Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Rh(III)-Catalyzed [5+1] Annulation of 2-Alkenylanilides and 2-Alkenylphenols with Allenyl Acetates

Anurag Singh, Rahul K. Shukla, Chandra M. R. Volla.

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India Chandra.volla@chem.iitb.ac.in

Supporting Information

Contents:

1.	General methods	S2
2.	Preparation of 2-alkeny anilides and allenyl acetate	S3
3.	Optimization	S4-S5
4.	General procedure A: Synthesis of 1,2dihydroquinolin derivatives	S5
5.	Spectroscopic data	S6-S23
5.	Functionalization	S24
7.	Mechanistic studies	S25-S28
3.	References	S28
9.	NMR spectra	S29

1. General information:

All reactions were performed in a 15 mL reaction tube. Unless otherwise noted, staring materials, reagents and solvents were purchased from common commercial sources and used without further purification. Starting materials were prepared according to the existing literature procedures. 1 H NMR spectra were recorded at 400 MHz and 500 MHz using TMS as internal standard. 13 C NMR spectra were recorded at 100 MHz and 125 MHz using TMS as internal standard. High resolution mass measurements were carried out using Micromass Q-ToF ESI instrument using direct inlet mode. Analytical thin-layer chromatography (TLC) was performed on pre-coated 0.2 mm thick Merck 60 F_{245} silica plates and various combinations of ethyl acetate and petroleum ether were used as eluent. Visualization of spots of allene and final product was accomplished by subjecting to KMnO₄ stain. All compounds were purified using silica gel (100-200 mesh) column chromatography and gave spectroscopic data consistent with being \geq 95% the assigned structure.

2. General procedure for the synthesis of 2-alkenyl anilides.^{1,2}

Step 1:

To a solution of methyltriphenylphosphonium bromide (2.04 g, 2.3 equiv) and potassium tert-butoxide (0.699 g, 2.3 equiv) in THF (26 mL) under Ar atmosphere was added the 2-aminoacetophenone derivative (0.50 g, 4.09 mmol). The reaction was heated at 30 °C and stirred for 12 hours and then cooled to room temperature. Solvents were removed in vacuo and the resulting mixture was extracted with diethyl ether. The combined organic layers wer washed with brine, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by purification by flash chromatography on silica gel (hexanes:diethylether; 4:6) gave the 2-alkenyl aniline derivatives.

Aniline (5 mmol) A, phenylacetylene (0.51 g, 5 mmol) B and montraorillonite KSF S4 (0.51 g) are introduced in a round bottomed flask equipped with magnetic stirrer and a reflux condenser. The reaction mixture is heated at 140 °C for 5 hours and then cooled to room temperature. The products was dissolved with dichloromethane and filtered. Then the solvent were concentrated in vacuo and the crude was purified by column chromatography (silica gel, appropriate mixture of petroleum ether /ethyl acetate) to give corresponding 2-alkenyl aniline.

Step 2:

To a solution of o-isopropenylaniline (1 mL, 7.34 mmol) in dichloromethane (25 mL) under Ar atmosphere was added triethylamine (1.228 ml, 1.2 equiv) at °C. Then trifluoromethanesulfonic anhydride (1.489 ml, 1.2 equiv) was added dropwise. The reaction was stirred at 0 °C for 1.5 hours and quenched with saturated NH₄Cl aqueous solution. The resulting mixture was extracted with dichloromethane and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by purification column flash chromatography on silica gel (hexanes:diethylether; 8:2) affording corresponding products.

General procedure for the synthesis of Allenyl Acetate.^{3,4}

Step 1:

To a two-necked round bottom-flask equipped with a magnetic stir bar were added under argon propargylic alcohol (10 mmol), 15 mL dioxane, 0.72 g of cuprous bromide, 0.74 g of paraformaldehyde, and 1.85 g of diisopropylamine. The reaction mixture was refluxed for 2 h and then cooled to room temperature. To mixture was filtered through a Celite plug. The filtrate is diluted with water followed by diethyl ether and acidified with 6 N HCl to pH 2. The organic layer was separated and the aqueous phase was extracted with diethyl ether for additional two times. The organic phase was then washed with saturated NaHCO₃, brine and dried over MgSO₄. After filtration and evaporation under reduced pressure, the residue was subjected directly for the next step.

Step 2: To a round bottom-flask equipped with a magnetic stir bar were added under argon allenyl carbinol, DMAP (122 mg, 1.0 mmol, 0.2 equiv), pyridine (790 mg, 10 mmol, 2.0 equiv) and dichloromethane (0.3 M). The mixture was cooled to 0 $^{\circ}$ C and the chloro methyl formate (708.8 mg, 7.5 mmol, 1.5 equiv) was slowly added. The reaction was allowed to stir at room temperature until completion (typically 1 – 16 h). The mixture was diluted with dichloromethane and washed successively with 1 N HCl, saturated NaHCO₃, and brine. The organic phase was dried over MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by flash column chromatography to yield the desired product.

3. Optimization of reaction condition:

To achieve further enhancement in yield, different solvents were screened. DCE proved to be best solvent for developed protocol delivering the product **7a** in 93% yield, while other solvents like toluene, 1,4 dioxane, MeOH and DMF were found less efficient hence lowered yield were observed (entry 3-6). The presence of other additives like Cu(OAc)₂, CsOAc and AgOAc did not exhibit any significant improvement in reaction yield (entry 7-9). Surprisingly, silver salts like AgSbF₆ and AgBF₄, having non-coordinating counter anions which are known to enhance the reactivity of the Rh(III)-catalyst, gave the product **3a** only in 70% and 68%, respectively (entries 10 and 11). After carefully examination of optimization, we found that loading of NaOAc could be further lower down to 30 mol% in DCE solvent (entry 12). In the absence of NaOAc, diminished yield of **7a** (20%) was observed (entry 11). When reaction was also carried out at elevated temperature at 70 °C, formation of **7a** was noticed within 20 minute with 86% yield (entry 12). Other metal catalyst like Pd(OAc)₂, [Cp*Co(CO)I₂], [Cp*IrCl₂]₂ and [Ru(p-cymene)Cl2]₂ were found completely ineffective when used instead of Rh(III) (entry 13). Absence of Rh catalyst did not furnish the cyclized product (entry 14).

entry	catalyst	solvent	base	yield (%)

1	[Cp*RhCl ₂] ₂	CH ₃ CN	NaOAc	45 (42) ^[b]
2	$[Cp*RhCl_2]_2$	DCE	NaOAc	93 (89)
3	$[Cp*RhCl_2]_2$	Toluene	NaOAc	75
4	$[Cp*RhCl_2]_2$	1,4-dioxane	NaOAc	25
5	$[Cp*RhCl_2]_2$	МеОН	NaOAc	64
6	$[Cp*RhCl_2]_2$	DMF	NaOAc	43
7	$[Cp*RhCl_2]_2$	DCE	Cu(OAc) ₂	73
8	$[Cp*RhCl_2]_2$	DCE	CsOAc	68
9	$[Cp*RhCl_2]_2$	DCE	AgOAc	68
10	$[Cp*RhCl_2]_2$	DCE	AgSbF ₆	70
11	[Cp*RhCl ₂] ₂	DCE	AgBF ₄	68
12	$[Cp*RhCl_2]_2$	DCE	NaOAc	91 ^[c]
13	$[Cp*RhCl_2]_2$	DCE	-	10
14	[Cp*RhCl ₂] ₂	DCE	NaOAc	87 ^[d]
15	[Ru(p-cymene)Cl ₂] ₂	DCE	NaOAc	-
16	Pd(OAc) ₂	DCE	NaOAc	-
17	[Cp*IrCl ₂] ₂	DCE	NaOAc	-
18	[Cp*Co(CO)I ₂] ₂	DCE	NaOAc	-
17	-	DCE	NaOAc	-

^a Reaction condition: **1a** (0.2 mmol), **2a** (0.18 mmol), solvent 2 ml, 36 h. [b] isolated yield. [c] Used 30 mol % NaOAc. [d] T= 70 °C.

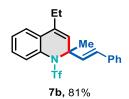
3. General procedure for Rh(III) -catalyzed [5+1] annulation of o-alkenylanilides with allenic acetates.

A sealed tube containing [Cp*RhCl₂]₂ (2.5 mol %), NaOAc (30 mol %) was evacuated and purged with nitrogen gas three times. Then, o-alkenylanilides 1 (0.20 mmol) and allenic acetate 4 (0.18 mmol) in CH₃CN (2 ml) were added via syringe under nitrogen atmosphere and the reaction mixture was allowed to stir at r.t. for 24 h. Then, the mixture was diluted with CH₂Cl₂ (10 mL). The mixture was filtered through a celite pad and washed with CH₂Cl₂ (3 × 10 mL). The filtrate was concentrated under reduced

pressure. The residue was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired annulated pure product 7.

4. Spectroscopic data:

(E)-2,4-dimethyl-2-styryl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline


64.4 mg, 91%, colorless liquid;

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 – 7.53 (m, 1H), 7.35 (dd, J = 7.4, 1.9 Hz, 1H), 7.32 – 7.27 (m, 4H), 7.27 – 7.22 (m, 3H), 6.44 (d, J = 15.9 Hz, 1H), 6.17 (d, J = 15.9 Hz, 1H), 5.97 (s, 1H), 2.25 (d, J = 1.4 Hz, 3H), 1.88 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 136.16, 134.27, 132.87, 132.17, 131.27, 130.68, 129.61, 128.55, 128.06, 127.93, 127.89, 127.72, 126.59, 123.09, 120.45 (q, J = 325.9 Hz), 64.29, 26.56, 17.95.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₀H₁₈F₃NNaO₂S 416.0903, found 416.0907.

(E)-4-ethyl-2-methyl-2-styryl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

59.407 mg, 81%, colorless liquid;

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (dd, J = 7.6, 1.5 Hz, 1H), 7.35 – 7.31 (m, 1H), 7.29 – 7.18 (m, 7H), 6.39 (d, J = 15.9 Hz, 1H), 6.12 (d, J = 15.9 Hz, 1H), 5.97 – 5.85 (m, 1H), 2.62 (q, J = 7.4 Hz, 2H), 1.86 (s, 3H), 1.23 (q, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 138.47, 136.16, 134.57, 131.45, 131.33, 129.60, 129.20, 128.52, 128.32, 127.90, 127.74, 127.70, 126.57, 122.85, 121.96, 120.45 (q, J = 326.1 Hz) 26.63, 24.45, 12.56. **HRMS** (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₁H₂₀F₃NNaO₂S 430.1059, found 430.1063.

$(E) \hbox{-} 4- is opropyl-2-methyl-2-styryl-1-((trifluoromethyl) sulfonyl)-1, 2-dihydroquino line$

57.5 mg, 78%, sticky brown solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (d, J = 7.7 Hz, 1H), 7.36 (d, J = 9.2 Hz, 1H), 7.28 – 7.25 (m, 2H), 7.25 – 7.19 (m, 3H), 7.19 – 7.15 (m, 2H), 6.33 (d, J = 15.9 Hz, 1H), 6.08 (d, J = 15.9 Hz, 1H), 5.85 (s, 1H), 3.12 – 2.99 (sept, J = 6.7 Hz, 1H), 1.86 (s, 3H), 1.31 (d, J = 6.7 Hz, 3H), 1.16 (d, J = 6.9 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.92, 136.12, 134.70, 131.45, 131.41, 129.55, 128.51, 128.47, 127.89, 127.84, 127.66, 127.61, 126.55, 122.83, 120.45 (q, J = 325.3 Hz), 64.26, 27.96, 26.70, 22.09, 21.40.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₂H₂₃F₃NO₂S 422.1396, found 422.1392.

(E)-4-butyl-2-methyl-2-styryl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline


64.5 mg, 82%, Brown sticky solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (d, J = 7.8 Hz, 1H), 7.32 (d, J = 7.3 Hz, 1H), 7.29 – 7.17 (m, 7H), 6.38 (d, J = 15.9 Hz, 1H), 6.12 (d, J = 15.9 Hz, 1H), 5.90 (s, 1H), 2.67 – 2.46 (m, 2H), 1.85 (s, 3H), 1.62 – 1.44 (m, 4H), 1.00 (t, J = 7.1 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 137.29, 136.15, 134.57, 131.51, 131.31, 129.87, 129.59, 128.53, 128.26, 127.90, 127.72, 127.65, 126.57, 122.97, 120.45 (q, J = 325.8 Hz), 64.27, 31.32, 30.44, 26.60, 22.80, 13.95.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₃H₂₅F₃NO₂S 436.1553, found 436.1548.

(E)-2-methyl-4-phenyl-2-styryl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

69.9 mg, 85%, colorless liquid;

¹**H NMR** (500 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 1H), 7.53 – 7.44 (m, 5H), 7.33 – 7.28 (m, 3H), 7.27 – 7.20 (m, 4H), 7.13 (dd, J = 7.7, 1.3 Hz, 1H), 6.55 (d, J = 16.0 Hz, 1H), 6.23 (d, J = 16.0 Hz, 1H), 6.20 (s, 1H), 1.97 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 139.61, 137.63, 136.03, 135.04, 131.55, 131.25, 130.83, 129.94, 129.41, 128.71, 128.58, 128.57, 128.51, 128.44, 128.38, 128.27, 128.06, 127.64, 126.93, 126.64, 125.98, 120.45(q, J = 326 Hz), 64.33, 26.64.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₅H₂₀F₃NNaO₂S 478.1059, found 478.1051.

(E)-2,6-dimethyl-4-phenyl-2-styryl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

76.3 mg, 90%, yellowish liquid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.38 (m, 6H), 7.33 – 7.20 (m, 5H), 7.08 (dd, J = 8.2, 1.3 Hz, 1H), 6.89 (d, J = 1.1 Hz, 1H), 6.53 (d, J = 16.0 Hz, 1H), 6.22 (d, J = 16.0 Hz, 1H), 6.15 (s, 1H), 2.24 (s, 3H), 1.93 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.66, 137.81, 137.59, 136.09, 132.47, 131.24, 131.20, 131.11, 129.72, 129.12, 128.70, 128.59, 128.44, 128.18, 128.03, 126.67, 126.46, 120.45 (q, J = 326.1 Hz), 64.24, 26.71, 21.17.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₆H₂₂F₃NNaO₂S 492.1216, found 492.1214.

(E)-6-methoxy-2-methyl-4-phenyl-2-styryl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

$$\begin{array}{c} \text{MeO} \\ \hline \\ \text{Tf} \\ \\ \text{7g, } 85\% \\ \end{array}$$

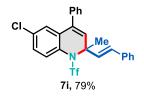
74.5 mg, 85%, white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (d, J = 8.9 Hz, 1H), 7.49 – 7.44 (m, 5H), 7.33 – 7.24 (m, 5H), 6.81 (dd, J = 8.9, 2.9 Hz, 1H), 6.63 (d, J = 2.9 Hz, 1H), 6.54 (d, J = 16.0 Hz, 1H), 6.23 (d, J = 16.0 Hz, 1H), 6.20 (s, 1H), 3.70 (s, 3H), 1.95 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.56, 139.62, 137.56, 136.07, 132.61, 131.77, 131.12, 129.77, 129.56, 128.74, 128.60, 128.56, 128.30, 128.07, 127.85, 126.68, 120.45 (q, J = 326.3 Hz), 113.00, 111.80, 64.27, 55.38.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₆H₂₃F₃NO₃S 486.1345, found 486.1340.

(E)-6-fluoro-2-methyl-4-phenyl-2-styryl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline


71 mg, 83%, solid, m.p. 123-126 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (dd, J = 8.9, 5.1 Hz, 1H), 7.52 – 7.45 (m, 3H), 7.44 – 7.38 (m, 2H), 7.30 – 7.20 (m, 5H), 7.01 – 6.90 (m, 1H), 6.80 (dt, J = 12.7, 6.4 Hz, 1H), 6.50 (d, J = 16.0 Hz, 1H), 6.22 (s, J = 7.4 Hz, 1H), 6.17 (d, J = 16.0 Hz, 1H), 1.95 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.34 (d, J = 247.8 Hz), 139.07 (s), 136.92 (s), 135.77 (s), 133.42 (d, J = 8.5 Hz), 132.40 (s), 130.85 (d, J = 3.1 Hz), 130.48 (s), 130.25 (s, J = 8.7 Hz), 130.14 (d, J = 4.9 Hz), 128.89 (s), 128.81 (s), 128.63 (s), 128.44 (s), 128.22 (s), 126.65 (s), 120.45 (q, J = 326.0 Hz), 115.16 (d, J = 23.1 Hz), 112.75 (d, J = 24.5 Hz), 64.42 (s), 24.47.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₅H₂₀F₄NO₂S 474.1145, found 474.1141.

(E)-6-chloro-2-methyl-4-phenyl-2-styryl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

69.8 mg, 79%, colorless liquid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.56 (d, J = 8.6 Hz, 1H), 7.50 (m, 3H), 7.44 – 7.36 (m, 2H), 7.33 – 7.28 (m, 3H), 7.28 – 7.24 (m, 3H), 7.09 (d, J = 2.1 Hz, 1H), 6.52 (d, J = 15.9 Hz, 1H), 6.21 (s, 1H), 6.18 (d, J = 16.0 Hz, 1H), 1.96 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 138.85, 136.86, 135.72, 133.49, 133.47, 132.99, 132.51, 130.34, 130.23, 129.67, 128.91, 128.81, 128.63, 128.45, 128.32, 128.25, 126.67, 125.80, 120.45 (q, J = 325.9 Hz), 64.44, 26.58.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₅H₁₉ClF₃NNaO₂S 512.0669, found 512.0661.

(E)-6-bromo-2-methyl-4-phenyl-2-styryl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline


78 mg, 81%, brown oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.44 (m, 4H), 7.44 – 7.36 (m, 3H), 7.33 – 7.21 (m, 6H), 6.51 (d, J = 16.0 Hz, 1H), 6.23 – 6.13 (m, 2H), 1.94 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 138.76, 136.85, 135.71, 134.02, 133.30, 132.56, 131.31, 130.32, 130.25, 129.96, 128.95, 128.84, 128.72, 128.66, 128.47, 128.28, 126.70, 121.94, 120.45(q, J = 325.8 Hz), 64.42, 26.61.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₅H₂₀BrF₃NO₂S 534.0345, found 534.0331.

(E)-6-bromo-2,4-dimethyl-2-styryl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

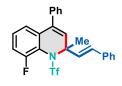
69.8 mg, 82%, sticky solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.32 (m, 3H), 7.31 – 7.18 (m, 5H), 6.38 (d, J = 15.9 Hz, 1H), 6.10 (d, J = 15.9 Hz, 1H), 5.97 (s, 1H), 2.19 (s, 3H), 1.84 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 135.85, 133.88, 133.31, 132.03, 131.98, 130.76, 129.93, 129.52, 128.64, 128.59, 128.12, 126.61, 126.19, 121.56, 120.45(q, J = 325.8 Hz), 64.37, 26.50, 17.84.

HRMS (ESI-TOF) m/z [M + K]⁺ calcd for C₂₀H₁₇BrF₃KNO₂S 509.9747 found 509.9747.

(E)-methyl 2-methyl-2-styryl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline-6 carboxylate


81%, 75.2 mg, white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 8.5 Hz, 1H), 7.82 (s, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.53 – 7.48 (m, 3H), 7.44 (m, 2H), 7.27 (m, 5H), 6.51 (d, J = 15.9 Hz, 1H), 6.23 (s, 1H), 6.17 (d, J = 15.9 Hz, 1H), 3.85 (s, 3H), 1.98 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.02, 139.28, 138.98, 137.01, 135.63, 132.03, 131.67, 130.34, 130.19, 129.39, 129.32, 128.93, 128.80, 128.60, 128.44, 128.24, 127.14, 126.66, 120.45 (q, j = 326.50 Hz), 64.68, 52.30, 26.59.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₇H₂₃F₃NO₄S 514.1294, found 514.1286.

(E) - 8 - fluoro - 2 - methyl - 4 - phenyl - 2 - styryl - 1 - ((trifluoromethyl) sulfonyl) - 1, 2 - dihydroquinoline

7m, 89%

89%, 76.1 mg, colorless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.55 – 7.43 (m, 6H), 7.31 – 7.20 (m, 5H), 7.08 (t, J = 8.8 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 6.54 (d, J = 15.9 Hz, 1H), 6.21 (s, 1H), 6.09 (d, J = 15.9 Hz, 1H), 2.07 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 158.95-157.14 (d, J = 259.92 Hz), 139.70, 137.06, 135.71, 134.04, 132.73, 130.17, 130.11, 128.97, 128.90, 128.78, 128.73, 128.59, 128.47, 128.16, 126.64, 120.45 (q, J = 125.8), 116.72-116.47(q, J = 21.14Hz), 64.55, 25.97.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₅H₂₀F₄NO₂S 474.1145, found 474.1142.

(E)-2,6,8-trimethyl-4-phenyl-2-styryl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

7n, 85%

74.2 mg, 85%, colorless oil.

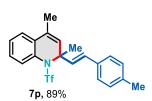
¹**H NMR** (500 MHz, CDCl₃) δ 7.49 (s, J = 26.3 Hz, 5H), 7.31 – 7.23 (m, 3H), 7.18 (d, J = 7.2 Hz, 2H), 6.97 (s, J = 27.2 Hz, 1H), 6.72 (s, J = 28.5 Hz, 1H), 6.43 (d, J = 15.9 Hz, 1H), 6.12 (s, 1H), 6.09 (d, J = 16.0 Hz, 1H), 2.50 (s, 3H), 2.20 (s, 3H), 2.04 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 140.74, 137.76, 137.64, 137.53, 135.99, 132.35, 132.05, 131.60, 131.10, 129.73, 128.62, 128.56, 128.39, 127.99, 126.59, 124.37, 120.45 (q, J = 327.3 Hz), 64.13, 26.11, 21.12, 19.42.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₇H₂₅F₃NO₂S 484.1553 found 484.1542.

(E)-6,8-dimethyl-6-styryl-5-((trifluoromethyl)sulfonyl)-5,6-dihydro-[1,3]dioxolo[4,5-g]quinoline

7o, 78%


61.6 mg, 78%, sticky liquid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.32 – 7.23 (m, 1H), 7.04 (s, J = 16.6 Hz, 1H), 6.77 (s, 1H), 6.41 (d, J = 15.9 Hz, 1H), 6.14 (d, J = 15.9 Hz, 1H), 5.99 (dd, J = 10.3, 1.2 Hz, 1H), 5.83 (s, 1H), 2.16 (s, J = 1.2 Hz, 3H), 1.84 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 147.09, 146.59, 136.13, 132.76, 131.60, 129.36, 128.79, 128.55, 128.39, 127.07, 126.62, 120.45 (q, J = 125.3 Hz), 109.59, 102.84, 101.80, 64.38, 26.54, 18.25.

HRMS (ESI-TOF) m/z [M + K]⁺ calcd for $C_{21}H_{18}F_3KNO_4S$ 476.0540 found 476.0537.

(E)-2,4-dimethyl-2-(4-methylstyryl)-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

64.5 mg, 89%, colorless liquid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, J = 8.1 Hz, 1H), 7.35 – 7.24 (m, 3H), 7.20 – 7.16 (m, 1H), 7.13 – 7.03 (m, 3H), 6.57 (d, J = 15.8 Hz, 1H), 5.91 (s, 1H), 5.88 (d, J = 15.8 Hz, 1H), 2.22 (s, 3H), 2.02 (s, 3H), 1.89 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 135.59, 134.47, 132.99, 132.38, 132.28, 130.70, 130.03, 128.17, 127.88, 127.76, 127.65, 126.06, 123.04, 121.97(q, J = 325.1), 64.49, 26.51, 19.47, 17.89.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₁H₂₀F₃NNO₂S 408.1240 found 408.1240.

(E)-2-(4-chlorostyryl)-2,4-dimethyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

66.8 mg, 87%, yellowish liquid;

¹**H NMR** (500 MHz, CDCl₃) δ 7.55 (d, J = 7.6 Hz, 1H), 7.39 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.4 Hz, 1H), 7.33 – 7.25 (m, 2H), 7.10 (d, J = 7.9 Hz, 2H), 6.37 (d, J = 15.9 Hz, 1H), 6.15 (d, J = 15.9 Hz, 1H), 5.95 (s, 1H), 2.23 (s, 3H), 1.85 (s, 3H).

¹³C{¹**H**} **NMR** (125 MHz, CDCl₃) δ 135.06, 134.18, 133.03, 132.08, 131.99, 131.65, 130.40, 128.48, 128.11, 128.03, 127.96, 127.79, 123.13, 121.78, 125.45(q, J = 326), 64.14, 26.43, 17.95.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₀H₁₇ClF₃NNaO₂S 450.0513, found 450.0519.

(E)-2-(4-bromostyryl)-2,4-dimethyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

71.21 mg, 84%, colorless liquid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.56 (dd, J = 7.8, 1.3 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.32 – 7.26 (m, 2H), 7.24 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 6.39 (d, J = 16.0 Hz, 1H), 6.14 (d, J = 15.9 Hz, 1H), 5.96 (s, 1H), 2.24 (d, J = 1.2 Hz, 3H), 1.86 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 134.63, 134.19, 133.62, 133.01, 132.10, 131.87, 130.44, 128.70, 128.43, 128.03, 127.95, 127.81, 123.13, 120.25 (q, J = 325.8), 64.16, 26.46, 17.94.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₀H₁₈BrF₃NO₂S 472.0188, found 472.0189.

(E)-2-(4-fluorostyryl)-2,4-dimethyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

61.27 mg, 83%, colorless liquid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.55 (dd, J = 7.7, 1.3 Hz, 1H), 7.36 – 7.33 (m, 1H), 7.33 – 7.25 (m, 2H), 7.24 – 7.17 (m, 2H), 6.96 (t, J = 8.7 Hz, 2H), 6.39 (d, J = 16.0 Hz, 1H), 6.08 (d, J = 15.9 Hz, 1H), 5.95 (s, 1H), 2.23 (d, J = 1.3 Hz, 3H), 1.85 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.50 (d, J = 247.5 Hz), 134.21 (s), 132.91 (s), 132.28 (d, J = 3.3 Hz), 132.12 (s), 130.96 (s), 130.55 (s), 128.47 (s), 128.17 (s), 128.11 (s), 128.04 (s), 127.92 (s), 127.75 (s), 123.10 (s), 120.25 (q, J = 325.8 Hz), 64.18 (s), 26.52 (s), 17.94 (s).

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₀H₁₈F₄NO₂S 412.0989 found 412.0995.

(E)-4-(2-(2,4-dimethyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinolin-2-yl)vinyl)benzonitrile

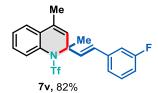
58.68 mg, 78%, sticky solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.55 (d, J = 8.0 Hz, 3H), 7.37 – 7.26 (m, 5H), 6.44 (d, J = 16.0 Hz, 1H), 6.28 (d, J = 16.0 Hz, 1H), 5.95 (s, 1H), 2.23 (s, 3H), 1.85 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 140.61 (s), 135.18 (s), 134.08 (s), 133.33 (s), 132.36 (s), 131.93 (s), 129.95 (s), 128.10 (s), 127.99 (s), 127.96 (s), 127.90 (s), 127.08 (s), 123.22 (s), 120.25 (q, J = 325.8 Hz), 118.75 (s), 111.21 (s), 63.90 (s), 26.34 (s), 17.97 (s).

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for $C_{21}H_{18}F_3N_2O_2S$ 419.1036 found 419.1030.

(E)-2,4-dimethyl-2-(4-(trifluoromethyl)styryl)-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

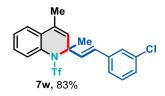

63.0 mg, 76%, brown oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.45 (m, 3H), 7.35 – 7.21 (m, 5H), 6.42 (d, J = 16.0 Hz, 1H), 6.22 (d, J = 16.0 Hz, 1H), 5.93 (s, 1H), 2.21 (d, J = 1.3 Hz, 3H), 1.83 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.08, 134.32 (s), 134.08 (s), 133.37 (s), 132.19 (s), 130.36 (s), 129.90, 128.44 (s), 128.19 (d, J = 1.5 Hz), 128.00 (s), 126.91 (s), 125.66 (q, J = 3.9 Hz), 123.32 (s), 120.45 (q, J = 125.2 Hz), 64.18 (s), 26.57 (s), 18.12 (s).

HRMS (ESI-TOF) m/z [M + K]⁺ calcd for C₂₁H₁₇F₆ KNO₂S 500.0516, found 500.0508.

(E)-2-(3-fluorostyryl)-2,4-dimethyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline


60.53 mg, 82%, colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.47 (m, 1H), 7.34 – 7.29 (m, 1H), 7.29 – 7.22 (m, 2H), 7.22 – 7.16 (m, 1H), 6.97 (d, J = 7.7 Hz, 1H), 6.94 – 6.85 (m, J = 8.8 Hz, 2H), 6.37 (d, J = 15.9 Hz, 1H), 6.14 (d, J = 15.9 Hz, 1H), 5.92 (d, J = 0.9 Hz, 1H), 2.21 (d, J = 1.4 Hz, 3H), 1.83 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.95 (d, J = 245.6 Hz), 138.45 (d, J = 7.8 Hz), 134.18 (s), 133.06 (s), 132.65 (s), 132.06 (s), 130.37 (s), 129.99 (d, J = 8.4 Hz), 128.53 (d, J = 2.4 Hz), 128.02 (s), 127.97 (s), 127.79 (s), 123.13 (s), 122.44 (d, J = 2.7 Hz), 120.45 (q, J = 325.8 Hz), 114.73 (d, J = 21.4 Hz), 113.08 (d, J = 21.8 Hz), 64.07 (s), 26.45 (s), 17.94 (s).

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for $C_{20}H_{18}F_4NO_2S$ 412.0989, found 412.0986.

(E)-2-(3-chlorostyryl)-2,4-dimethyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

63.8 mg, 83%, colorless liquid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (m, 1H), 7.33 – 7.22 (m, 1H), 7.20 – 7.14 (m, 3.65H), 7.11 – 7.01 (m, 3H), 6.33 (d, J = 15.9 Hz, 1H), 6.12 (d, J = 15.9 Hz, 1H), 5.90 (d, J = 1.1 Hz, 1H), 2.20 (d, J = 1.5 Hz, 3H), 1.82 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 137.96 (s), 134.48 (s), 134.18 (s), 133.09 (s), 132.76 (s), 132.03 (s), 130.32 (s), 129.74 (s), 128.31 (s), 128.01 (s), 127.99 (s), 127.85 (s), 127.78 (s), 126.52 (s), 124.71 (s), 123.12 (s), 120.45 (q, J = 325.8 Hz), 64.06 (s), 26.48 (s), 17.93 (s).

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₀H₁₇ClF₃NNaO₂S 450.0513 found 450.0507.

(E)-2-(2-chloro-6-fluorostyryl)-2,4-dimethyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

63.0 mg, 79%, colorless liquid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.58 – 7.51 (m, 1H), 7.36 – 7.24 (m, 3H), 7.13 – 7.03 (m, 2H), 6.91 (m,1H), 6.47 (d, J = 16.3 Hz, 1H), 6.27 (d, J = 16.3 Hz, 1H), 5.92 (d, J = 0.9 Hz, 1H), 2.23 (d, J = 1.4 Hz, 3H), 1.93 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 160.81 (d, J = 252.2 Hz), 138.71 (d, J = 10.5 Hz), 134.43 (d, J = 5.3 Hz), 134.37 (s), 133.56 (s), 132.16 (s), 130.09 (s), 128.46 (d, J = 10.0 Hz), 128.21 (s), 127.88 (s), 127.68 (s), 125.33 (d, J = 3.5 Hz), 123.15 (s), 123.04 (s), 120.45 (q, J = 325.6 Hz), 120.26 (s), 114.44 (d, J = 23.4 Hz), 64.65 (s), 26.31 (s), 17.90 (s).

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₀H₁₇ClF₄NO₂S 446.0599 found 446.0597.

(E)-2-(2,4-dichlorostyryl)-2,4-dimethyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

7y, 81%

67.2 mg, 81%, sticky solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 – 7.45 (m, 1H), 7.36 – 7.24 (m, 4H), 7.19 (dd, J = 7.8, 1.2 Hz, 1H), 7.08 (t, J = 7.9 Hz, 1H), 6.78 (d, J = 15.9 Hz, 1H), 6.06 (d, J = 15.9 Hz, 1H), 5.94 (s, 1H), 2.22 (d, J = 1.4 Hz, 3H), 1.84 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 137.02 (s), 135.00 (s), 134.16 (s), 133.36 (s), 133.20 (s), 132.08 (s), 131.38 (s), 130.01 (s), 129.51 (s), 128.09 (s), 128.00 (s), 127.84 (s), 127.19 (s), 126.61 (s), 125.46 (s), 123.27 (s), 120.45 (q, J = 325.7 Hz), 64.10 (s), 26.29 (s), 17.94 (s).

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for $C_{20}H_{17}Cl_2F_3NO_2S$ 462.0304 found 462.0294.

(E)-2-(4-bromostyryl)-2-methyl-4-phenyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

83.6 mg, 87%, white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.64 (dd, J = 8.1, 1.1 Hz, 1H), 7.53 – 7.44 (m, 5H), 7.43 – 7.39 (m, 2H), 7.31 (td, J = 7.8, 1.6 Hz, 1H), 7.23 (td, J = 7.6, 1.2 Hz, 1H), 7.16 – 7.08 (m, 3H), 6.49 (d, J = 16.0 Hz, 1H), 6.23 (d, J = 16.0 Hz, 1H), 6.19 (s, 1H), 1.96 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 139.75, 137.52, 134.99, 134.95, 131.71, 131.56, 131.50, 130.95, 128.82, 128.74, 128.58, 128.55, 128.46, 128.43, 128.16, 127.70, 126.03, 121.96, 120.45 (q, J = 326 Hz), 64.22, 26.51.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₅H₁₉BrF₃NNaO₂S 556.0164 found 556.0151.

(E)-2-(4-chlorostyryl)-2,6-dimethyl-4-phenyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline


70 mg, 78%, viscous liquid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.53 – 7.46 (m, 4H), 7.45 – 7.40 (m, 2H), 7.25 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 7.09 (d, J = 9.7 Hz, 1H), 6.89 (s, 1H), 6.48 (d, J = 16.0 Hz, 1H), 6.19 (d, J = 16.0 Hz, 1H), 6.13 (s, 1H), 2.25 (s, 3H), 1.91 (s, 3H), 1.61 (s, 3H).

13C NMR (125 MHz, CDCl3) δ 139.74, 137.68, 137.63, 134.54, 133.74, 132.39, 131.67, 131.11, 130.94, 129.15, 128.73, 128.68, 128.54, 128.46, 128.14, 127.84, 126.46, 121.69, 119.09(q, *J* = 326.0 Hz), 64.08, 26.57, 21.15.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₇H₂₅ClF₃NNaO₂S 542.1139, found 542.1145.

(E)-2,4-dimethyl-2-(2-(naphthalen-2-yl)vinyl)-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline

7ab, 84%

67.0 mg, 84%, yellowish liquid.

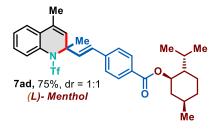
¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.62 – 7.57 (m, 1H), 7.48 – 7.44 (m, 1H), 7.43 – 7.39 (m, 3H), 7.39 – 7.33 (m, 2H), 7.33 – 7.25 (m, 2H), 7.07 (d, J = 15.7 Hz, 1H), 6.04 (d, J = 15.7 Hz, 1H), 6.01 (s, J = 1.0 Hz, 1H), 2.28 (d, J = 1.4 Hz, 3H), 1.97 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 134.58 (s), 134.34 (s), 134.25 (s), 133.37 (s), 133.25 (s), 132.43 (s), 131.14 (s), 130.73 (s), 128.44 (s), 128.29 (s), 128.14 (s), 127.98 (d, J = 6.4 Hz), 127.94 (s), 125.96 (s), 125.84 (s), 125.54 (s), 124.26 (s), 123.76 (s), 123.17 (s), 120.45 (q, J = 325.8 Hz), 64.54 (s), 26.43 (s), 17.97 (s).

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for $C_{24}H_{21}F_3NO_2S$ 444.1240 found 444.1235.

(E) - 2 - (2 - ([1,1'-biphenyl] - 4 - yl)vinyl) - 2, 4 - dimethyl - 1 - ((trifluoromethyl)sulfonyl) - 1, 2 - dihydroquinoline

CCDC: 2074148


68.3 mg, 81%, colorless liquid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.58 (d, J = 7.5 Hz, 3H), 7.52 (d, J = 8.1 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.39 – 7.34 (m, 2H), 7.34 – 7.26 (m, 4H), 6.47 (d, J = 15.9 Hz, 1H), 6.21 (d, J = 15.9 Hz, 1H), 5.98 (s, 1H), 2.25 (s, 3H), 1.89 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 140.80 (s), 140.56 (s), 135.16 (s), 134.30 (s), 132.90 (s), 132.17 (s), 131.31 (s), 130.68 (s), 129.17 (s), 128.81 (s), 128.07 (s), 127.92 (s), 127.73 (s), 127.42 (s), 127.24 (s), 127.01 (s), 126.94 (s), 123.09 (s), 120.45 (q, J = 326.0 Hz), 64.32 (s), 26.58 (s), 17.95 (s).

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₆H₂₂F₃NO₂S 470.1396 found 470.1389.

(1R,2R,5R)-2-isopropyl-5-methylcyclohexyl 4-((E)-2-(2,4-dimethyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinolin-2-yl)vinyl)benzoate

86 mg, 75%, sticky white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, J = 8.3 Hz, 2H), 7.58 – 7.46 (m, 1H), 7.34 – 7.28 (m, 1H), 7.28 – 7.21 (m, 4H), 6.43 (d, J = 16.0 Hz, 1H), 6.32 – 6.15 (m, 1H), 5.93 (s, 1H), 4.90 (td, J = 10.8, 4.3 Hz, 1H), 2.21 (d, J = 1.4 Hz, 3H), 2.14 – 2.05 (m, 1H), 1.95 – 1.88 (m, 1H), 1.84 (s, 3H), 1.77 – 1.67 (m, 2H), 1.59 – 1.47 (m, 2H), 1.18 – 1.05 (m, 2H), 0.98 – 0.85 (m, 7H), 0.77 (d, J = 6.9 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.70, 140.39, 134.18, 133.73, 133.67, 133.15, 132.06, 130.30, 130.07, 129.84, 128.78, 128.74, 128.02, 127.98, 127.80, 126.40, 123.13, 120.45 (q, J = 325.8 Hz),

74.85, 64.11, 47.27, 40.96, 34.31, 31.44, 26.56, 26.53, 26.39, 23.68, 23.65, 22.05, 20.74, 17.94, 16.57, 16.54.

HRMS (ESI-TOF) m/z [M + K]⁺ calcd for $C_{31}H_{36}F_3KNO_4S$ 614.1949 found 614.1944.

(E)-2-isopropyl-5-methylphenyl4-(2-(2,4-dimethyl-1-((trifluoromethyl)sulfonyl)-1,2 dihydroquinolin-2-yl)vinyl)benzoate

81%, 92 mg, colorless liquid.

¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.3 Hz, 1H), 7.57 (d, J = 7.5 Hz, 1H), 7.39 – 7.33 (m, 3H), 7.33 – 7.27 (m, 2H), 7.27 – 7.24 (m, 1H), 7.08 (d, J = 7.8 Hz, 1H), 6.50 (d, J = 16.0 Hz, 1H), 6.31 (d, J = 15.9 Hz, 1H), 5.97 (s, 1H), 3.07 – 2.97 (m, 1H), 2.36 (s, J = 7.2 Hz, 3H), 2.25 (d, J = 1.0 Hz, 3H), 1.88 (s, 3H), 1.21 (d, J = 6.9 Hz, 6H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 164.96, 148.10, 141.24, 137.13, 136.67, 134.33, 134.19, 133.22, 132.04, 130.45, 130.23, 129.55, 128.80, 128.61, 128.04, 127.85, 127.21, 126.69, 126.50, 123.18, 122.84, 120.45 (q, J = 325.7 Hz)., 64.08, 27.31, 26.41, 23.02, 20.87, 17.98.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₁H₃₀F₃NNaO₄S 592.1740 found 592.1748.

 $(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((S)-6-methylheptan-2-yl)-\\2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl\\2,4-dimethyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinolin-2-yl)vinyl)benzoate$

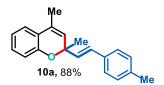
112 mg, 70%, sticky solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, J = 8.1 Hz, 2H), 7.53 (d, J = 7.4 Hz, 1H), 7.35 – 7.20 (m, 5H), 6.43 (d, J = 16.0 Hz, 1H), 6.23 (d, J = 16.0 Hz, 1H), 5.93 (s, 1H), 5.41 (d, J = 3.7 Hz, 1H), 4.93 – 4.73 (m, 1H), 2.44 (d, J = 7.7 Hz, 2H), 2.21 (s, 3H), 2.08 – 1.90 (m, 4H), 1.84 (s, 3H), 1.78 – 1.66 (m, 1H), 1.65 – 1.44 (m, 7H), 1.31 (m, 5H), 1.25 – 1.08 (m, 7H), 1.06 (s, 3H), 1.03 – 0.96 (m, 2H), 0.93 (d, J = 6.4 Hz, 3H), 0.88 (d, J = 6.4 Hz, 7H), 0.69 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.59, 140.38, 139.62, 134.18, 133.67, 133.13, 132.05, 130.31, 130.07, 129.82, 128.77, 128.03, 127.98, 127.80, 126.37, 123.14, 122.81, 120.45 (q, J = 325.7 Hz), 74.60, 64.11, 56.70, 56.15, 50.05, 42.33, 39.75, 39.54, 38.21, 37.03, 36.65, 36.21, 35.83, 31.95, 31.89, 28.26, 28.04, 27.88, 26.39, 24.32, 23.86, 22.86, 22.60, 21.07, 19.39, 18.75, 17.95, 11.89.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₄₈H₆₃F₃NO₂S 806.4424 found 806.4428.

(E)-3,7-dimethyloct-6-en-1-yl 4-(2-(2,4-dimethyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinolin-2-yl)vinyl)benzoate


82%, 94 mg, colorless liquid

¹**H NMR** (500 MHz, CDCl3) δ 7.93 (d, J = 8.2 Hz, 2H), 7.55 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 7.9 Hz, 1H), 7.32 – 7.24 (m, 4H), 6.46 (d, J = 16.0 Hz, 1H), 6.26 (d, J = 16.0 Hz, 1H), 5.95 (s, 1H), 5.12 (t, J = 6.8 Hz, 1H), 4.42 – 4.25 (m, 2H), 2.23 (s, 3H), 2.02 (m, 2H), 1.86 (s, 3H), 1.80 (m, 1H), 1.70 (s, 3H), 1.66 (m, 1H), 1.62 (s, 3H), 1.58 (m, 1H), 1.47 – 1.38 (m, 1H), 1.29 – 1.22 (m, 1H), 0.98 (d, J = 6.5 Hz, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.26, 140.49, 134.20, 133.78, 131.37, 130.33, 129.80, 129.76, 128.75, 128.01, 127.98, 127.78, 126.42, 124.56, 123.13, 120.25 (q, J = 325.7 Hz). 64.10, 63.52, 36.98, 35.50, 29.60, 26.37, 25.69, 25.40, 19.49, 17.91, 17.65.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₁H₃₆F₃NNaO₄S 598.2209 found 598.2198.

(E)-2,4-dimethyl-2-(4-methylstyryl)-2H-chromene

44.49mg, 88%, colorless sticky liquid

¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, J = 8.2 Hz, 2H), 7.21 – 7.15 (m, 2H), 7.12 (d, J = 7.8 Hz, 2H), 6.91 (m, 2H), 6.57 (d, J = 16.0 Hz, 1H), 6.27 (d, J = 16.2 Hz, 1H), 5.51 (d, J = 1.5 Hz, 1H), 2.34 (s, 3H), 2.11 (d, J = 1.5 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 153.00, 137.55, 134.00, 131.68, 129.30, 129.21, 128.89, 128.86, 126.64, 124.93, 123.56, 120.79, 116.39, 77.50, 27.68, 21.31, 18.21.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for $C_{20}H_{21}O_2$ 277.1587, found 277.1582.

(E)-2-(4-chlorostyryl)-2,4-dimethyl-2H-chromene

47.36mg, 80%, colorless sticky liquid

¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.26 (m, 4H), 7.17 (m, 2H), 6.91 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 8.1 Hz, 1H), 6.54 (d, J = 16.0 Hz, 1H), 6.27 (d, J = 16.0 Hz, 1H), 5.49 (d, J = 1.5 Hz, 1H), 2.10 (d, J = 1.5 Hz, 3H), 1.63 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 152.89, 135.35, 133.38, 133.33, 129.33, 129.14, 128.75, 127.96, 127.68, 124.53, 123.64, 122.94, 120.93, 116.37, 77.36, 27.69, 18.22.

HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₁₉H₁₈ClO₂ 297.1041, found 297.1031.

(E)-2,4-dimethyl-2-(2-(naphthalen-1-yl)vinyl)-2H-chromene

49.29mg, 79%, colorless liquid

¹H NMR (500 MHz, CDCl₃) δ 7.96 – 7.89 (m, 1H), 7.85 (dd, J = 6.3, 3.2 Hz, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.57 (d, J = 8.1 Hz, 1H), 7.50 (m, 2H), 7.46 – 7.41 (m, 1H), 7.38 (d, J = 15.7 Hz, 1H), 7.24 (m, 2H), 7.02 – 6.94 (m, 2H), 6.30 (d, J = 15.7 Hz, 1H), 5.61 (s, 1H), 2.16 (d, J = 1.3 Hz, 3H), 1.75 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 153.03, 135.43, 134.68, 133.57, 131.29, 129.24, 129.22, 128.45, 127.89, 126.21, 125.97, 125.73, 125.55, 124.79, 123.84, 123.55, 123.21, 120.86, 116.42, 77.51, 27.66, 18.12.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₃H₂₁O 331.1587, found 331.1575.

(E)-2-(2-cyclohexylvinyl)-2,4-dimethyl-2H-chromene

42.90, 81%, colorless liquid

¹**H NMR** (400 MHz, CDCl₃) δ 7.15 – 7.08 (m, 2H), 6.86 (td, J = 7.5, 1.2 Hz, 1H), 6.80 (dd, J = 7.9, 0.9 Hz, 1H), 5.60 (dd, J = 15.7, 6.3 Hz, 1H), 5.51 (dd, J = 15.8, 0.9 Hz, 1H), 5.38 (d, J = 1.4 Hz, 1H), 2.03

(d, J = 1.4 Hz, 3H), 1.95 - 1.85 (m, 1H), 1.65 (dd, J = 14.5, 6.9 Hz, 4H), 1.48 (s, 6H), 1.29 - 0.94 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 152.91, 136.12, 130.41, 128.85, 128.14, 125.65, 123.24, 123.10, 120.43, 116.25, 77.28, 40.19, 32.74, 27.22, 26.15, 25.99, 18.03.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₉H₂₅O 269.1900, found 269.1960.

(E)-2-methyl-4-phenyl-2-styryl-2H-chromene

10e, 83%

53.78mg, 83%, colorless liquid

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.33 (m, 7H), 7.29 (t, J = 7.4 Hz, 2H), 7.22 (t, J = 7.8 Hz, 1H), 7.17 (t, J = 7.7 Hz, 1H), 7.02 (d, J = 7.7 Hz, 1H), 6.95 (d, J = 8.1 Hz, 1H), 6.82 (t, J = 6.9 Hz, 1H), 6.68 (d, J = 16.1 Hz, 1H), 6.36 (d, J = 16.1 Hz, 1H), 5.69 (s, 1H), 1.71 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.30, 138.29, 136.58, 136.00, 131.94, 129.51, 129.43, 128.78, 128.53, 128.40, 127.87, 127.75, 126.68, 126.25, 125.79, 122.29, 120.78, 116.82, 77.27, 27.38.

HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₂₄H₂₁O 325.1587, found 325.1584.

(E)-2-(3,7-dimethylocta-1,6-dien-1-yl)-2,4-dimethyl-2H-chromene

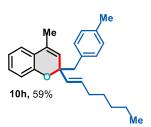
46.18mg, 78%, colorless liquid.

¹H NMR (500 MHz, CDCl₃) δ 7.16 – 7.08 (m, 2H), 6.86 (t, J = 8.2 Hz, 1H), 6.80 (d, J = 7.9 Hz, 1H), 5.65 – 5.56 (m, 1H), 5.52 (d, J = 16.8 Hz, 1H), 5.40 (s, 1H), 5.10 – 4.96 (m, 1H), 2.04 (s, 3H), 2.01 – 1.76 (m, 4H), 1.68 (s, 3H), 1.58 (s, 3H), 1.50 (s, 3H), 1.41 (m, 1H), 1.27 – 1.15 (m, 1H), 1.10 – 0.98 (m, 1H), 0.75 (d, 6.6 Hz, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 153.12, 134.19, 134.13, 131.18, 131.16, 129.35, 129.32, 129.02, 128.67, 128.64, 126.88, 125.63, 125.01, 125.00, 123.42, 123.40, 123.38, 120.69, 120.65, 116.44, 77.16, 39.64, 36.67, 36.52, 32.63, 27.52, 27.49, 25.86, 25.65, 25.62, 19.44, 19.32, 18.13, 17.77.

HRMS (ESI-TOF) m/z [M + K]⁺ calcd for C₂₂H₃₀KO 349.1928, found 349.1930.

(E)-3,7-dimethyloct-6-en-1-yl 4-(2-(2,4-dimethyl-2H-chromen-2-yl)vinyl)benzoate


71mg, 83%, colorless liquid

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.16 (t, J = 9.3 Hz, 2H), 6.90 (t, J = 8.9 Hz, 2H), 6.61 (d, J = 16.1 Hz, 1H), 6.38 (d, J = 16.0 Hz, 1H), 5.48 (s, 1H), 5.10 (t, J = 8.3 Hz, 1H), 4.40 – 4.28 (m, 2H), 2.08 (d, J = 1.4 Hz, 3H), 2.06 – 1.91 (m, 2H), 1.86 – 1.76 (m, 1H), 1.70 – 1.55 (m, 11H), 1.46 – 1.36 (m, 1H), 1.25 (m, J = 16.4, 6.7 Hz, 1H), 0.97 (d, J = 6.5 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.46, 152.74, 141.16, 135.15, 131.40, 129.79, 129.37, 129.26, 129.13, 127.78, 126.47, 124.58, 124.20, 123.54, 122.76, 120.86, 116.24, 77.26, 63.50, 37.00, 35.51, 29.58, 27.57, 25.74, 25.41, 19.53, 18.09, 17.69.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₃₀H₃₇O₃ 445.2737, found 445.2732.

(E)-2-(hept-1-en-1-yl)-4-methyl-2-(4-methylbenzyl)-2H-chromene (10 h)

40.8 mg, 59 %, colorless liquid.

¹H NMR (500 MHz, CDCl₃) δ 7.21 – 7.03 (m, 6H), 6.88 (dd, J = 12.2, 7.6 Hz, 2H), 5.67 – 5.56 (m, 1H), 5.53 – 5.41 (m, 2H), 3.04 (d, J = 13.5 Hz, 1H), 2.99 (d, J = 13.5 Hz, 1H), 2.34 (s, 3H), 2.04 (s, 3H), 1.99 (dd, J = 14.2, 7.1 Hz, 2H), 1.32 – 1.25 (m, 5H), 1.17 (m, 1H), 0.87 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 152.89, 135.69, 133.23, 131.84, 131.64, 130.83, 128.93, 128.73, 128.41, 124.06, 123.30, 123.24, 120.43, 116.32, 79.62, 46.39, 32.25, 31.22, 28.72, 22.49, 21.07, 18.09, 14.02.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₅H₃₁O 347.2369, found 347.2379.

(E)-2-isobutyl-4-methyl-2-(4-methylstyryl)-2H-chromene(10i)

28.62 mg, 45 %, colorless liquid.

¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 7.7 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.91 – 6.86 (m, 2H), 6.55 (d, J = 16.0 Hz, 1H), 6.14 (d, J = 16.0 Hz, 1H), 5.47 (s, 1H), 2.33 (s, 3H), 2.09 (s, 3H), 2.01 (m, 1H), 1.75 (d, J = 6.1 Hz, 2H), 1.00 (d, J = 6.7 Hz, 3H), 0.97 (d, J = 6.7 Hz, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 152.96, 142.61, 137.21, 134.13, 131.60, 129.14, 129.02, 128.49, 128.45, 126.41, 124.29, 123.36, 120.39, 116.13, 80.35, 49.23, 24.43, 24.37, 24.20, 21.14, 18.13.

HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₃H₂₇O 319.2056, found 319.2068.

Functionalization:

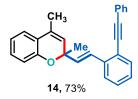
To a solution of **7g** (50 mg, 0.10mmol) in MeOH (2 mL) was added Pd/C (10 mol%) and H₂ gas was bubbled from a balloon at room temperature. After 10 h, mixture was diluted with DCM and filtered through a pad of celite bad. The combined organic phase was dried with Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography (silica gel mesh100-200; hexane: ethyl acetate; 80:20) to give the product **8** (41 mg, 82% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (d, J = 8.9 Hz, 1H), 7.33 (t, J = 7.4 Hz, 2H), 7.28 – 7.23 (m, 2H), 7.22 – 7.15 (m, 4H), 6.92 (d, J = 7.4 Hz, 2H), 6.82 (dd, J = 9.0, 2.8 Hz, 1H), 6.45 (d, J = 2.6 Hz, 1H), 4.13 (t, J = 9.8 Hz, 1H), 3.69 (s, 3H), 2.76 (td, J = 12.9, 5.1 Hz, 1H), 2.58 (td, J = 12.8, 3.8 Hz, 1H), 2.49 – 2.38 (m, 1H), 2.28 (dd, J = 14.5, 8.7 Hz, 1H), 1.97 (t, J = 15.1 Hz, 1H), 1.82 (s, 3H), 1.62 – 1.58 (m, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.34, 144.47, 141.24, 136.38, 129.08, 128.97, 128.48, 128.36, 128.24, 126.86, 126.07, 121.17-119.02 (q, J = 326.0 Hz) 114.71, 112.89, 66.01, 55.38, 46.38, 42.22, 41.20, 30.02, 25.08.

HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₆H₂₆F₃NNaO₃S 512.1478 found 512.1470.

(E)-2,4-dimethyl-2-(2-(phenylethynyl)styryl)-1-((trifluoromethyl)sulfonyl)-1,2-dihydroquinoline


73.5 mg, 75 %, colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 7.8, 1.8 Hz, 2H), 7.49 (d, J = 7.0 Hz, 1H), 7.43 (m, 4H), 7.37 (d, J = 7.9 Hz, 1H), 7.25 – 7.15 (m, 5H), 7.02 (d, J = 16.1 Hz, 1H), 6.20 (d, J = 16.1 Hz, 1H), 5.94 (s, 1H), 2.13 (s, 3H), 1.88 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 137.73, 134.35, 133.13, 132.82, 132.44, 132.21, 131.58, 130.68, 128.67, 128.64, 128.59, 128.19, 128.06, 127.98, 127.80, 127.72, 125.28, 123.39, 123.23, 122.25, 122.08(q, *J* = 325.8 Hz) 94.23, 87.62, 64.59, 26.68, 17.98.

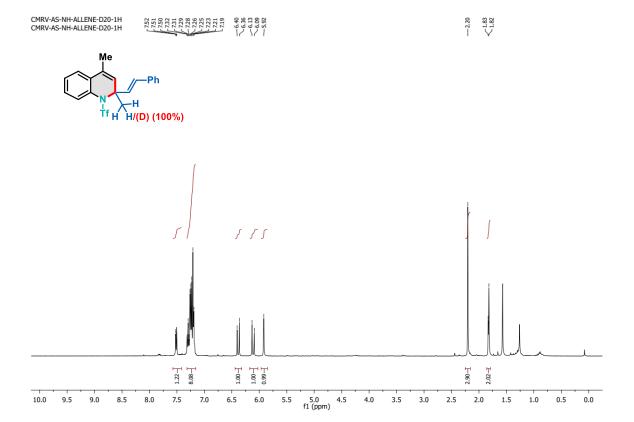
HRMS (ESI-TOF) m/z [M + K]⁺ calcd for C₂₈H₂₂F₃KNO₂S 532.0955, found 532.0944.

(E)-2,4-dimethyl-2-(2-(phenylethynyl)styryl)-2H-chromene

52.8 mg, 73 %, colorless liquid.

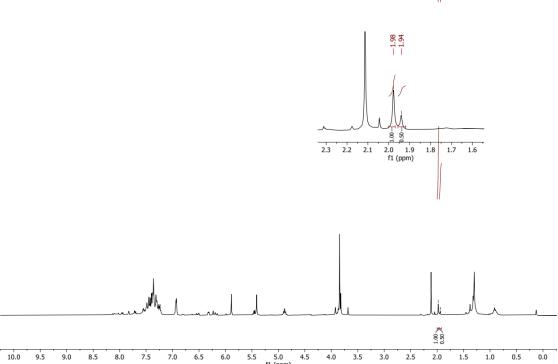
¹H NMR (500 MHz, CDCl₃) δ 7.55 (m, 3H), 7.51 (d, J = 7.8 Hz, 1H), 7.41 (m, 3H), 7.30 – 7.28 (m, 1H), 7.23 (m, 2H), 7.16 (d, J = 7.5 Hz, 1H), 7.10 (t, J = 7.7 Hz, 1H), 6.92 – 6.85 (m, 2H), 6.42 (d, J = 14.2 Hz, 1H), 5.55 (s, 1H), 2.08 (s, 3H), 1.69 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 153.08, 138.44, 134.37, 133.08, 132.59, 131.76, 129.37, 129.25, 128.60, 128.55, 127.50, 127.29, 125.32, 124.71, 123.68, 123.62, 123.05, 122.38, 120.92, 116.49, 94.36, 88.05, 77.73, 27.95, 18.30.


HRMS (ESI-TOF) m/z [M + H]⁺ calcd for $C_{27}H_{23}O$ 363.1743, found 363.1755.

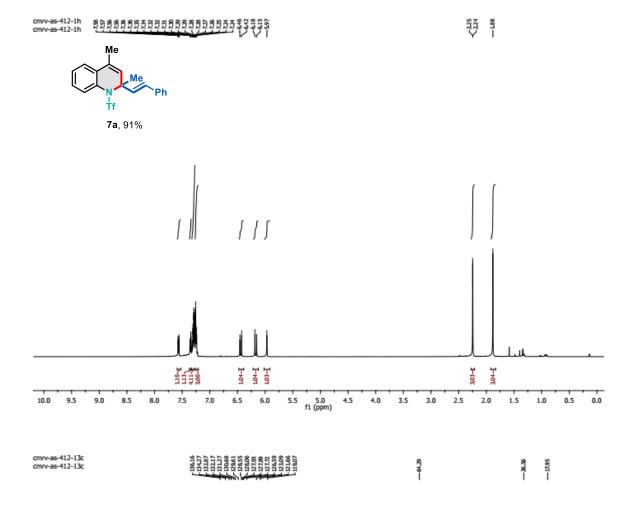
Mechanistic Study:

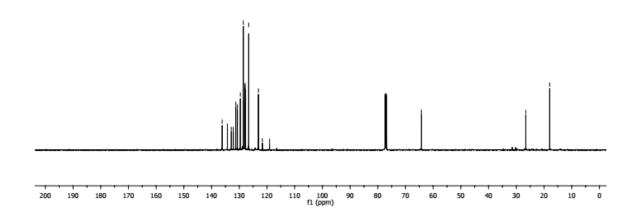
A sealed tube containing [Cp*RhCl₂]₂ (2.5 mol %), NaOAc (30 mol%) was evacuated and purged with nitrogen gas three times. Then, o-alkenylanilides 1 (0.20 mmol) and allenic acetate 2 (0.30 mmol) in DCE (2 ml) were added via syringe under nitrogen atmosphere and the reaction mixture was allowed to stir at rt for 24 h. Then, the mixture diluted with CH₂Cl₂ (10 mL). The mixture was filtered through a Celite pad and washed with CH₂Cl₂ (3 × 10 mL). The filtrate was concentrated under reduced pressure.

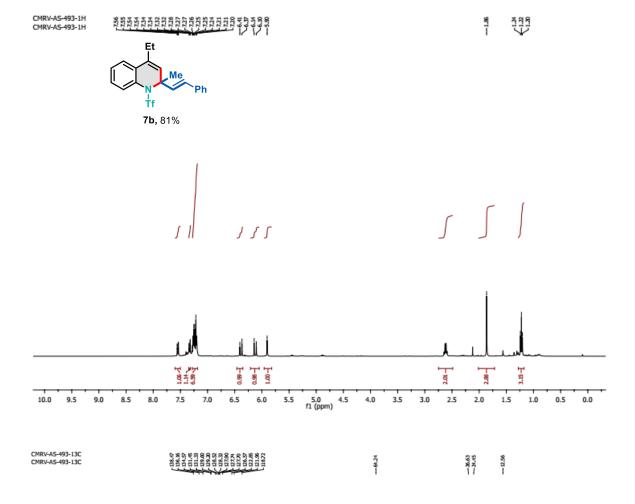

The residue was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to afford recovered substrate **1a**.

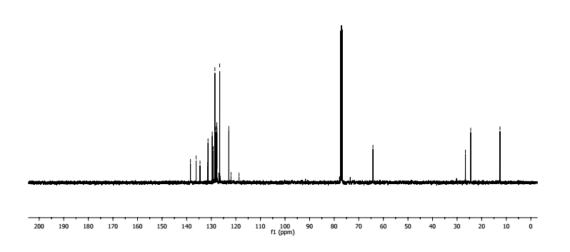
A sealed tube containing [Cp*RhCl₂]₂ (2.5 mol %), NaOAc (30 mol%) was evacuated and purged with nitrogen gas three times. Then, o-alkenylanilides 1 (0.20 mmol) and allenic acetate 2 (0.30 mmol) in CH₃CN (2 ml) were added via syringe under nitrogen atmosphere and the reaction mixture was allowed to stir at rt for 24 h. Then, the mixture diluted with CH₂Cl₂ (10 mL). The mixture was filtered through a Celite pad and washed with CH₂Cl₂ (3 × 10 mL). The filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to afford annulated product 3a.

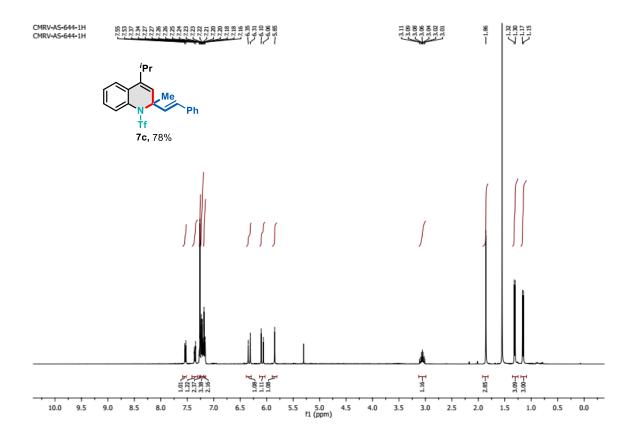
Competitive experiment: A sealed tube containing $[Cp*RhCl_2]_2$ (2.5 mol %), NaOAc (30 mol%) was evacuated and purged with nitrogen gas three times. Then, o-alkenylanilides $\mathbf{1g}$ (0.10 mmol) and $\mathbf{1l}$ (0.10 mmol) and allenic acetate $\mathbf{2a}$ (0.12 mmol) in CH_3CN (2 ml) were added via syringe under nitrogen atmosphere and the reaction mixture was allowed to stir at rt for 1 h. Then, the mixture diluted with CH_2Cl_2 (10 mL). The mixture was filtered through a Celite pad and washed with CH_2Cl_2 (3 × 10 mL). The filtrate was concentrated under reduced pressure and crude NMR of mixture on recorded.

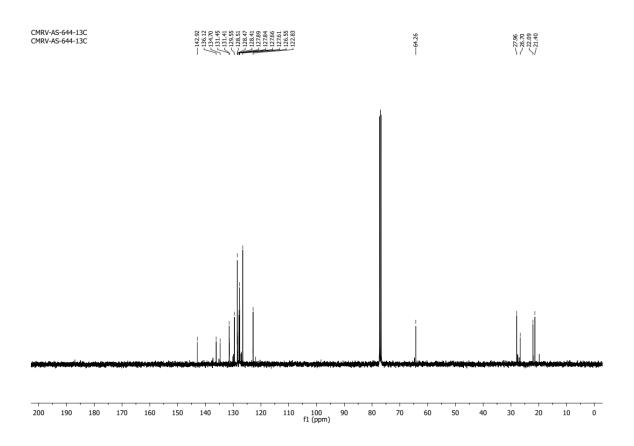


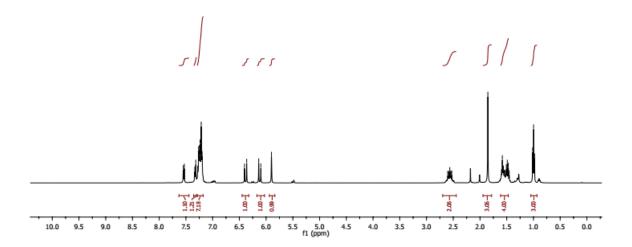


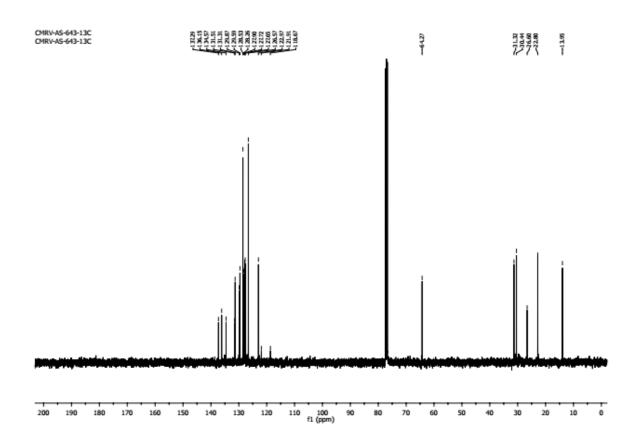

References:

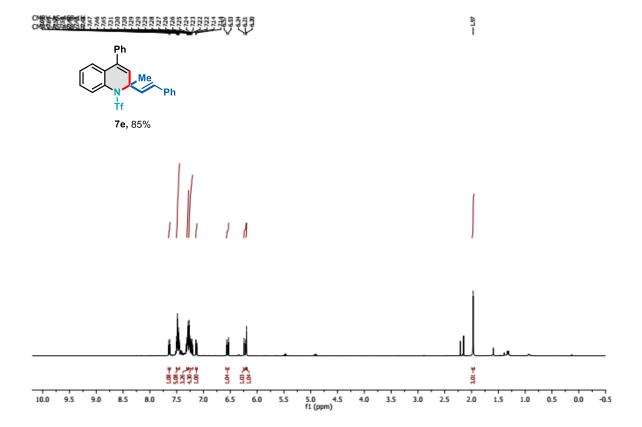

- 1. (a) Font, M.; Cendon, B.; Seoane, A.; Mascarenas, J. L.; Gulias, M. *Angew. Chem. Int. Ed.* **2018**, *57*, 8255 –8259. (b) Andres Seoane, Cezar Comanescu, Noelia Casanova, Rebeca Garcia-Fandino, Xabier Diz, Jose L. Mascarenas, Moises Gulias. *Angew. Chem. Int. Ed.* **2019**, *58*, 1700 –1704.
- 2. Chen, P.; Nan, J.; Hu, Y.; Ma, Q.; Ma. Y. Org. Lett. 2019, 21, 4812-4815.
- **3.** Shukla, R. K, Nair, A. M.; Khan, S.; Volla, C. M. R. Cobalt-Catalyzed C8-Dienylation of Quinoline-N-Oxides. *Angew. Chem. Int. Ed.* **2020**, *59*, 17042 –17048.


¹H and ¹³C spectra

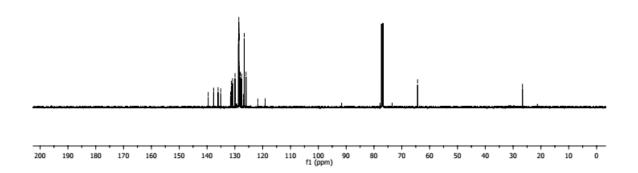


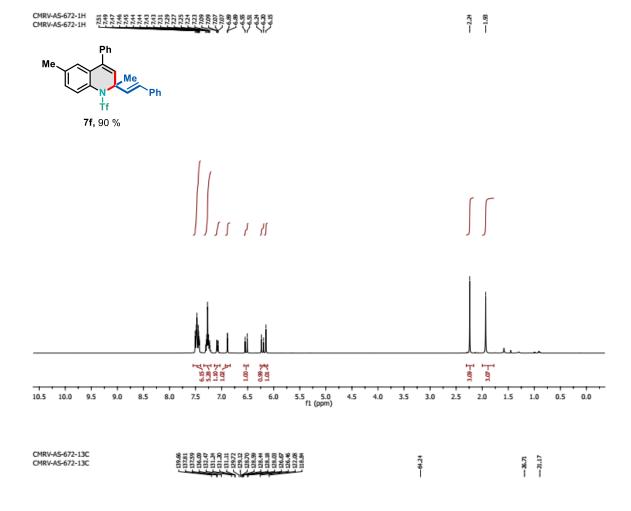


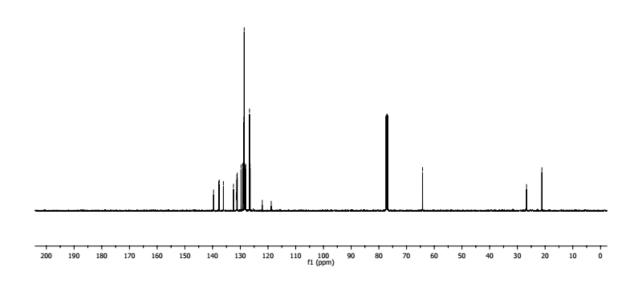


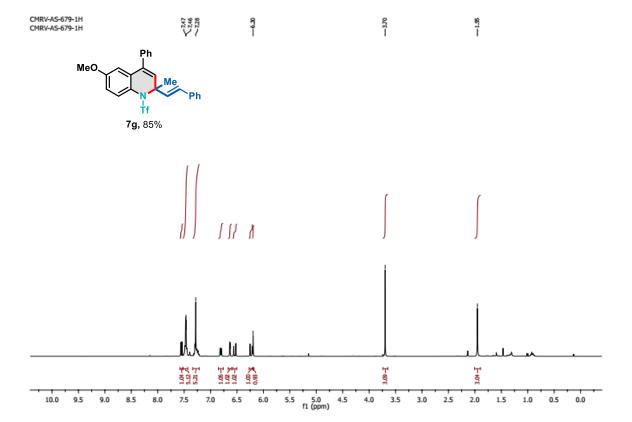




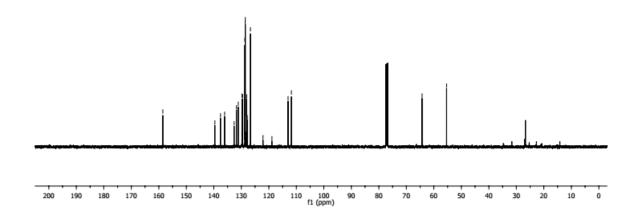


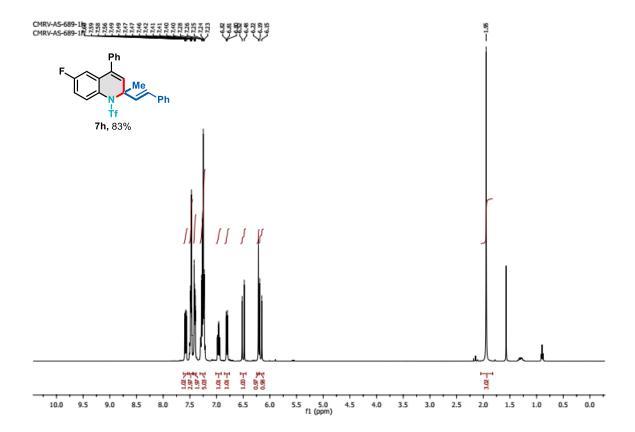


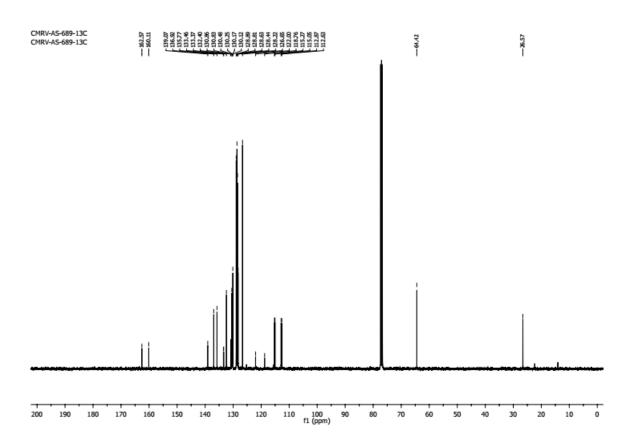


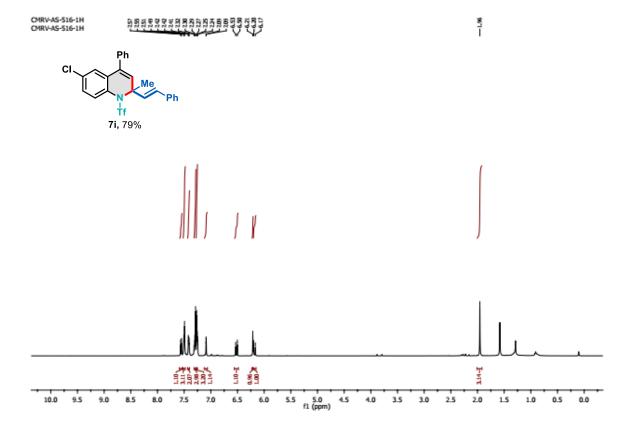


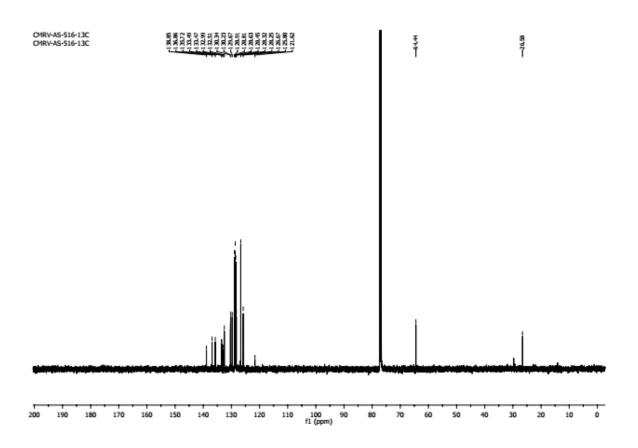


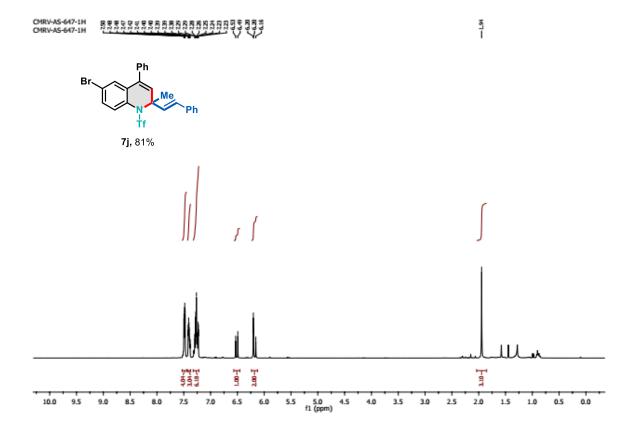


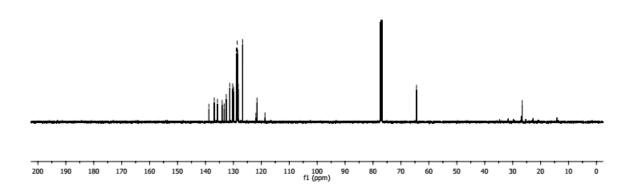


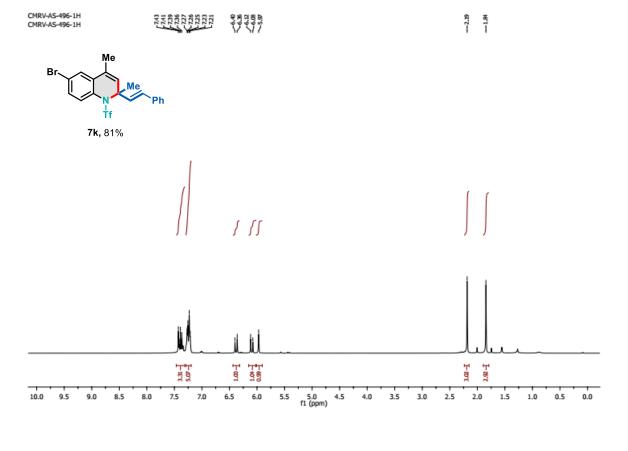


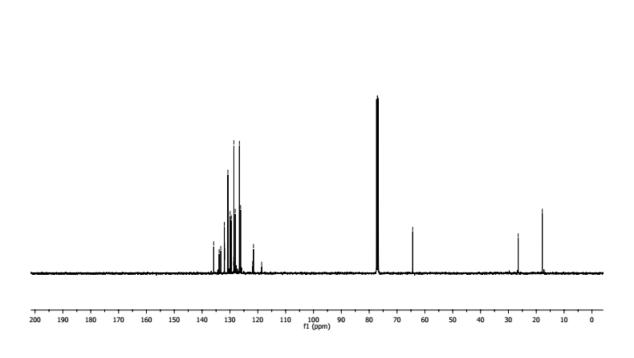


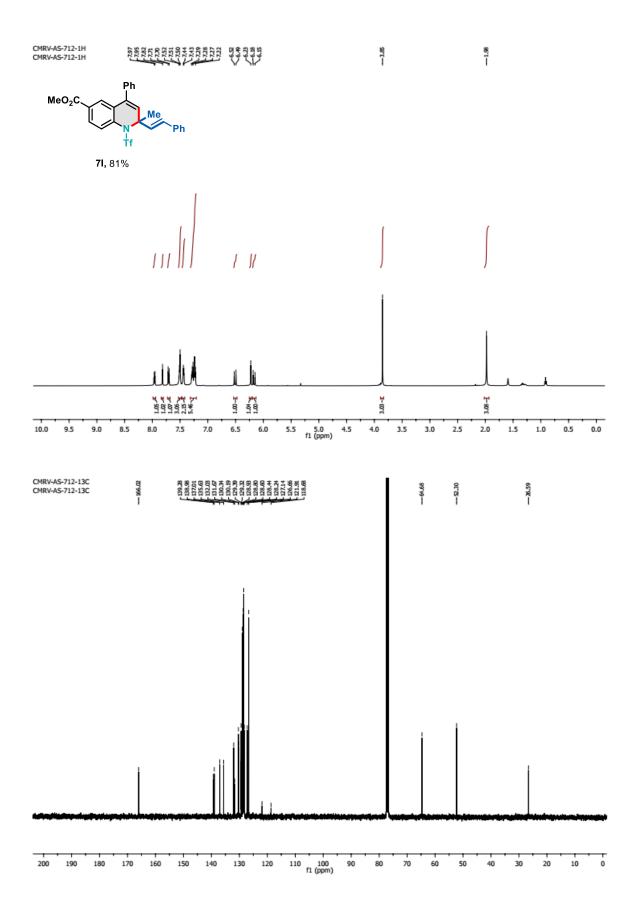


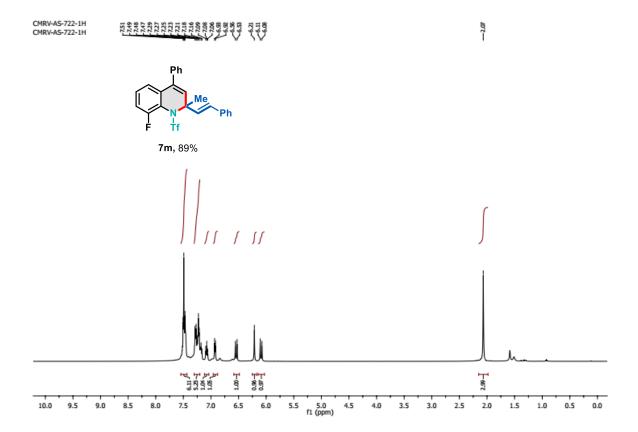


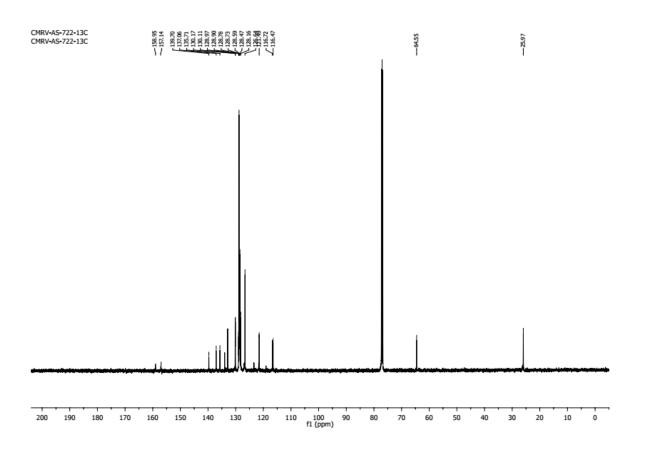




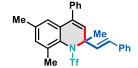


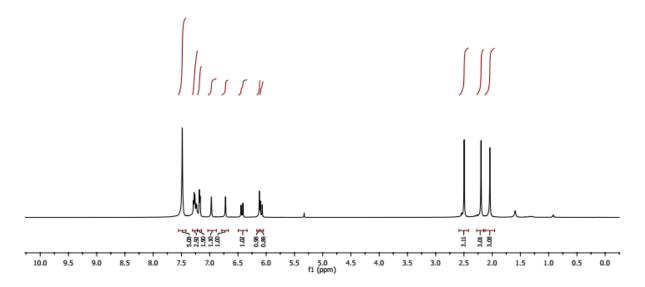


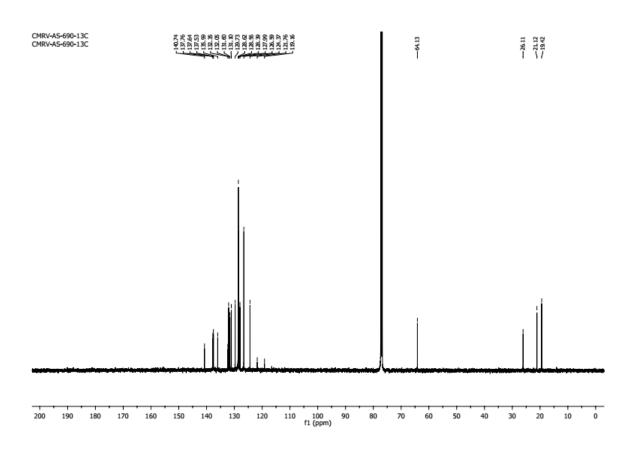


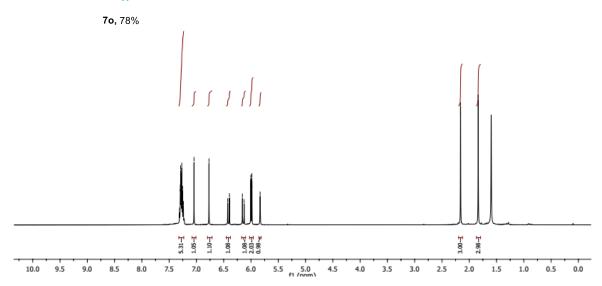


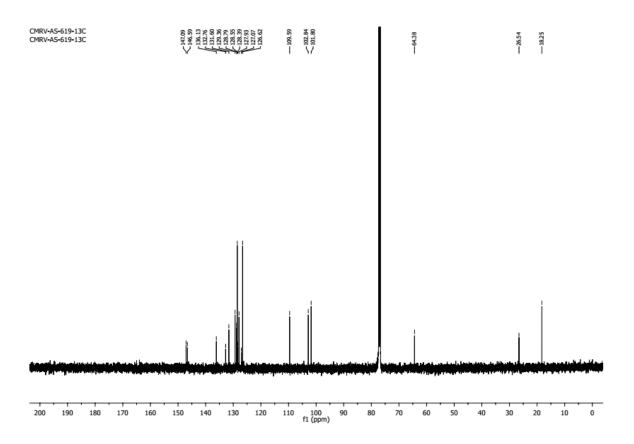
135.8 133.8 133.8 133.8 133.8 135.8

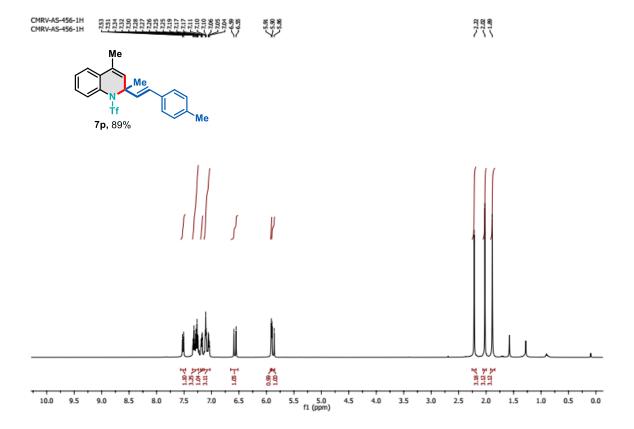

CMRV-AS-496-13C CMRV-AS-496-13C

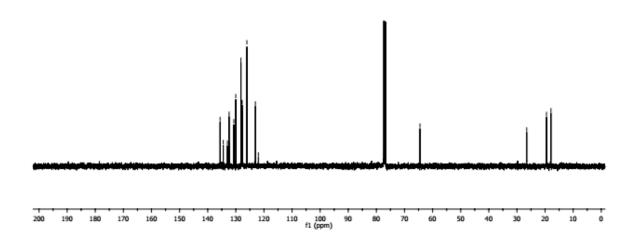


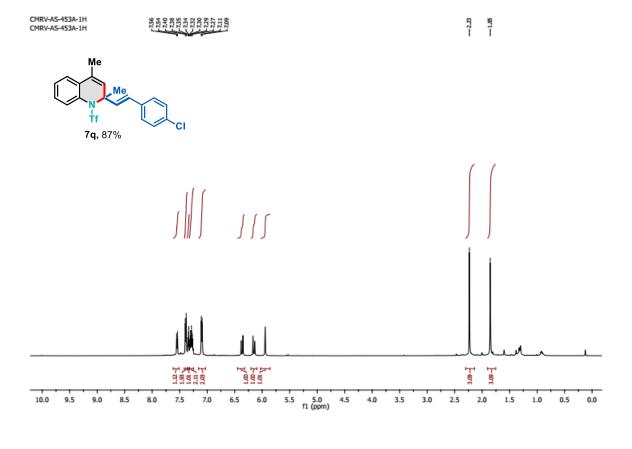


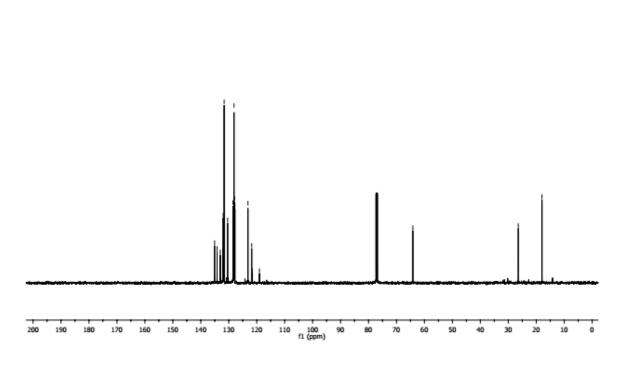

CMRV-AS-690-1H CMRV-AS-690-1H

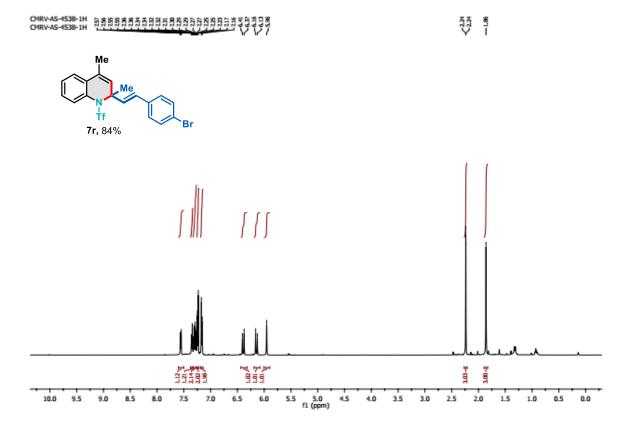


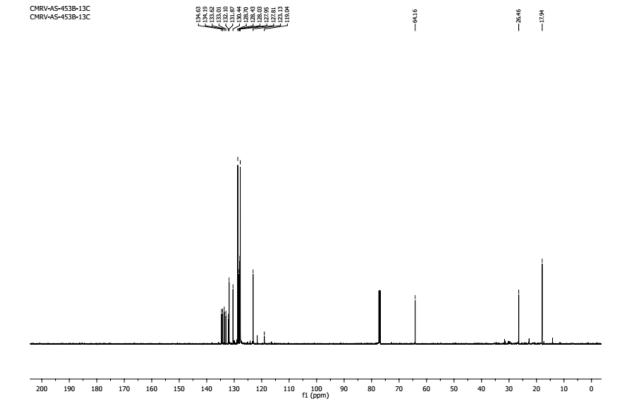

7n, 85%

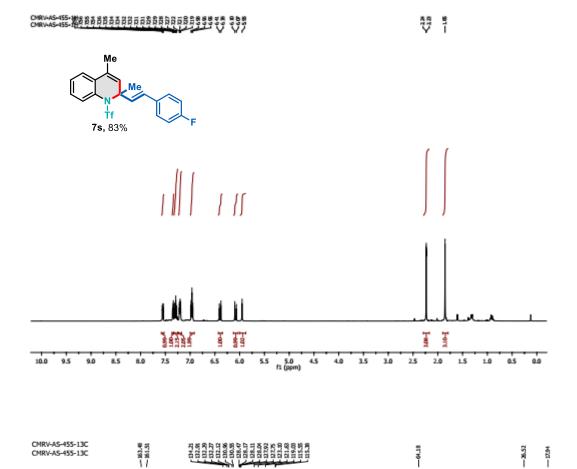


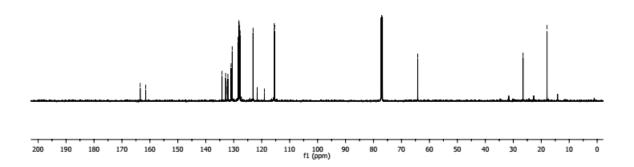




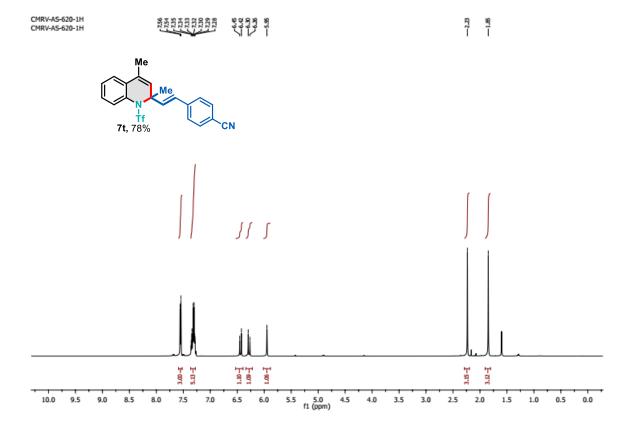


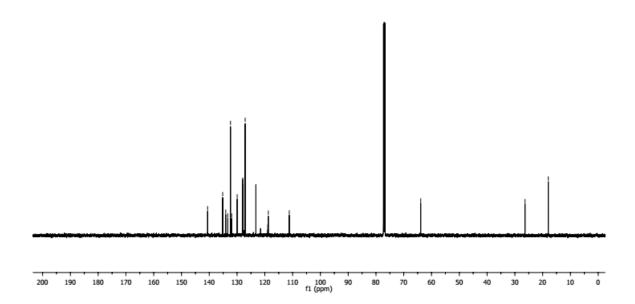


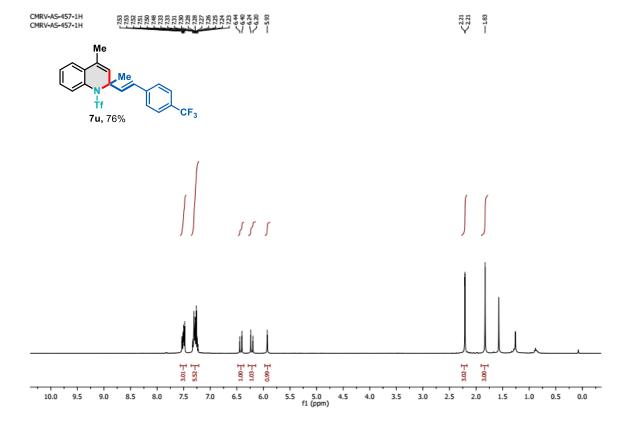


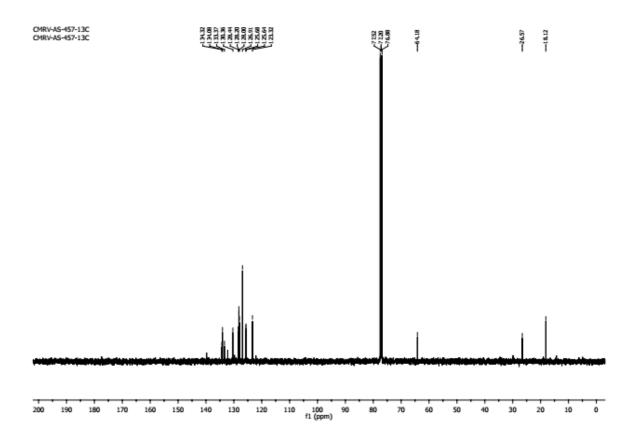


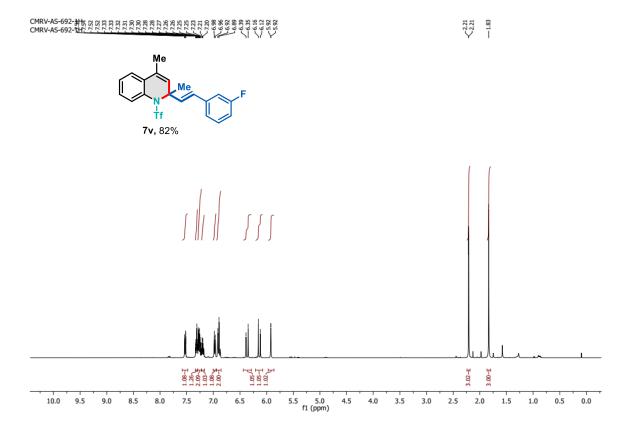
CMRV-AS-453A-13C CMRV-AS-453A-13C

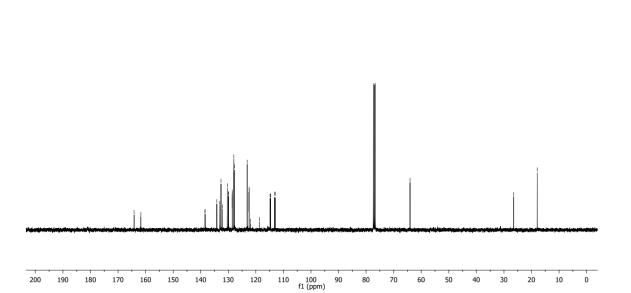


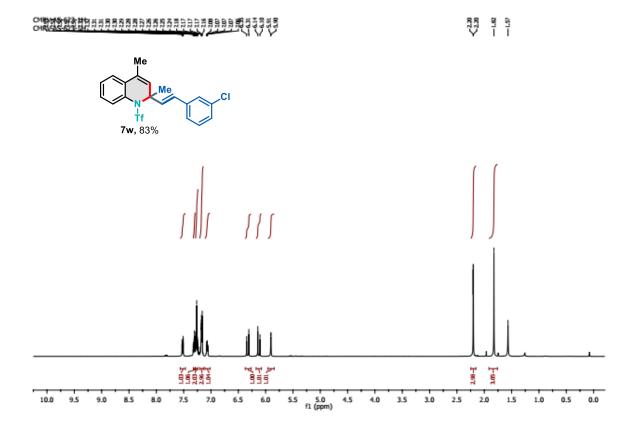


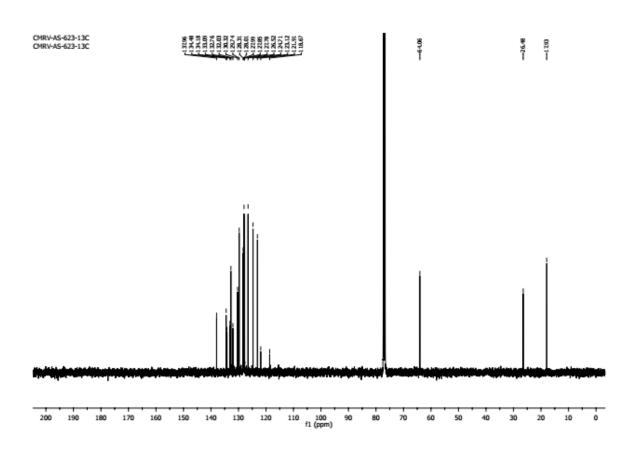


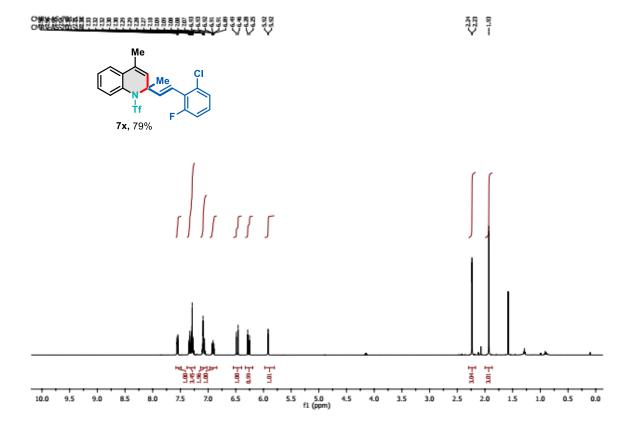

-- 26.52 -- 17.94

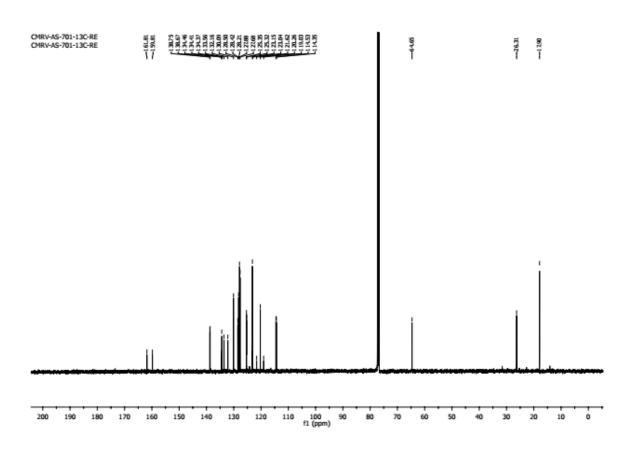


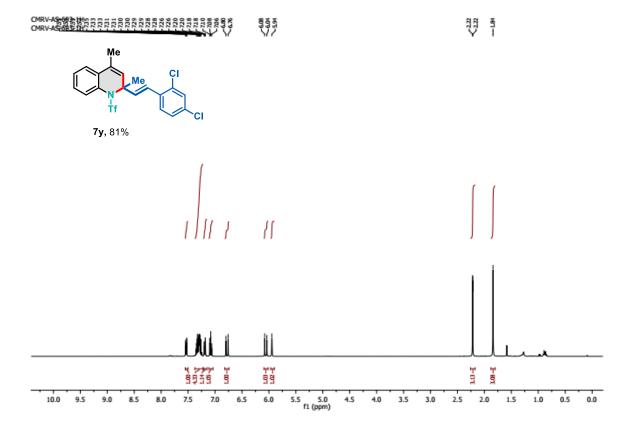


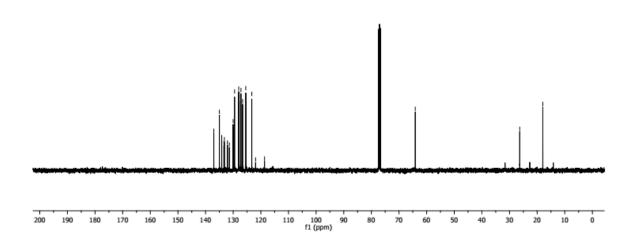


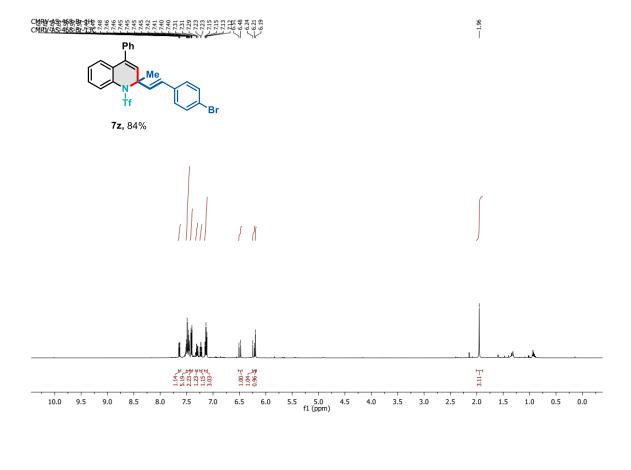


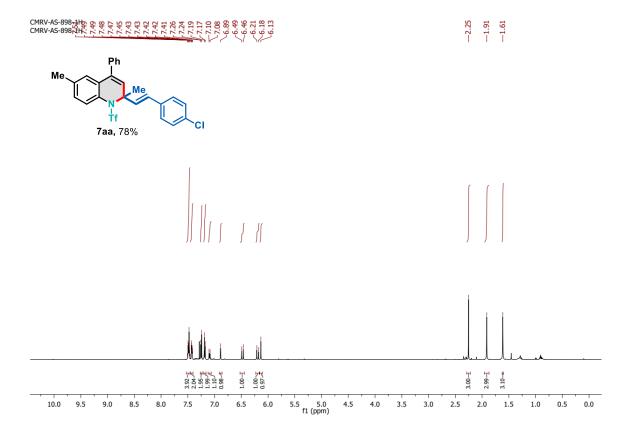


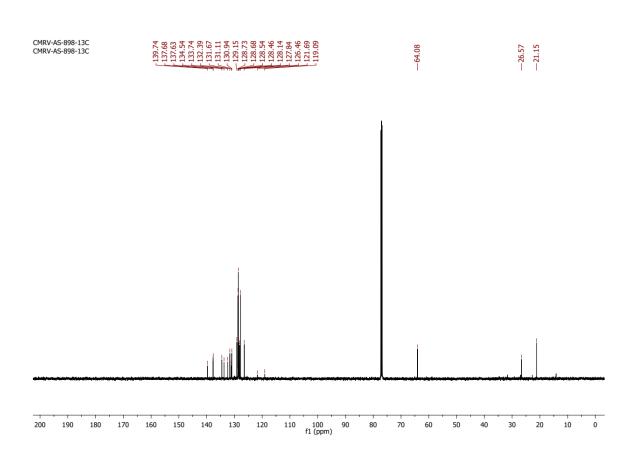

138.49 138.41 133.65 132.66 130.37 130.37 130.37 128.52 128.52 128.52 128.52 128.62 127.79 127.79 127.79 127.79 112.79 113.13 114.63 114.63 114.63

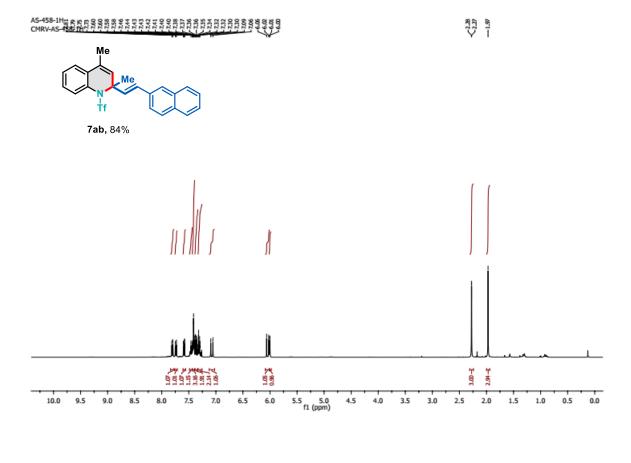

CMRV-AS-692-re-13C CMRV-AS-692-re-13C

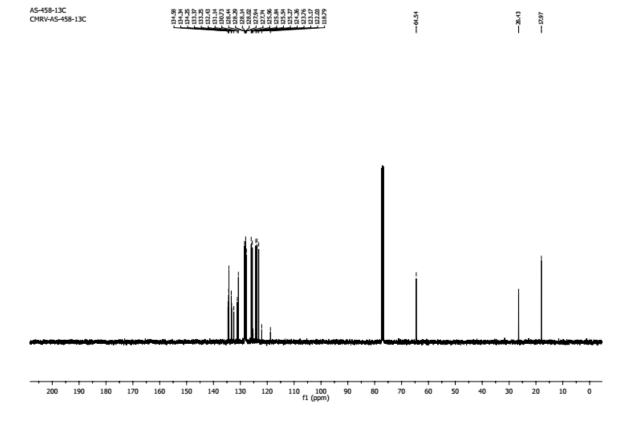


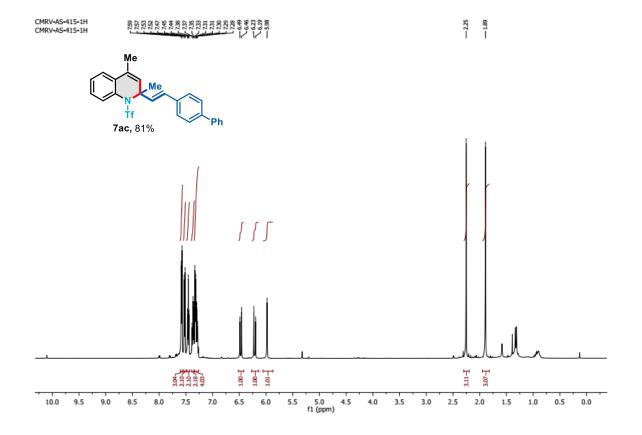


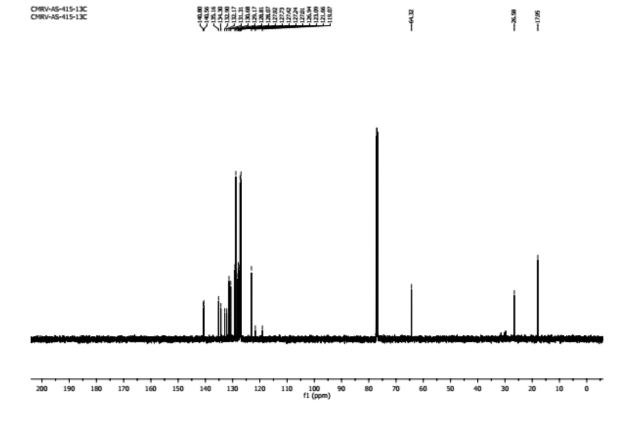


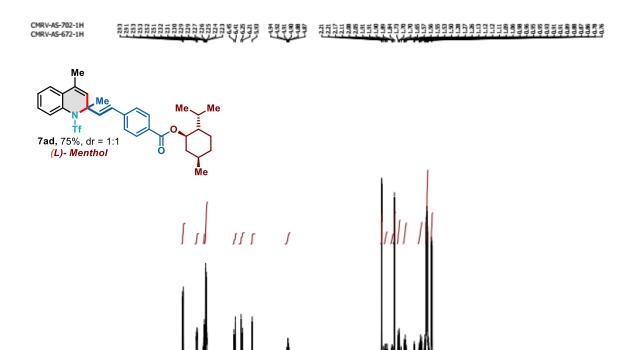


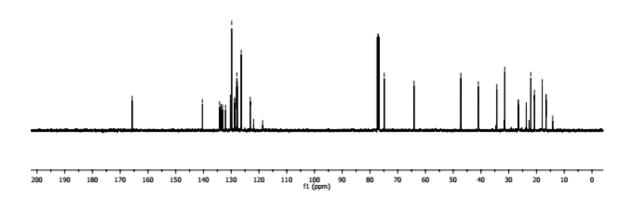

139.75 137.52 134.99 134.99 131.56 131.56 131.56 131.56 131.59 128.74 128.75 128.46 128.46 128.46 128.46 128.46 128.46 128.47 128.47 128.47 128.40 127.70 127.70 127.70

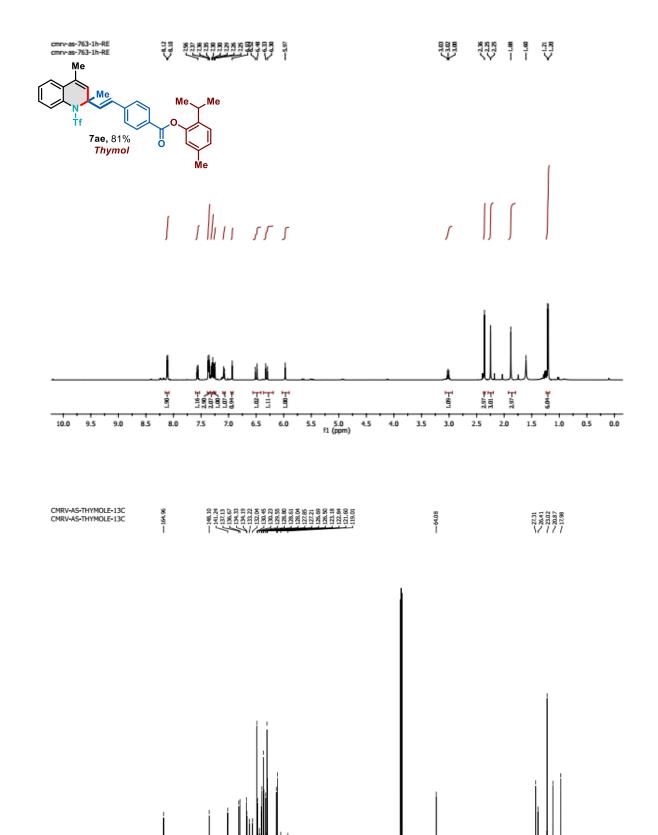

CMRV-AS-468-Br-1H CMRV-AS-468-Br-13C





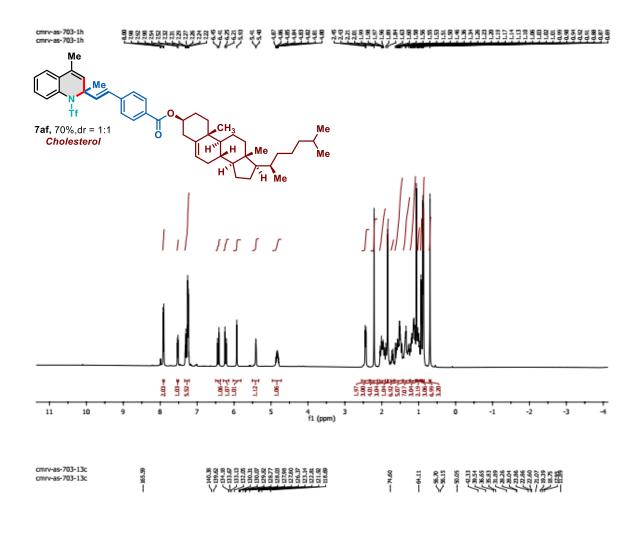




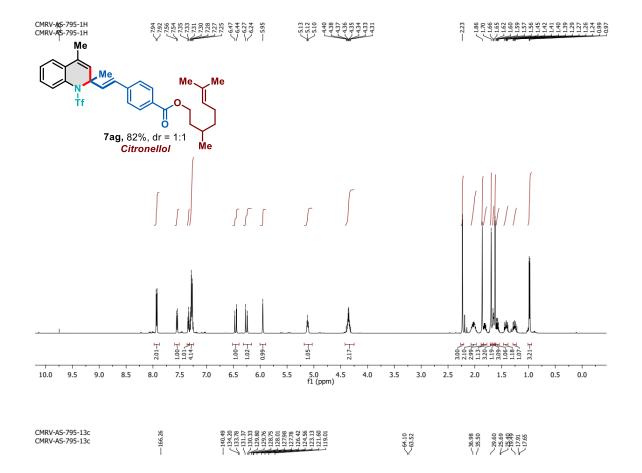


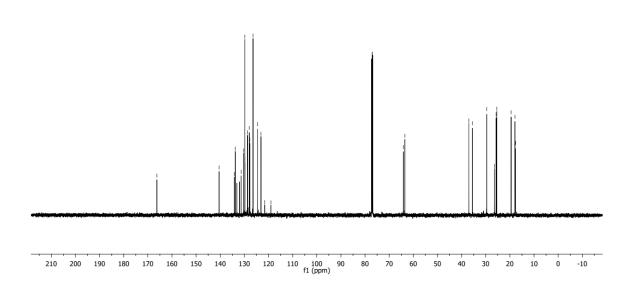
4 f1 (ppm)

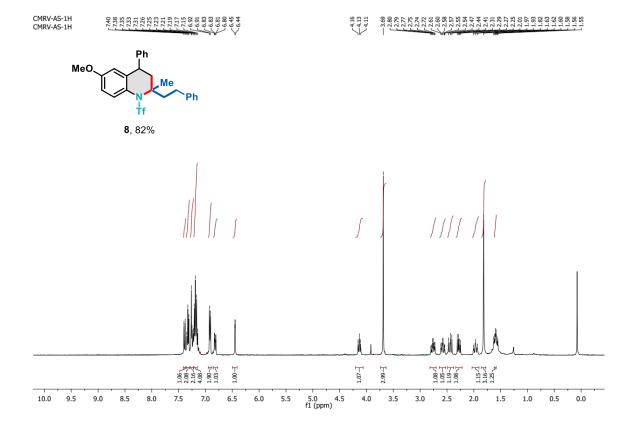
HO1:1

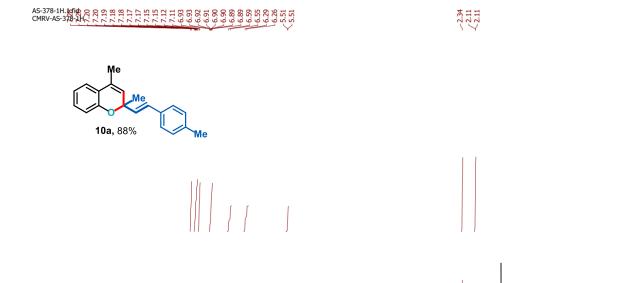


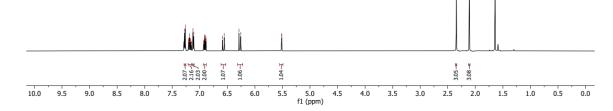

140 130 120 110 100 f1 (ppm)

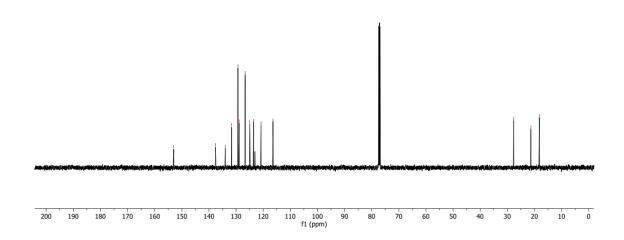

190 180

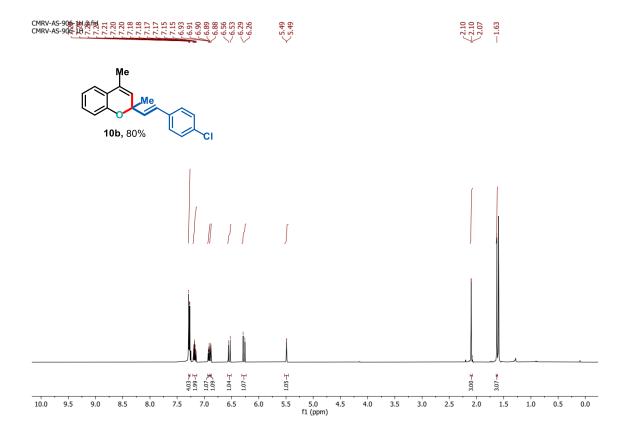

170

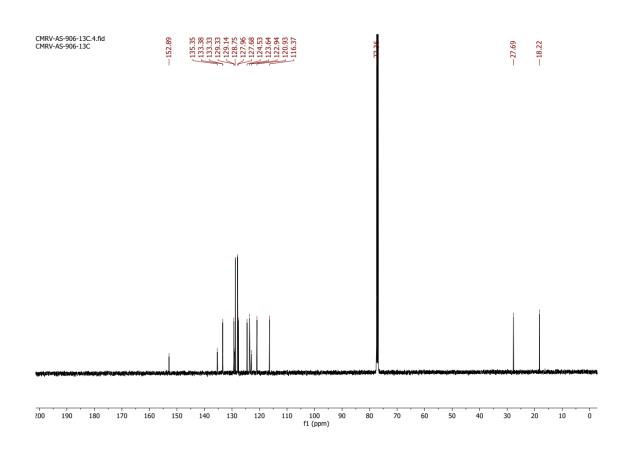

160 150

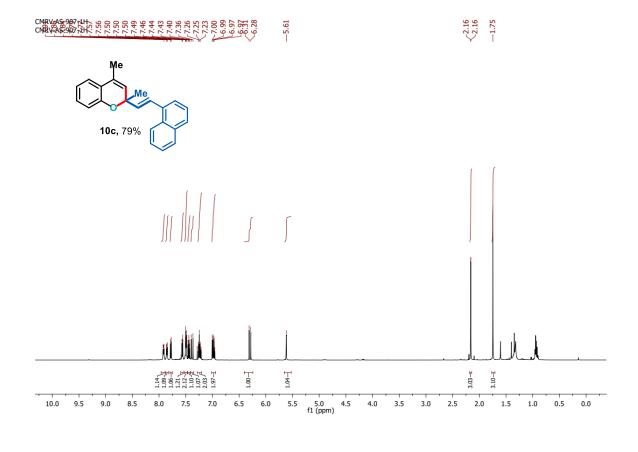


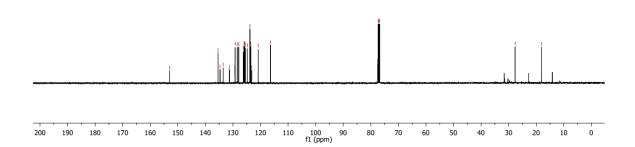


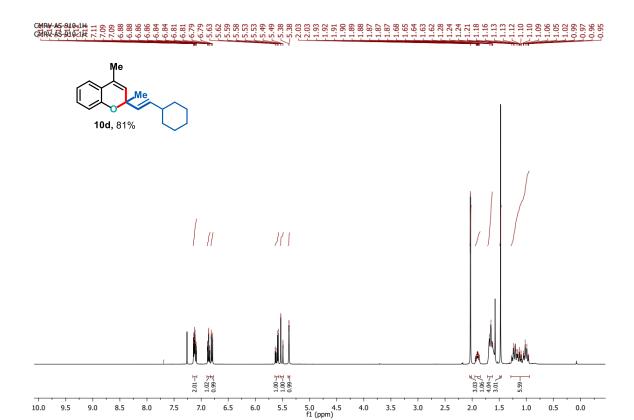


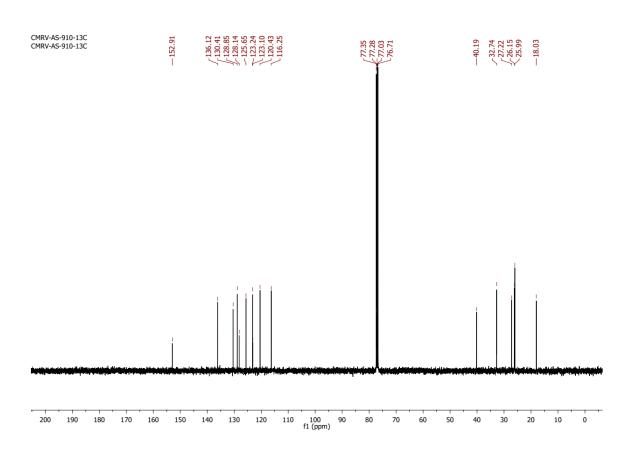


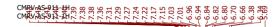




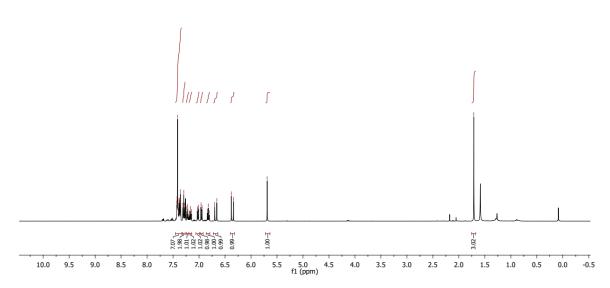


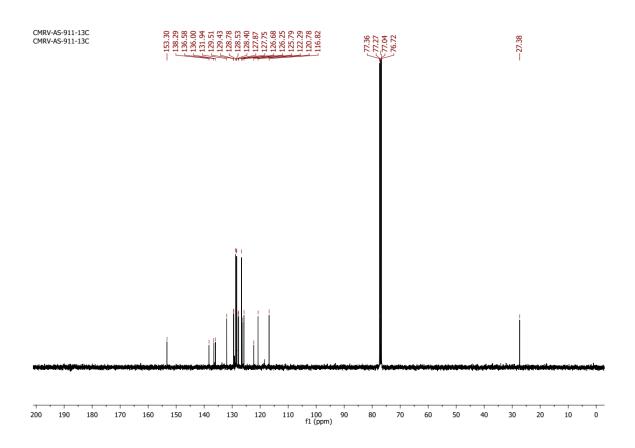


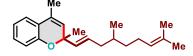


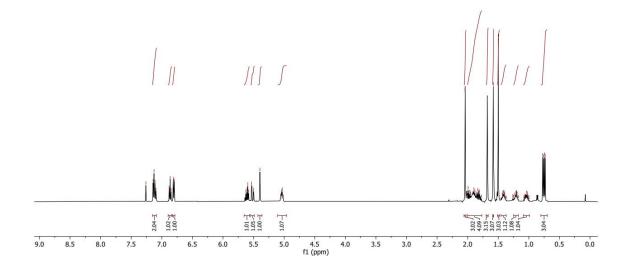

77.51 77.32 77.07 76.81

CMRV-AS-907-13C CMRV-AS-907-13C

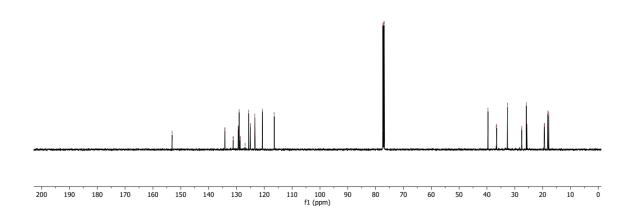


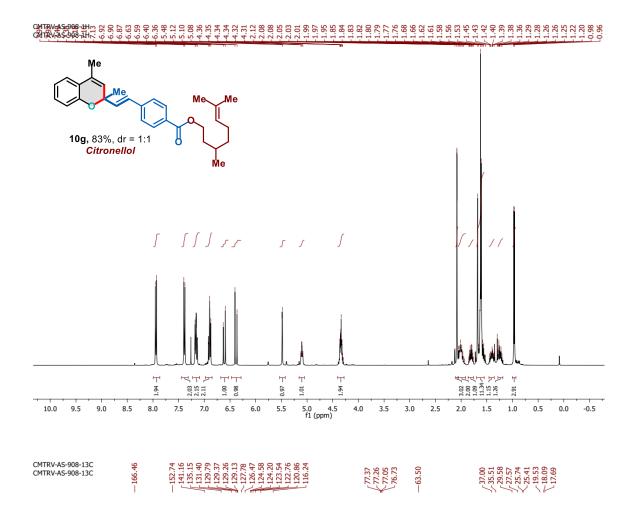



-1.71


10e, 83%

10f, 78%, dr = 1:1 *Citronellal*




CMRV-AS-909-13C.2.fid CMRV-AS-909-13C

