRD patternts at different temperatures and calculated XRD pattern of

 $Ba_4Ca(B_2O_5)_2F_2.$

Figure S4. (a) Plane B $(1,3)_2O_5$ units, (b) distorted B $(2,4)_2O_5$. (c) CaO₆ octahedra, (d-f) Three different types of coordination environments of Ba²⁺ cations in Ba₄Ca(B₂O₅)₂F₂.

Figure S5. (a) Distorted FBa₄ tetrahedra, (b) 2D [F₂Ba₄] infinite layer and (c) [F₂Ba₄] layers and [Ca(B₂O₅)] layers alternately stack along the a-axis.

Figure S6. The structural evolution from KBBF to Ba₄Ca(B₂O₅)₂F₂. (a) Crystal structure of KBBF. (b) Crystal structure of Ba₄Ca(B₂O₅)₂F₂. (c) The [Ca(B₂O₅)]∞ layered structure. (d) The [Ca(B₂O₅)]∞ layer is composed of B₂O₅ and CaO₆.

Figure S7. The arrangements of B₂O₅ units in (a) α-Li₄B₂O₅ and (b) Ba₄Ca(B₂O₅)₂F₂, where DA is the dihedral angle (angle between two BO₃ planes). TA is the torsion angle (B–O–B angle between two connected BO₃ units).

As shown in Figure S7, the values of TAs are similar in both compounds, while the DAs have obvious differences. We can see that two kinds of twisted B_2O_5 groups in α -Li₄ B_2O_5 have large DAs, 42.872° and 42.873°. While in $Ba_4Ca(B_2O_5)_2F_2$, the DAs of B_2O_5 (B(2)B(4)O₅) groups have a similar feature with twisted B_2O_5 groups in α -Li₄ B_2O_5 , and the DAs of the B_2O_5 (B(2)B(4)O₅) are 75.890. Differently, in $Ba_4Ca(B_2O_5)_2F_2$, the DAs of the B_2O_5 (B(1)B(3)O₅) in the planar pentagonal tiling [Ca(B₂O₅)] layers are 22.930°, indicating that two constitute BO₃ triangles adopt nearly coplanar arrangements, which is benefit to a large SHG response.

Figure S9. The UV-vis-NIR diffuse reflectance spectrum of $Ba_4Ca(B_2O_5)_2F_2$.

Figure S10. (a) Calculated band structure of $Ba_4Ca(B_2O_5)_2F_2$. The band-resolved SHG of (b) $Ba_4Ca(B_2O_5)_2F_2$ and (c) α -Li₄B₂O₅.

References

- 1. G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv., 2015, 71, 3-8.
- 2. G. M. Sheldrick, Acta Crystallogr. Sect. A., 2008, 64, 112-122.
- 3. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.
- 4. P. Kubelka, and F. Z. Munk, Tech. Phys., 1931, 12, 593-601.
- 5. J. Tauc, Mater. Res. Bull., 1970, 5, 721-730.
- 6. S. K. Kurtz and T. T. Perry, J. Appl. Phys., 1968, 39, 3798-3813.
- 7. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64, 1045-1097.
- 8. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, Z. Kristallogr., 2005,

220, 567-570.

- 9. W. Kohn, Rev. Mod. Phys., 1999, 71, 1253-1266.
- 10. M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew and K. A. Lyssenko, Science., 2017, 355, 49-52.
- 11. H. J. Monkhorst and J. D. Pack, Phys. Rev. B., 1976, 13, 5188-5192.
- 12. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 1980, 45, 566-569.
- 13. S. N. Rashkeev, W. R. Lambrecht and B. Segall, Phys. Rev. B., 1998, 57, 3905-3919.
- 14. J. Lin, M. H. Lee, Z. P. Liu, C. T. Chen and C. J. Pickard, J. Phys. Rev. B., 1999, 60, 13380-13389.
- 15. M. H. Lee, C. H. Yang and J. H. Jan, Phys. Rev. B., 2004, 70, 235110-235120.
- 16. L. Kang, F. Liang, X. X. Jiang, Z. S. Lin and C. T. Chen, Acc. Chem. Res. 2020, 53, 209-217.
- 17. M. He, H. Okudera, A. Simon, J. Köhler, S. Jin and X. Chen, J. Solid State Chem., 2013, 197, 466-470.
- 18. S. Pan, J. P. Smit, B. Watkins, M. R. Marvel, C. L. Stern and K. R. Poeppelmeier, J. Am. Chem. Soc., 2006, 128, 11631–11634.
- 19 Z He and W Cheng, J. Solid State Chem., 2009, 149,236-238.
- 20 C. Huang, J. H. Zhang, C. L. Hu, X. Xu, F. Kong and J. G. Mao, Inorg. Chem., 2014, 53, 3847–3853.
- 21 D. Zhao, R. H. Zhang, F. F. Li, J. Yang, B. G. Liu and Y. C. Fan, Dalt. Trans., 2015, 44, 6277–6287.
- 22 D. Yan, C. L. Hu and J. G. Mao, CrystEngComm., 2016, 18, 1655-1664.
- 23 J. Gopalakrishnan, K. Ramesha, K. Kasthuri Rangan and S. Pandey, J. Solid State Chem., 1999, 148, 75-80.
- 24 J. F. H. Nicholls, B. Henderson and B. H. T. Chai, Opt. Mater., 2001, 16, 453-462.
- 25 S. Schmid and T. Wagner, Acta Crystallogr. Sect. B Struct. Sci., 2005, 61, 361-366.
- 26 H. Huang, L. Liu, S. Jin, W. Yao, Y. Zhang and C. Chen, J. Am. Chem. Soc., 2013, 135, 18319-18322.
- 27 N. G. Furmanova, B. A. Maksimov, V. N. Molchanov, A. E. Kokh, N. G. Kononova en P. P. Fedorov, *Crystallogr. Reports*, 2006, **51**, 219–224.
- 28 H. Yu, H. Wu, Q. Jing, Z. Yang, P. S. Halasyamani and S. Pan, Chem. Mater., 2015, 27, 4779-4788.

- 29 W. Zhang, W. Jin, S. Han, Z. Yang and S. Pan, Scr. Mater., 2021, 194, 113700.
- 30 H. Yu, S. Pan, H. Wu, W. Zhao, F. Zhang, H. Li and Z. Yang, J. Mater. Chem., 2012, 22, 2105–2110.
- 31 F. Li, X. Hou, S. Pan and X. Wang, Chem. Mater., 2009, 21, 2846-2850.