Supporting Information

Synthesis of Polycyclic Heteroaromatics via Hydrazine-Catalyzed
Ring-Closing Carbonyl-Olefin Metathesis

Eun Kee Cho, Phong K. Quach, Yunfei Zhang, Jae Hun Sim and Tristan H. Lambert

Table of Contents

General Information. S3
Experimental Details S4
Synthesis of olefins S4
Synthesis of metathesis substrates S8
RCCOM reactions S19
Screen of the olefin moiety 330
Substrate precursor synthesis S34
Kinetic Study S41
Computational Data S43
References. S53
NMR Spectra. S54

General Information

Commercial reagents were purchased from Fisher Chemicals, Sigma-Aldrich, Oakwood Chemical Company, TCI and Acros Organics and used without purification. All reactions were performed in the fume hood under atmospheric pressure, unless otherwise noted. Reaction products were stored in scintillation vials at ambient temperature.

Reactions were monitored by thin-layer chromatography (TLC) on EMD Silica Gel 60 F254 plates under UV light (254 nm) or visualized with I_{2}. Flash chromatography was performed using silica gel 60 (230-400 mesh) from SilicaFlash on a Biotage Isolera One system. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator R-200. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on Bruker Magnet System 500 MHz , Varian Magnet System 400 MHz and 300 MHz . All chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane. Proton resonances are referenced to residual protium in the NMR solvent (7.26 ppm for CHCl_{3}). Carbon resonances are referenced to the carbon resonances of the NMR solvent (77.16 ppm for CDCl_{3}). Data are represented as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $q=$ quartet, $m=$ multiplet), coupling constants in hertz (Hz), integration. For the ${ }^{1} \mathrm{H}$ NMR yield determinations shown in Figure 1, a relaxation delay (D1) parameter of 1 s was used. Mass spectral (MS) data were obtained on Advion Mass Spectrometer equipped with an APCI (Atmospheric Pressure Chemical Ionization) module and HRMS data with direct analysis in realtime mass spectrometry (DART-MS).

Synthesis of Starting Materials

a. Synthesis of olefins

General olefination procedure for substrate precursors:

A modified version of a reported procedure was followed. ${ }^{[1]}$ A flame-dried round bottom flask equipped with a magnetic stir bar was charged with isopropyltriphenylphosphonium iodide (1.1 equiv) and anhydrous THF (0.3 M). The solution was cooled to $0^{\circ} \mathrm{C}$ with an ice bath before a solution of $\mathrm{n}-\mathrm{BuLi}$ (1.2 equiv, 2.5 M in hexanes) was added. After stirring for 1 h at $0{ }^{\circ} \mathrm{C}$, the aldehyde substrate (1.0 equiv) was slowly added. The reaction was allowed to warm to room temperature and stirred for 15 h (overnight) before being quenched with water. The biphasic solution was extracted with ethyl acetate three times. The combined organic phases were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude residue was purified via column chromatography eluting with a mixture of hexanes and ethyl acetate to furnish the desired olefin.

(3-bromo-4-(2-methylprop-1-en-1-yl)pyridine) (40) : The general olefination procedure was followed with 3-bromoisonicotinaldehyde $(3.00 \mathrm{~g}, 16.1 \mathrm{mmol})$ as the substrate. The crude residue was purified by column chromatography with 10% ethyl acetate:hexanes gradient to furnish the title compound as a yellow oil ($3.10 \mathrm{~g}, 14.6 \mathrm{mmol}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65$ $(\mathrm{s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.03$, 147.75, 146.15, 140.98, 125.24, 122.66, 122.46, 26.66, 19.73. DART-MS m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrN}(\mathrm{M}+\mathrm{H})^{+}=211.9997$, found 212.0071.

(1-bromo-2-(2-methylprop-1-en-1-yl)benzene) (41): The general olefination procedure was followed using 2-bromobenzaldehyde ($3.70 \mathrm{~g}, 20.0 \mathrm{mmol}$) as the substrate. The crude residue was purified by column chromatography with 1% ethyl acetate:hexanes gradient to furnish the title compound as a colorless oil ($3.88 \mathrm{~g}, 18.4 \mathrm{mmol}, 92 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58$ (dd, $J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{ddd}, J=8.6,6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.24(\mathrm{~m}$, $1 \mathrm{H}), 1.96(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[1]}$ DART-MS m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Br}(\mathrm{M}+\mathrm{H})^{+}=211.0044$, found 211.0120.

(3-bromo-2-(2-methylprop-1-en-1-yl)benzo[b]thiophene) (42): The general olefination procedure was followed using 3-bromobenzo[b]thiophene-2-carboxaldehyde ($1.00 \mathrm{~g}, 4.15 \mathrm{mmol}$) as the substrate. The crude residue was purified by column chromatography with $1-5 \%$ ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($750 \mathrm{mg}, 2.81 \mathrm{mmol}$, 67% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (dd, $J=13.8,8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.48(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 140.34,137.80,137.43,135.55,125.06,125.00,122.84,121.99,117.67,106.90,27.64$, 20.47. DART-MS m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrS}(\mathrm{M}+\mathrm{H})^{+}=266.9765$, found 266.9745.

(3-bromo-2-(2-methylprop-1-en-1-yl)thiophene) (43): The general olefination procedure was followed using 3-bromothiophene-2-carboxaldehyde ($3.00 \mathrm{~g}, 15.7 \mathrm{mmol}$) as the substrate. The crude residue was purified by column chromatography with 1% ethyl acetate:hexanes gradient to furnish the title compound as a brown liquid ($2.99 \mathrm{~g}, 13.8 \mathrm{mmol}, 88 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.95$ (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.57, 135.31, 129.68, 123.71, 117.03, 109.64, 27.37, 20.18. DART-MS m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrS}(\mathrm{M}+\mathrm{H})^{+}=216.9608$, found 216.9321.

(3-bromo-2-(2-methylprop-1-en-1-yl)furan) (44): The general olefination procedure was followed using 3-bromofuran-2-carboxaldehyde ($500 \mathrm{mg}, 2.86 \mathrm{mmol}$). The crude residue was purified by column chromatography with $1-5 \%$ ethyl acetate:hexanes gradient to furnish the title compound as a brown liquid ($173 \mathrm{mg}, 0.860 \mathrm{mmol}, 30 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.51,140.93,137.80,114.03,111.00,97.08,27.25,20.06$. DART-MS m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrO}(\mathrm{M}+\mathrm{H})^{+}=200.9837$, found 200.9736 .

(3-bromo-1-methyl-2-(2-methylprop-1-en-1-yl)-1H-indole) (45): The general olefination procedure was followed using 3-bromo-1-methyl-1H-indole-2-carboxaldehyde (1.00 g, 4.20 $\mathrm{mmol})$. The crude residue was purified by column chromatography with 25% ethyl acetate:hexanes gradient to furnish the title compound as a light-yellow liquid ($1.06 \mathrm{~g}, 4.01 \mathrm{mmol}, 96 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{qd}, J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19$ (ddd, $J=8.0$, $6.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{p}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.24,136.42,135.94,127.23,122.23,120.08,118.87$, $113.32,109.38,90.15,30.89,25.82$, 20.97. DART-MS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrN}(\mathrm{M}+\mathrm{H})^{+}=$ 264.0310, found 264.0387.

(4-bromo-1-methyl-5-(2-methylprop-1-en-1-yl)-1H-imidazole) (46): The general olefination procedure was followed using 4-bromo-1-methyl-1H-imidazole-5-carboxaldehyde ($250 \mathrm{mg}, 1.32$ $\mathrm{mmol})$. The crude residue was purified by column chromatography with 50% ethyl acetate:hexanes gradient to furnish the title compound as a brown liquid ($177 \mathrm{mg}, 0.823 \mathrm{mmol}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{p}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.68(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 144.67, 136.51, 128.04, 114.33, 109.89, 32.62, 25.65, 20.79. DART-MS m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{BrN}_{2}(\mathrm{M}+\mathrm{H})^{+}=215.0106$, found 215.0175 .

b. Synthesis of metathesis substrates

General Suzuki cross-coupling procedure for metathesis substrates:

A modified version of the reported procedure was followed. ${ }^{[1]}$ To a round bottom flask equipped with a magnetic stir bar were added aryl bromide (1.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$), aryl boronic acid (1.2 equiv), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.2 equiv). A $1: 1$ mixture of toluene / ethanol solution (0.6 M) was added, and the mixture was heated to reflux for 15 h . After cooling to room temperature, the reaction mixture was diluted with ethyl acetate and washed with water. The biphasic solution was extracted with ethyl acetate three times. The combined organic phases were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude residue was purified via column chromatography eluting with a mixture of hexanes and ethyl acetate to furnish the desired crosscoupled product.

(2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde) (7): The general cross-coupling procedure was followed using 3-bromo-4-(2-methylprop-1-en-1-yl)pyridine ($1.06 \mathrm{~g}, 5.00 \mathrm{mmol}$). The crude residue was purified by column chromatography with 50% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($900 \mathrm{mg}, 3.80 \mathrm{mmol}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$) $\delta 9.59(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.10, 150.45, 149.26, $145.86,141.37,140.99,134.49,133.88,132.85,131.19,128.67,127.60,123.87,122.02,26.54$, 19.55. DART-MS m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}=238.1154$, found 238.1227.

(2-fluoro-6-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde) (47): The general crosscoupling procedure was followed using 3-bromo-4-(2-methylprop-1-en-1-yl)pyridine (100 mg , 0.471 mmol). The crude residue was purified by column chromatography with 50% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($91.3 \mathrm{mg}, 0.358 \mathrm{mmol}$, 76% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H})$, 7.59 (td, $J=8.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.17$ (m, 2H), 7.05 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.69$ (s, 1H), 1.74 (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.77$, 187.74, 164.04, 162.99 (d, $J=262.2 \mathrm{~Hz}$), 161.95, 149.62, 149.38 (d, $J=60.4 \mathrm{~Hz}$), 149.14, 145.38, 141.72, 141.71, 141.22, 134.88, $134.84(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 134.79,132.95,132.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 132.94,127.16$, $127.13,123.80,123.07,123.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 123.02,121.57,121.49,116.73,116.64(\mathrm{~d}, J=21.5$ $\mathrm{Hz}), 116.56,26.51,19.46 .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.94$ (dd, $J=10.6,5.4 \mathrm{~Hz}$). DART$\mathrm{MS} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FNO}(\mathrm{M}+\mathrm{H})^{+}=256.1059$, found 256.1132 .

(5-fluoro-2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde) (48): The general crosscoupling procedure was followed using 3-bromo-4-(2-methylprop-1-en-1-yl)pyridine (50.0 mg , 0.236 mmol). The crude residue was purified by column chromatography with 50% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($28.5 \mathrm{mg}, 0.112 \mathrm{mmol}$, 47% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.52(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.52$ (s, 1H), $7.68(\mathrm{dd}, J=8.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, J=8.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.5,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 189.71, 163.91, 162.66 (d, $J=250.3 \mathrm{~Hz}$), 161.42, 150.42, 149.39, 145.94, 141.70, 136.84, $136.82(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 136.81,136.12(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 136.15,136.08,133.07,133.04(\mathrm{~d}, J=7.4$ $\mathrm{Hz})$, 133.00, 131.76, 123.88, 121.74, 121.11, 121.00 (d, $J=21.9 \mathrm{~Hz}$), 120.89, 113.94, 113.83 (d, $J=22.5 \mathrm{~Hz}), 113.72,26.45,19.45 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.77(\mathrm{dq}, J=8.1,4.1 \mathrm{~Hz}$). DART-MS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FNO}(\mathrm{M}+\mathrm{H})^{+}=256.1059$, found 256.1131.

(4-methoxy-2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde) (49): The general crosscoupling procedure was followed using 3-bromo-4-(2-methylprop-1-en-1-yl)pyridine (100 mg , 0.471 mmol). The crude residue was purified by column chromatography with 35% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($62.0 \mathrm{mg}, 0.232 \mathrm{mmol}$, 49% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H})$, $7.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.76-5.71(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.85,163.75,150.15,149.17,145.65,143.34,141.16,132.78$, 129.94, 127.99, 123.71, 121.85, 115.88, 114.28, 55.69, 26.56, 19.52. DART-MS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}=268.1259$, found 268.1176.

(5-methoxy-2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde) (50): The general crosscoupling procedure was followed using 3-bromo-4-(2-methylprop-1-en-1-yl)pyridine (50.0 mg , $0.236 \mathrm{mmol})$. The crude residue was purified by column chromatography with 40% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($38.5 \mathrm{mg}, 0.144 \mathrm{mmol}$, 61% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H})$, $7.53(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}), 1.83(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.94$, $159.71,150.68,148.92,145.98,141.06,135.33,133.65,132.47,132.38,123.78,122.13,121.23$, 110.19, 55.61, 26.48, 19.67. DART-MS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}=268.1259$, found 268.1334 .

(6-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzo[d][1,3]dioxole-5-carboxaldehyde) (51): The general cross-coupling procedure was followed using 3-bromo-4-(2-methylprop-1-en-1yl)pyridine ($100 \mathrm{mg}, 0.471 \mathrm{mmol}$). The crude residue was purified by column chromatography with 40% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid (122 mg , $0.435 \mathrm{mmol}, 92 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.35$ (s, 1H), 8.56 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $8.46(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.16-6.04(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{t}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $189.34,152.32,150.09,148.72,148.36,146.26,141.45,137.89,132.61,129.52,123.87,121.77$, $110.58,106.43,102.32,26.62,19.54$. DART-MS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}=282.1052$, found 282.1489.

(tert-butyl (2-(3-formyl-4-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)phenoxy)ethyl)carbamate) (52): The general cross-coupling procedure was followed using 3-bromo-4-(2-methylprop-1-en-$1-\mathrm{yl})$ pyridine ($50.0 \mathrm{mg}, 0.236 \mathrm{mmol}$). The crude residue was purified by column chromatography with 50% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid (58.3 mg , $0.147 \mathrm{mmol}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 8.56$ (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $8.48(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.18-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.13$ $-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{q}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.71,158.71,155.87,150.56,148.90,146.00,141.14,135.37$, $133.85,132.45,132.39,123.79,122.06,121.14,111.32,77.27,67.58,60.37,28.40,26.46,19.43$. DART-MS m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}=397.2049$, found 397.2129.

(4-(dimethylamino)-2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde) (53): The general cross-coupling procedure was followed using 3-bromo-4-(2-methylprop-1-en-1-yl)pyridine (50.0 $\mathrm{mg}, 0.236 \mathrm{mmol})$. The crude residue was purified by column chromatography with 50% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($34.7 \mathrm{mg}, 0.124 \mathrm{mmol}$, 53% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 6 \mathrm{H}), 1.82(\mathrm{~d}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 189.52,153.50,150.25,148.79,145.56,143.24,140.44,133.94,129.63,123.51,123.37$, 122.12, 112.51, 111.10, 40.09, 26.63, 19.57. DART-MS m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}=$ 281.1576, found 281.1652.

(2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)-4-(trifluoromethyl)benzaldehyde) (54): A 15 mL round bottom flask equipped with a stir bar was charged with (2-formyl-5(trifluoromethyl)phenyl)boronic acid ($123.3 \mathrm{mg}, 0.566 \mathrm{mmol}$) anhydrous potassium carbonate ($217 \mathrm{mg}, 1.57 \mathrm{mmol}$), 3-bromo-4-(2-methylprop-1-en-1-yl)pyridine ($100 \mathrm{mg}, 0.471 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(27.2 \mathrm{mg}, 24.0 \mu \mathrm{~mol})$, and THF $(1.5 \mathrm{~mL})$. The mixture was stirred vigorously at room temperature for 20 minutes and then at $60^{\circ} \mathrm{C}$ for 24 hours. The crude residue was purified by column chromatography with 25% ethyl acetate:hexanes gradient to furnish the title compound as a light-yellow oil ($6.60 \mathrm{mg}, 22.0 \mu \mathrm{~mol}, 4.6 \%$ yield $)$. While the NMR of the product was satisfactory, there was a coeluting impurity that could not be separated. The product was used as is in the next step. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~s}$, $1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$. DART-MS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}=306.1027$, found 306.1105.

(2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)-1-naphthaldehyde) (55): The general cross-coupling procedure was followed using 3-bromo-4-(2-methylprop-1-en-1-yl)pyridine ($59.0 \mathrm{mg}, 0.278$ $\mathrm{mmol})$. The crude residue was purified by column chromatography with 10% methanol:dichloromethane gradient to furnish the title compound as a light-yellow oil (31.6 mg , $0.110 \mathrm{mmol}, 39.6$ \% yield). While the NMR of the product was satisfactory, there was a coeluting impurity that could not be separated. The product was used as is in the next step. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.73(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}$), $8.00-7.93$ (m, 2H), 7.64 (ddd, $J=8.1,4.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45$ (m, 2H), 7.40 (d, J $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H})$. DARTMS m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}=288.1310$, found 288.1389.

(3-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)thiophene-2-carboxaldehyde) (56): The general cross-coupling procedure was followed using 3-bromo-4-(2-methylprop-1-en-1-yl)pyridine (382 $\mathrm{mg}, 1.80 \mathrm{mmol})$. The crude residue was purified by column chromatography with 20% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($280 \mathrm{mg}, 1.15 \mathrm{mmol}$, 64% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H})$, $7.77(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 1.81(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.39,150.36,149.29,146.26,146.11,141.58$, 140.03, 134.08, 131.36, 129.19, 124.57, 121.88, 26.75, 19.78. DART-MS m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NOS}(\mathrm{M}+\mathrm{H})^{+}=244.0718$, found 244.0788.

(2'-(2-methylprop-1-en-1-yl)-[1,1'-biphenyl]-2-carboxaldehyde) (57): The general crosscoupling procedure was followed using 1-bromo-2-(2-methylprop-1-en-1-yl)benzene ($1.06 \mathrm{~g}, 5.00$ $\mathrm{mmol})$. The crude residue was purified by column chromatography with 5% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($900 \mathrm{mg}, 3.79 \mathrm{mmol}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$) $\delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.13,145.24,138.29,137.28,137.18,134.26,133.54,131.08$, $130.35,129.88,128.03,127.80,126.77,126.61,124.44,26.19,19.29$. DART-MS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}=237.1201$, found 237.1276.

(5-(benzyl(methyl)amino)-2'-(2-methylprop-1-en-1-yl)-[1,1'-biphenyl]-2-carboxaldehyde) (58): The general cross-coupling procedure was followed using 1-bromo-2-(2-methylprop-1-en-1yl)benzene ($50.0 \mathrm{mg}, 0.237 \mathrm{mmol}$). The crude residue was purified by column chromatography with 25% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid (31.6 mg , $89.0 \mu \mathrm{~mol}, 38 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ $-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}$, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.71 (d, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .13 \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 190.49,153.02,147.60,138.13,137.99$, $137.43,136.21,130.16,129.61,129.04,128.83,127.54,127.33,126.49,126.13,124.44,123.76$, $112.75,110.85,55.86,38.65,26.22,19.27$. DART-MS m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}=$ 356.1936, found 356.2013.

(2-(2-(2-methylprop-1-en-1-yl)benzo[b]thiophen-3-yl)benzaldehyde) (59): The general crosscoupling procedure was followed using 3-bromo-2-(2-methylprop-1-en-1-yl)benzo[b]thiophene ($300 \mathrm{mg}, 1.12 \mathrm{mmol}$). The crude residue was purified by column chromatography with 5% ethyl acetate:hexanes gradient to furnish the title compound as a pale-yellow oil ($317 \mathrm{mg}, 1.08 \mathrm{mmol}$, 96% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.71(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.86(\mathrm{dt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{tt}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (dd, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.10(\mathrm{p}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.83(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.19, 140.09, 139.89, 139.47, 139.40, $138.61,135.20,134.05,132.00,129.45,128.39,127.46,124.80,124.60,122.45,122.02,117.32$, 27.58, 20.41. DART-MS m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{OS}(\mathrm{M}+\mathrm{H})^{+}=293.0922$, found 293.0954.

(2-(2-(2-methylprop-1-en-1-yl)thiophen-3-yl)benzaldehyde) (60): The general cross-coupling procedure was followed using 3-bromo-2-(2-methylprop-1-en-1-yl)thiophene ($100 \mathrm{mg}, 0.461$ $\mathrm{mmol})$. The crude residue was purified by column chromatography with $1-5 \%$ ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($70.0 \mathrm{mg}, 0.289 \mathrm{mmol}$, 63% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (td, J $=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ $(\mathrm{d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.95(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~d}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.46,140.72,138.72,137.77,134.70,134.39,133.62,131.34,129.57,127.81$, 127.21, 123.46, 116.70, 27.16, 20.17. DART-MS m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{OS}(\mathrm{M}+\mathrm{H})^{+}=243.0765$, found 243.0477.

(2'-(2-methylprop-1-en-1-yl)-[3,3'-bithiophene]-2-carboxaldehyde) (61): The general crosscoupling procedure was followed using 3-bromo-2-(2-methylprop-1-en-1-yl)thiophene (100 mg , $0.461 \mathrm{mmol})$. The crude residue was purified by column chromatography with 10% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($39.0 \mathrm{mg}, 0.161 \mathrm{mmol}$, 35% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.72(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=4.9,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~h}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.93(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.85(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.40$, $145.83,139.25,138.91,138.09,133.75,131.13,130.94,129.19,123.76,116.82,27.18,20.16$. DART-MS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{OS}_{2}(\mathrm{M}+\mathrm{H})^{+}=249.0330$, found 249.0204.

(3-(2-(2-methylprop-1-en-1-yl)benzo[b]thiophen-3-yl)thiophene-2-carboxaldehyde) (62): The general cross-coupling procedure was followed using 3-bromo-2-(2-methylprop-1-en-1yl)benzo[b]thiophene ($300 \mathrm{mg}, 1.12 \mathrm{mmol}$). The crude residue was purified by column chromatography with $1-5 \%$ ethyl acetate:hexanes gradient to furnish the title compound as a yellow oil ($96.0 \mathrm{mg}, 0.328 \mathrm{mmol}, 30 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.58(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ $(\mathrm{h}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.25,144.37,140.41,140.28,140.24,139.33,138.59,134.20,131.24,125.73,124.88,124.71$, 122.31, 122.04, 117.26, 27.55, 20.36. DART-MS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{OS}_{2}(\mathrm{M}+\mathrm{H})^{+}=299.0486$, found 299.0622.

(2-(2-(2-methylprop-1-en-1-yl)furan-3-yl)benzaldehyde) (63): The general cross-coupling procedure was followed using 3-bromo-2-(2-methylprop-1-en-1-yl)furan ($500 \mathrm{mg}, 2.86 \mathrm{mmol}$). The crude residue was purified by column chromatography with 20% ethyl acetate:hexanes gradient to furnish the title compound as a tan liquid ($173 \mathrm{mg}, 0.860 \mathrm{mmol}, 30 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.90(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=7.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{tt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.37 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{p}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.46,151.35,140.93,138.44,137.96,134.17,133.73$, 131.37, 127.65, 127.49, 118.10, 113.55, 111.56, 27.20, 20.29. DART-MS m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}=227.0994$, found 227.1069.

(2-(1-methyl-2-(2-methylprop-1-en-1-yl)-1H-indol-3-yl)benzaldehyde) (64): The general crosscoupling procedure was followed using 3-bromo-1-methyl-2-(2-methylprop-1-en-1-yl)-1H-indole $(400 \mathrm{mg}, 1.51 \mathrm{mmol})$. The crude residue was purified by column chromatography with 10% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($109 \mathrm{mg}, 0.376 \mathrm{mmol}$, 25% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dq}, J=7.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{ddd}, J=$ $8.2,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (ddd, $J=8.0,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$ (p, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (s, 3H), $1.79(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.90, 143.90, $139.91,137.62,136.98,133.86,133.68,131.72,127.60,127.42,126.42,122.12,120.39,118.80$, $113.26,110.39,109.38,30.43,25.60,20.14$. APCI-MS m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}=290.1$, found 290.1.

(2-(1-methyl-5-(2-methylprop-1-en-1-yl)-1H-imidazol-4-yl)benzaldehyde) (65): A modified version of a reported procedure was followed. ${ }^{[2]}$ To a round bottom flask equipped with a magnetic stir bar were added 4-bromo-1-methyl-5-(2-methylprop-1-en-1-yl)-1H-imidazole ($70.0 \mathrm{mg}, 0.325$ mmol, 1.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6 \mathrm{~mol} \%)$, 2-formyl phenylboronic acid $(61.0 \mathrm{mg}, 0.407 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(150 \mathrm{mg}, 0.651 \mathrm{mmol}, 2.0$ equiv). A mixture of 1,4 -dioxane (1.3 mL) and $\mathrm{H}_{2} \mathrm{O}(0.32 \mathrm{~mL})$ was added. The reaction mixture was heated to reflux for 15 h in a $100{ }^{\circ} \mathrm{C}$ bath. After the reaction was allowed to cool to room temperature, it was diluted with ethyl acetate and washed with water. The biphasic solution was extracted with ethyl acetate three times. The combined organic phases were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude residue was purified by column chromatography with 75% ethyl acetate:hexanes gradient to furnish the title compound as a faint yellow liquid ($30.3 \mathrm{mg}, 0.126 \mathrm{mmol}, 39 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.34$ $(\mathrm{m}, 1 \mathrm{H}), 5.90-5.87(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.73,137.71,135.48,133.42,132.14,132.07,130.13,128.56,128.46,127.18$, 127.09, 110.86, 31.92, 25.54, 19.92. DART-MS m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}=241.1263$, found 241.1340 .

c. RCCOM reactions

General ring-closing carbonyl-olefin metathesis procedure for polycyclic heteroaromatics.

A sealed vial equipped with a stir bar was charged with the metathesis substrate (1.0 equiv), catalyst ($5 \mathrm{~mol} \%$), and THF (0.5 M). The solution was stirred for 15 h at $100^{\circ} \mathrm{C}$. After completion, the solvent was removed in vacuo and the crude residue was purified via column chromatography eluting with a mixture of hexanes and ethyl acetate to furnish the desired compound.

(benzo[h]isoquinoline) (8): The general metathesis procedure was followed using 2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde ($47.5 \mathrm{mg}, 0.200 \mathrm{mmol}$). The crude residue was purified by column chromatography with 50% ethyl acetate:hexanes gradient to furnish the title compound as a brown liquid ($30.9 \mathrm{mg}, 0.172 \mathrm{mmol}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.06(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.7,6.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.77 - 7.66 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.61,144.80,136.03,132.25,131.91$, 129.36, 128.98, 127.98, 127.56, 125.13, 124.83, 122.03, 121.31, 13.76. DART-MS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}=180.0735$, found 180.0808 .

(7-fluorobenzo[h/isoquinoline) (12): The general metathesis procedure was followed using 2-fluoro-6-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde ($51.3 \mathrm{mg}, 0.201 \mathrm{mmol}$). The product was purified by column chromatography with 35% ethyl acetate:hexanes gradient to furnish the title compound as a brown solid ($30.0 \mathrm{mg}, 0.152 \mathrm{mmol}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{td}, J=8.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=10.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.28,159.28(\mathrm{~d}, J=251.9 \mathrm{~Hz}), 158.28,147.09,145.55,135.95$, $131.08(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 131.09,131.06,128.14,128.10(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 128.07,125.33,125.32(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}), 125.31,124.42(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 124.43,124.41,123.47,123.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 123.42$, 121.83, $121.77(\mathrm{~d}, J=15.3 \mathrm{~Hz}), 121.71,121.32,117.80,117.78(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 117.76,112.12$, $112.04(\mathrm{~d}, J=20.3 \mathrm{~Hz}), 111.96 .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-121.32(\mathrm{dd}, J=10.0,5.7 \mathrm{~Hz}$). DART-MS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FN}(\mathrm{M}+\mathrm{H})^{+}=198.0641$, found 198.0714.

(8-fluorobenzo[h/isoquinoline) (13): The general metathesis procedure was followed using 5-fluoro-2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde ($28.5 \mathrm{mg}, 0.112 \mathrm{mmol}$). The crude residue was purified by column chromatography with 25% ethyl acetate:hexanes gradient to furnish the title compound as a pale yellow solid ($17.3 \mathrm{mg}, 88.0 \mu \mathrm{mmol}, 79 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 8.83-8.59(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.68(\mathrm{~m}$, $2 \mathrm{H}), 7.56(\mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.92,161.69(\mathrm{~d}, J=248.1 \mathrm{~Hz}), 160.46,146.48,144.90,135.33,133.74,133.70(\mathrm{~d}, J=8.7 \mathrm{~Hz})$, 133.66, 130.92, $130.90(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 130.88$, 126.20, 125.91, 124.42, 124.33, 121.40, 117.04, $116.93(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 116.81,113.28,113.18(\mathrm{~d}, J=20.7 \mathrm{~Hz}), 113.08 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-113.11. DART-MS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FN}(\mathrm{M}+\mathrm{H})^{+}=198.0641$, found 198.0715.

(9-methoxybenzo[h]isoquinoline) (14): The general metathesis procedure was followed using 4-methoxy-2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde ($62.0 \mathrm{mg}, 0.232 \mathrm{mmol}$). The crude residue was purified by column chromatography with 30% ethyl acetate:hexanes gradient to furnish the title compound as a dark yellow solid ($36.0 \mathrm{mg}, 0.172 \mathrm{mmol}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (dd, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.44$, 146.67, 144.77, 136.41, $131.53,130.89,130.41,126.97,124.65,122.37,121.30,117.77,103.14,55.61$. DART-MS m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}=210.0841$, found 210.0917.

(8-methoxybenzo[h]isoquinoline) (15): The general metathesis procedure was followed using 2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde ($38.5 \mathrm{mg}, 0.144 \mathrm{mmol}$). The crude residue was purified by column chromatography with 20% ethyl acetate:hexanes gradient to furnish the title compound as a light brown solid ($17.8 \mathrm{mg}, 85.0 \mu \mathrm{~mol}, 59 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.71-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.93,146.24,143.96,134.80,133.79,131.30,125.45,125.29$, $123.59,123.53,121.25,118.45,109.07,55.50$. APCI-MS m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}=$ 210.0841, found 210.0917 .

([1,3]dioxolo[4',5':5,6]benzo[1,2-h]isoquinoline) (16): The general metathesis procedure was followed using 6-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzo[d][1,3]dioxole-5carboxaldehyde $(52.4 \mathrm{mg}, 0.186 \mathrm{mmol})$. The crude residue was purified by column chromatography with 40% ethyl acetate:hexanes gradient to furnish the title compound as a brown solid ($27.5 \mathrm{mg}, 0.123 \mathrm{mmol}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83$ (s, 1H), 8.62 (d, $J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.10,148.23,146.69,143.87$, 135.00, 131.07, 128.84, 125.75, 124.96, 123.18, 121.08, 106.09, 101.71, 100.10. DART-MS m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}=224.0633$, found 224.0823.

(tert-butyl (2-(benzo[h/isoquinolin-8-yloxy)ethyl)carbamate) (17): The general metathesis procedure was followed using tert-butyl (2-(3-formyl-4-(4-(2-methylprop-1-en-1-yl)pyridin-3yl)phenoxy)ethyl)carbamate ($58.3 \mathrm{mg}, 0.147 \mathrm{mmol}$). The crude residue was purified by column chromatography with 50% ethyl acetate:hexanes gradient to furnish the title compound as a paleyellow solid ($22.0 \mathrm{mg}, 65.0 \mu \mathrm{~mol}, 44 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 8.68$ (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=11.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=9.0,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{q}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.91,155.96,146.10,143.84,134.92,133.74$, $131.34,125.53,123.73,123.68,121.35,118.55,109.87,79.69,67.45,40.14,29.71,28.42$. DARTMS m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}=339.1630$, found 339.1711.

(N, N-dimethylbenzo/h/isoquinolin-9-amine) (18): The general metathesis procedure was followed using 4-(dimethylamino)-2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde $(34.7 \mathrm{mg}, 0.124 \mathrm{mmol})$. The crude residue was purified by column chromatography with 30% ethyl acetate:hexanes gradient to furnish the title compound as an orange solid ($18.6 \mathrm{mg}, 84.0$ $\mu \mathrm{mol}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=14.3,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.01,146.64,144.48$, 136.78, 131.70, 130.96, 129.82, 124.54, 124.01, 121.21, 120.23, 115.15, 101.79, 40.72, 40.69. DART-MS m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}=223.1157$, found 223.1231.

(9-(trifluoromethyl)benzo[h]isoquinoline) (19): The general metathesis procedure was followed using 2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)-4-(trifluoromethyl)benzaldehyde (6.60 mg , $22.0 \mu \mathrm{~mol})$. The crude residue was purified by column chromatography with 20% ethyl acetate:hexanes gradient to furnish the title compound as a white solid ($1.70 \mathrm{mg}, 7.00 \mu \mathrm{~mol}, 32 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.09(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.79(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.51,145.64,136.30,133.99$, $131.12,129.88,129.81,129.77$ (d, $J=32.7 \mathrm{~Hz}$), 129.62, 128.92, 127.24, 125.32, 124.84, 123.62, $123.60(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 123.59,123.16,121.47,119.60,119.59(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 119.57 .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.02. DART-MS m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}=248.0609$, found 248.0680.

(naphtho[1,2-h]isoquinoline) (20): The general metathesis procedure was followed using 2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)-1-naphthaldehyde ($31.6 \mathrm{mg}, 0.110 \mathrm{mmol}$) and catalyst (20 $\mathrm{mol} \%)$. The crude residue was purified by column chromatography with 25% ethyl acetate:hexanes gradient to furnish the title compound as a brown solid $(8.60 \mathrm{mg}, 38.0 \mu \mathrm{~mol}, 35 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.41(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.05(\mathrm{dd}, J=9.6,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.76$ (ddd, $J=$ $8.4,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.74,143.40$, $136.68,133.79,131.60,131.42,129.36,128.75,128.47$, 128.17, 127.01, 126.85, 126.79, 126.60, 125.58, 125.48, 120.95. DART-MS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}=230.0891$, found 230.0961.

(thieno[2,3-h/isoquinoline) (21): The general metathesis procedure was followed using 2-(4-(2-methylprop-1-en-1-yl)pyridin-3-yl)benzaldehyde ($80.0 \mathrm{mg}, 0.329 \mathrm{mmol}$) and catalyst ($20 \mathrm{~mol} \%$). The crude residue was purified by column chromatography with 50% ethyl acetate:hexanes gradient to furnish the title compound as a white solid ($41.3 \mathrm{mg}, 0.223 \mathrm{mmol}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=10.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.81$ $-7.64(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 147.97, 143.29, 138.47, 135.20, 134.11, 128.01, 125.33, 124.31, 122.99, 121.09, 121.05. DART-MS m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{NS}(\mathrm{M}+\mathrm{H})^{+}=186.0299$, found 186.0372.

(phenanthrene) (22): The general metathesis procedure was followed using 2'-(2-methylprop-1-en-1-yl)-[1,1'-biphenyl]-2-carboxaldehyde ($47.3 \mathrm{mg}, 0.200 \mathrm{mmol}$). The crude residue was purified by column chromatography with 5% ethyl acetate:hexanes gradient to furnish the title compound as a white solid ($29.9 \mathrm{mg}, 0.168 \mathrm{mmol}, 84 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$. DART-MS m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{10}(\mathrm{M}+\mathrm{H})^{+}=179.0783$, found 179.0859.

(N-benzyl-N-methylphenanthren-3-amine) (23): The general metathesis procedure was followed using 2'-(2-methylprop-1-en-1-yl)-[1,1'-biphenyl]-2-carboxaldehyde ($31.6 \mathrm{mg}, 89.0 \mu \mathrm{~mol}$). The crude residue was purified by column chromatography with 5% ethyl acetate:hexanes gradient to furnish the title compound as a pale-yellow solid ($18.1 \mathrm{mg}, 61.0 \mu \mathrm{~mol}, 69 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{dd}, J=7.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26$ $(\mathrm{m}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $148.53,138.82,132.76,131.68,129.67,129.58,128.70,128.52,127.07,126.86,126.70,126.30$, $125.68,124.11,122.83,122.64,114.77,103.15,56.96,38.93$. DART-MS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}$ $(\mathrm{M}+\mathrm{H})^{+}=298.1517$, found 298.1594.

(benzo[b]naphtho[1,2-d]thiophene) (24): The general metathesis procedure was followed using 3-(2-(2-methylprop-1-en-1-yl)benzo[b]thiophen-3-yl)thiophene-2-carboxaldehyde (100 mg, 0.342 mmol). The crude residue was purified by column chromatography with 1% ethyl acetate: hexanes gradient to furnish the title compound as a white solid ($58.9 \mathrm{mg}, 0.251 \mathrm{mmol}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.02(\mathrm{dt}, J=8.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{dt}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.06-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.75$ (ddd, $J=8.5,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (tdd, $J=7.9$, $7.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51 (ddd, $J=8.1,7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.76$, $138.65,136.74,131.96,130.68,129.48,129.07,127.89,127.17,125.26,124.93,124.84,124.75$, 123.25, 123.22, 121.11. DART-MS m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}=235.0503$, found 235.0534.

(naphtho[2,1-b]thiophene) (25): The general metathesis procedure was followed using2-(2-(2-methylprop-1-en-1-yl)thiophen-3-yl)benzaldehyde ($60.0 \mathrm{mg}, 0.248 \mathrm{mmol}$). The crude residue was purified by column chromatography with 1% ethyl acetate:hexanes gradient to furnish the title compound as a white solid ($38.0 \mathrm{mg}, 0.206 \mathrm{mmol}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39$ - $8.29(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{ddd}, J=8.1,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.40,135.94,130.99,129.37,128.56,126.48,125.83,125.30,125.06,123.62$, 122.03, 120.69. DART-MS m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}=185.0347$, found 185.0379.

(benzo[1,2-b:4,3-b']dithiophene) (26): The general metathesis procedure was followed using 2'-(2-methylprop-1-en-1-yl)-[3,3'-bithiophene]-2-carboxaldehyde ($40.0 \mathrm{mg}, 0.161 \mathrm{mmol}$). The crude residue was purified by column chromatography with 1% ethyl acetate:hexanes gradient to furnish the title compound as a white solid ($19.5 \mathrm{mg}, 0.102 \mathrm{mmol}, 63 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.83(\mathrm{~s}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 136.44, 134.66, 126.50, 121.93, 118.77. DART-MS m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}=190.9911$, found 190.9908 .

([1]Benzothieno[5,4-b][1]benzothiophen) (27): The general metathesis procedure was followed using 3-(2-(2-methylprop-1-en-1-yl)benzo[b]thiophen-3-yl)thiophene-2-carboxaldehyde (96.0 $\mathrm{mg}, 0.322 \mathrm{mmol})$. The crude residue was purified by column chromatography with 1% dichloromethane:hexanes gradient to furnish the title compound as a white solid ($16.8 \mathrm{mg}, 70.0$ $\mu \mathrm{mol}, 22 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29-8.21(\mathrm{~m}, 1 \mathrm{H})$, $8.03-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (ddd, $J=8.1,7.1,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.56,137.61,136.46$, $135.73,134.64,129.53,127.76,125.82,124.60,123.71,123.02,121.36,121.04,119.04$. DART$\mathrm{MS} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}=241.0067$, found 241.0099.

(naphtho[2,1-blfuran) (28): The general metathesis procedure was followed using 2-(2-(2-methylprop-1-en-1-yl)furan-3-yl)benzaldehyde ($51.0 \mathrm{mg}, 0.225 \mathrm{mmol}$). The crude residue was purified by column chromatography with 1% ethyl acetate:hexanes gradient to furnish the title compound as a pale-yellow solid ($29.9 \mathrm{mg}, 0.178 \mathrm{mmol}, 79 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (ddd, $J=8.2,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (ddd, $J=8.1,6.9$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.55,144.23,130.36$, 128.76, 127.85, 126.32, 125.21, 124.52, 123.45, 122.67, 112.55, 105.62. DART-MS m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}=169.0575$, found 169.0606 .

(7-methyl-7H-benzo[c]carbazole) (29): The general metathesis procedure was followed using 2-(1-methyl-2-(2-methylprop-1-en-1-yl)-1H-indol-3-yl)benzaldehyde ($86.2 \mathrm{mg}, 0.298 \mathrm{mmol}$) and catalyst ($20 \mathrm{~mol} \%$). The crude residue was purified by column chromatography with 5% dichloromethane:hexanes gradient to furnish the title compound as a white solid ($21.7 \mathrm{mg}, 94.0$ $\mu \mathrm{mol}, 32 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.82$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.61 (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (ddd, $J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.65 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.41$ (ddd, $J=8.1,6.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.93,138.51,129.97,129.23,128.90,127.22,126.90,124.10$, 123.43, 123.19, 122.78, 122.06, 119.76, 114.84, 110.56, 109.11, 29.28. DART-MS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}=232.1048$, found 232.1080.

(3-methyl-3H-naphtho[1,2-d]imidazole) (30): The general metathesis procedure was followed using 2-(1-methyl-5-(2-methylprop-1-en-1-yl)-1H-imidazol-4-yl)benzaldehyde ($11.5 \mathrm{mg}, 48.0$ $\mu \mathrm{mol})$ and catalyst ($20 \mathrm{~mol} \%$). The crude residue was purified by column chromatography with 10% methanol:dichloromethane gradient to furnish the title compound as a light brown solid (3.8 $\mathrm{mg}, 0.021 \mathrm{mmol}, 44 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71-8.66(\mathrm{~m}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H})$, $7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{ddd}, J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.49$ (m, 2H), $3.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.68,130.48,130.34,128.42,126.99$, 126.47, 125.02, 124.80, 122.01, 109.84, 31.68. DART-MS m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}=$ 183.0844, found 183.0915 .

d. Screen of the olefin moiety

(3-bromo-4-vinylpyridine) (66) : The title compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[3]}$ A mixture of 3,4-dibromopyridine ($300 \mathrm{mg}, 1.27 \mathrm{mmol}, 1.0$ equiv), 4,4,5,5-tetramethyl-2-vinyl-1,3,2dioxaborolane ($195 \mathrm{mg}, 1.27 \mathrm{mmol}, 1.0$ equiv), aq. $\mathrm{K}_{3} \mathrm{PO}_{4}(3.80 \mathrm{~mL}, 1 \mathrm{M}, 3.80 \mathrm{mmol}, 3.0$ equiv), and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(92.7 \mathrm{mg}, 0.127 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in DMF ($12.7 \mathrm{~mL}, 0.1 \mathrm{M}$) was stirred at $60^{\circ} \mathrm{C}$ under N_{2} for 3 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ethyl acetate. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and then brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the crude residue was purified by column chromatography with 10% ethyl acetate:hexanes gradient to furnish the title compound as a light-yellow liquid ($170 \mathrm{mg}, 0.924$ $\mathrm{mmol}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=17.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.49,148.27,144.48,133.66,121.41,120.85,120.73$. DART-MS m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BrN}(\mathrm{M}+\mathrm{H})^{+}=183.9684$, found 183.9775.

(2-(4-vinylpyridin-3-yl)benzaldehyde) (31) : The general cross-coupling procedure was followed using 3-bromo-4-vinylpyridine ($35.0 \mathrm{mg}, 0.190 \mathrm{mmol}$). The crude residue was purified by column chromatography with 25% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($31.0 \mathrm{mg}, 0.148 \mathrm{mmol}, 78 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.73(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.65(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (td, $J=7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{tt}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.38(\mathrm{dd}, J=17.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=17.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=11.0,0.7 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.13,150.87,149.72,144.07,140.18,134.51,133.93,132.56$, 131.92, 131.50, 128.92, 128.14, 120.65, 119.07. DART-MS m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}=$ 210.0841, found 210.0917 .

((E/Z)-3-bromo-4-(prop-1-en-1-yl)pyridine) (67) : The general olefination procedure was followed using 3-bromoisonicotinaldehyde ($500 \mathrm{mg}, 2.69 \mathrm{mmol}$) and ethyltriphenylphosphonium iodide ($1.24 \mathrm{~g}, 2.96 \mathrm{mmol}$). The crude residue was purified by column chromatography with 10% ethyl acetate:hexanes gradient to furnish the title compound (E / Z mixture, $4: 1$ ratio) as a yellow oil ($200 \mathrm{~g}, 1.01 \mathrm{mmol}, 38 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 0 \mathrm{H}), 8.45$ (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 0 \mathrm{H}), 7.34(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 0 \mathrm{H}), 7.22(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.71-6.61(\mathrm{~m}, 0 \mathrm{H}), 6.51-6.44(\mathrm{~m}, 0 \mathrm{H}), 6.41(\mathrm{dq}, J=11.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dq}, J=11.6,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=6.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.39,152.09,148.00,147.69,144.97,144.66,133.64,131.63,127.83,127.05,124.92,18.90$, 14.63. DART-MS m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrN}(\mathrm{M}+\mathrm{H})^{+}=197.9840$, found 197.9913.

((E/Z)-2-(4-(prop-1-en-1-yl)pyridin-3-yl)benzaldehyde) (32) : The general cross-coupling procedure was followed using (E / Z)-3-bromo-4-(prop-1-en-1-yl)pyridine ($100 \mathrm{mg}, 0.505 \mathrm{mmol}$). The crude residue was purified by column chromatography with 30% ethyl acetate:hexanes gradient to furnish the title compound (E / Z mixture, $2: 1$ ratio) as a yellow liquid ($60.0 \mathrm{mg}, 0.269$ mmol, 53 \% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.71$ (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 9.67 (d, $J=0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.64(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=7.7$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{dq}, J=15.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.96$ (dt, J $=11.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dq}, J=11.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=7.1,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{dd}, J=$ $6.8,1.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.31,191.19,150.84,150.54,149.52,149.21$, 144.53, 144.37, 140.69, 134.46, 134.37, 133.95, 133.85, 133.39, 131.92, 131.47, 131.24, 131.16, 128.76, 128.70, 127.84, 127.77, 126.63, 126.36, 123.47, 119.03, 18.88, 14.57. DART-MS m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}=224.0997$, found 224.1073.

((E)-3-bromo-4-styrylpyridine) (68): The general olefination procedure was followed using 3bromoisonicotinaldehyde ($500 \mathrm{mg}, 2.69 \mathrm{mmol}$) and benzyltriphenylphosphonium bromide (1.28 $\mathrm{g}, 2.96 \mathrm{mmol}$). The crude residue was purified by column chromatography with 15% ethyl acetate:hexanes gradient to furnish the title compound as a yellow oil ($E: Z=1: 1.9,655 \mathrm{mg}, 2.52$ $\mathrm{mmol}, 94 \%$ yield, for E-isomer: $214 \mathrm{mg}, 0.822 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.74(\mathrm{~s}$, $1 \mathrm{H}), 8.49(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 4 \mathrm{H})$, $7.29(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.61,148.18,144.26,135.95,135.37$, 129.21, 128.95, 127.35, 124.70, 120.39. DART-MS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}(\mathrm{M}+\mathrm{H})^{+}=$ 259.9997, found 260.0052.

((E)-2-(4-styrylpyridin-3-yl)benzaldehyde) (33) : The general cross-coupling procedure was followed using 3-bromo-4-vinylpyridine ($100 \mathrm{mg}, 0.384 \mathrm{mmol}$). The crude residue was purified by column chromatography with 45% ethyl acetate:hexanes gradient to furnish the title compound as a yellow liquid ($103 \mathrm{mg}, 0.362 \mathrm{mmol}, 94 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{~s}, 1 \mathrm{H})$, $8.63(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=12.8,2.6 \mathrm{~Hz}, 5 \mathrm{H}), 7.21$ (d, $J=$ $16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.07,151.06,149.59$, $143.88,140.31,135.95,135.06,134.62,134.00,132.02,131.72,128.99,128.98,128.81,128.25$, 127.11, 123.44, 118.95. DART-MS m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}=286.1154$, found 286.1231.

((Z)-3-bromo-4-styrylpyridine) (69): The general olefination procedure was followed using 3bromoisonicotinaldehyde ($500 \mathrm{mg}, 2.69 \mathrm{mmol}$) and benzyltriphenylphosphonium bromide (1.28 $\mathrm{g}, 2.96 \mathrm{mmol}$). The crude residue was purified by column chromatography with 10% ethyl acetate:hexanes gradient to furnish the title compound as a yellow solid ($E: Z=1: 1.9,655 \mathrm{mg}, 2.52$ $\mathrm{mmol}, 94 \%$ yield, for Z-isomer: $441 \mathrm{mg}, 1.70 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.78(\mathrm{~s}, 1 \mathrm{H})$, $8.29(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=4.9,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.38$, 147.71, 145.73, $135.42,134.51,128.90,128.48,128.11,126.69,125.02,122.21$. DART-MS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}(\mathrm{M}+\mathrm{H})^{+}=259.9997$, found 260.0050.

((Z)-2-(4-styrylpyridin-3-yl)benzaldehyde) (34) : The general cross-coupling procedure was followed using 3-bromo-4-vinylpyridine ($100 \mathrm{mg}, 0.384 \mathrm{mmol}$). The crude residue was purified by column chromatography with 35% ethyl acetate:hexanes gradient. The fractions were combined and concentrated in vacuo, providing the title compound ($108 \mathrm{mg}, 0.378 \mathrm{mmol}, 98 \%$ yield) as a yellow liquid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 8.65-8.46(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{dd}, J=7.7$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{tt}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.98,151.08,149.07$, 144.84, 140.34, 135.68, 134.82, 134.12, $133.63,132.94,131.47,128.62,128.58,128.47,128.21,128.05,125.65,123.58$. DART-MS m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}=286.1154$, found 286.1231.

e. Substrate Precursor Synthesis

(3-bromo-1-methyl-1H-indole-2-carboxaldehyde) (70): The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[4]}$ To a solution of 1 -methyl-1H-indole-2-carboxaldehyde ($1.00 \mathrm{~g}, 6.28 \mathrm{mmol}, 1.0$ equiv) in chloroform ($0.025 \mathrm{M}, 251 \mathrm{~mL}$) was added N-bromosucciinmide (NBS) ($2.25 \mathrm{~g}, 13.8 \mathrm{mmol}, 2.2$ equiv). The resultant mixture was stirred at room temperature and monitored by TLC. After removing the solvent in vacuo, the crude residue was purified by column chromatography with 10% ethyl acetate:hexanes gradient to furnish the title compound as a light yellow solid (1.20 g , $5.04 \mathrm{mmol}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 7.67$ (dt, $J=8.2,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46$ (ddd, $J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dt}, J=8.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (ddd, $J=7.9,6.9,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[4]}$

(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-naphthaldehyde) (71): The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[5]} 1$-bromo-2-naphthaldehyde ($100 \mathrm{mg}, 0.425 \mathrm{mmol}, 1.0$ equiv), KOAc (125 $\mathrm{mg}, 1.28 \mathrm{mmol}$, 3.0 equiv), $\mathrm{PdCl}_{2}(\mathrm{dppf})(9.30 \mathrm{mg}, 13.0 \mu \mathrm{~mol}, 0.03$ equiv), and bispinacolatodiboron ($118 \mathrm{mg}, 0.468 \mathrm{mmol}, 1.1$ equiv) were dissolved in anhydrous degassed toluene $(0.2 \mathrm{M}, 2.0 \mathrm{~mL})$ and the reaction mixture was heated to reflux overnight. After completion, the reaction mixture was cooled to room temperature and filtered through a pad of Celite and concentrated in vacuo. The crude residue was purified by column chromatography with 20% ethyl acetate:hexanes gradient to furnish the title compound as a white solid $(94.2 \mathrm{mg}, 0.334 \mathrm{mmol}, 78$ \% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.20(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 12 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[5]}$

(4-(benzyl(methyl)amino)-2-bromobenzaldehyde) (72) : The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[6]}$ A solution of 2-bromo-4-fluorobenzaldehyde $(1.00 \mathrm{~g}, 4.93 \mathrm{mmol}, 1.0$ equiv $), \mathrm{N}$ methylbenzylamine ($0.597 \mathrm{~g}, 4.93 \mathrm{mmol}$, 1.0 equiv), and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.36 \mathrm{~g}, 9.85 \mathrm{mmol}$, 2.0 equiv) in DMF ($0.3 \mathrm{M}, 16.4 \mathrm{~mL}$) was heated to $100{ }^{\circ} \mathrm{C}$ overnight. The solution was cooled to room temperature and diluted with dichloromethane and water. The biphasic solution was extracted with dichloromethane three times. The combined organic phases were washed with brine and concentrated in vacuo. The crude residue was purified by column chromatography with 25% ethyl acetate:hexanes gradient to furnish the title compound ($1.30 \mathrm{~g}, 4.27 \mathrm{mmol}, 87 \%$ yield) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.09(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ $-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{ddd}, J=$ $9.0,2.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[6]}$

(4-(benzyl(methyl)amino)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde) (73) : The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[6]}$ To a solution of 4-(benzyl(methyl)amino)-2bromobenzaldehyde ($500 \mathrm{mg}, 1.64 \mathrm{mmol}$. 1.0 equiv) in 1,4 -dioxane ($0.12 \mathrm{M}, 13.7 \mathrm{~mL}$) was added bis-pinacoldiboron ($459 \mathrm{mg}, 1.81 \mathrm{mmol}, 1.1$ equiv), KOAc ($484 \mathrm{mg}, 4.93 \mathrm{mmol}, 3.0$ equiv), and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(36.0 \mathrm{mg}, 49.0 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%)$. The mixture was degassed with N_{2} and heated at 90 ${ }^{\circ} \mathrm{C}$ overnight. The solution was cooled to room temperature and filtered through a short pack of Celite. The filtrate was concentrated, and the crude residue was purified by column chromatography with 20% ethyl acetate:hexanes gradient to furnish the title compound as a red solid ($535 \mathrm{mg}, 1.52 \mathrm{mmol}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.80$ (ddd, $J=9.0,2.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[6]}$

(1-bromo-2-(dimethoxymethyl)-4-fluorobenzene) (74): The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[7]}$ To a 100 mL round bottom flask equipped with a stir bar and a reflux condenser was added 2 -bromo-5-fluorobenzaldehyde ($5.00 \mathrm{~g}, 24.6 \mathrm{mmol}$) dissolved in 10 ml of methanol. Concentrated sulfuric acid ($0.125 \mathrm{~mL}, 2.34 \mathrm{mmol}$) was added slowly into the stirring mixture. Subsequently, trimethyl orthoformate ($3.50 \mathrm{~mL}, 25.0 \mathrm{mmol}$) was added dropwise into the reaction mixture at room temperature. The solution was then heated to reflux for 1 h . After cooling to room temperature, the solution was basified to pH 11 using a concentrated NaOMe solution in methanol. The solvent was removed in vacuo. Subsequently, DCM (30 mL) was added to the remaining reaction slurry, and the mixture was filtered through Celite. The filtrate was collected and concentrated in vacuo to furnish the title compound as a colorless liquid ($1.48 \mathrm{~g}, 24 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{dd}, J=8.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=9.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-$ $6.87(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 6 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[7]}$

((4-fluoro-2-formylphenyl)boronic acid) (75): The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[7]}$ To a 100 mL flame dried round bottom flask equipped with a stir bar was added a combination of anhydrous diethyl ether (42.0 mL) and THF (8.40 mL). After being cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath, 1.6 M n-butyllithium in hexanes ($14.4 \mathrm{~mL}, 23.1 \mathrm{mmol}$) was added, followed by a dropwise addition of 1-bromo-2-(dimethoxymethyl)-4-fluorobenzene ($5.00 \mathrm{~g}, 20.1 \mathrm{mmol}$). After stirring for 1 h at $-78^{\circ} \mathrm{C}$, triethyl borate ($3.60 \mathrm{~mL}, 23.1 \mathrm{mmol}$) was added slowly in to the flask. The mixture was stirred for 1 hour in the dry ice/acetone bath. Then, the cooling bath was removed and the solution was acidified to pH 3 using 3 M aqueous HCl . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 50 \mathrm{~mL})$ and the organic layer was combined and concentrated in vacuo until most of the diethyl ether had evaporated. Water $(10 \mathrm{~mL})$ was added into the mixture and the reaction
was concentrated in vacuo at $50^{\circ} \mathrm{C}$ to remove water. Upon filtration and concentration in vacuo, the title compound was obtained as an off white solid ($1.48 \mathrm{~g}, 44 \%$ yield). ${ }^{1} \mathrm{H}$ NMR spectrum of this compound was mostly benzoxaborole resulted from intramolecular condensation. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.66-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[7]}$

(2-bromo-1-(dimethoxymethyl)-4-(trifluoromethyl)benzene) (76): The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[8]}$ To a 100 mL round bottom flask equipped with a stir bar and a reflux condenser was added 2-bromo-4-(trifluoromethyl)benzaldehyde ($20.0 \mathrm{~g}, 79.1 \mathrm{mmol}$) dissolved in 32 ml of methanol. Concentrated sulfuric acid $(0.400 \mathrm{~mL}, 7.53 \mathrm{mmol})$ was added slowly into the stirred mixture. Subsequently, trimethyl orthoformate $(11.2 \mathrm{~mL}, 103 \mathrm{mmol})$ was added dropwise to the reaction mixture at room temperature. The solution was then heated to reflux for 1 h . After cooling to room temperature, the solution was basified to pH 11 using a concentrated NaOMe solution in methanol. The crude residue was concentrated in vacuo. Subsequently, DCM (30 mL) was added to the reaction slurry and the mixture was filtered through Celite. The filtrate was collected and concentrated in vacuo to furnish the title compound as a colorless liquid ($19.6 \mathrm{~g}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ $(\mathrm{s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 6 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[8]}$

((2-formyl-5-(trifluoromethyl)phenyl)boronic acid) (77): The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[8]}$ To a 100 mL flame dried round bottom flask equipped with a stir bar was added a combination of anhydrous diethyl ether (34.5 mL) and THF (6.90 mL). After being cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath, 2.5 M n-butyllithium in hexanes ($7.60 \mathrm{~mL}, 19.0 \mathrm{mmol}$) was added, followed by dropwise addition of 2-bromo-1-(dimethoxymethyl)-4-(trifluoromethyl)benzene (4.91 g, 16.4 mmol). After stirring for 1 h at $-78^{\circ} \mathrm{C}$, triethyl borate ($3.20 \mathrm{~mL}, 19.0 \mathrm{mmol}$) was added slowly. The mixture was stirred for 1 h in the dry ice/acetone bath. Then, the cooling bath was removed
and the solution was acidified to pH 3 using 3 M aqueous HCl . The reaction was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, and the organic layers were combined and concentrated in vacuo to yield a thick oil. The oil was triturated with water $(25.0 \mathrm{~mL})$ and dissolved with a small amount of acetone. The acetone solution was layered with hexanes $(50.0 \mathrm{~mL})$ to precipitate a white solid. Upon filtration and drying in vacuo, the title compound was obtained as an off white solid ($0.565 \mathrm{~g}, 15.8 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 8.56-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ $(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 2 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[8]}$

(1-bromo-2-(dimethoxymethyl)-4-methoxybenzene) (78): The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[9]}$ To a 100 mL round bottom flask equipped with a stir bar and a reflux condenser was added 2 -bromo-5-methoxybenzaldehyde ($5.00 \mathrm{~g}, 23.2 \mathrm{mmol}$) dissolved in 32 mL of methanol. Concentrated sulfuric acid ($0.120 \mathrm{~mL}, 2.20 \mathrm{mmol}$) was added slowly into the stirring mixture. Subsequently, trimethyl orthoformate $(3.30 \mathrm{~mL}, 30.2 \mathrm{mmol})$ was added dropwise into the reaction mixture at room temperature. The solution was then heated to reflux for 1 h . After cooling to room temperature, the solution was basified to pH 11 using a concentrated NaOMe solution in methanol. The crude residue was concentrated in vacuo. Subsequently, DCM (30 mL) was added to the reaction slurry and the mixture was filtered through Celite. The filtrate was collected and concentrated in vacuo to furnish the title compound as a colorless liquid ($5.49 \mathrm{~g}, 91 \%$ yield). . . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.8$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 6 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[9]}$

((2-formyl-4-methoxyphenyl)boronic acid) (79): The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[10]}$ To a 100 mL flame dried round bottom flask equipped with a stir bar was added anhydrous diethyl ether (40.1 mL) and THF (8.0 mL). After being cooled to $-78^{\circ} \mathrm{C}$ in a dry ice/acetone bath, 1.6 M
n-butyllithium in hexanes ($13.8 \mathrm{~mL}, 22.0 \mathrm{mmol}$) was added, followed by dropwise addition of 1 -bromo-2-(dimethoxymethyl)-4-methoxybenzene ($5.00 \mathrm{~g}, 19.1 \mathrm{mmol}$). After stirring for 1 h at -78 ${ }^{\circ} \mathrm{C}$, triethyl borate $(3.50 \mathrm{~mL}, 22.0 \mathrm{mmol})$ was added slowly to the flask. The mixture was stirred for 1 h in the dry ice/acetone bath, after which the cooling bath was removed and the solution was acidified to pH 3 using 3 M aqueous HCl . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x50 mL) and the organic layer was combined and concentrated in vacuo to yield a thick oil. This oil layer was triturated with water (25.0 mL) and dissolved in a small amount of acetone. A white precipitate was produced with the addition of hexanes (50.0 mL). Upon filtration and drying in vacuo, the title compound was obtained as an off white solid ($0.844 \mathrm{~g}, 24.5 \%$ yield). ${ }^{1} \mathrm{H}$ NMR spectrum of this compound was a mixture of free boronic acid and benzoxaborole resulted from intramolecular condensation in 18:82 ratio respectively. Benzoxaborole ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$. Free boronic acid ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (dd, $J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[10]}$

((5-(dimethylamino)-2-formylphenyl)boronic acid) (80): The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[11]}$ A flamed dried 1 L round bottom flask was charged with trimethylenediamine ($4.77 \mathrm{~mL}, 36.1$ mmol) in THF (76.0 mL) and then cooled to $-20^{\circ} \mathrm{C}$ in a NaCl -ice bath. A 2.5 M solution of n-BuLi in hexanes ($14.1 \mathrm{~mL}, 35.5 \mathrm{mmol}$) was added and the mixture was stirred for 15 minutes. A solution of 4-(dimethylamino)benzaldehyde ($5.00 \mathrm{~g}, 33.5 \mathrm{mmol}$) in THF (7.6 mL) was added and the solution was stirred for another 15 minutes. Then, another 2.5 M solution of n - BuLi in hexanes $(40.1 \mathrm{~mL}, 100 \mathrm{mmol})$ was added slowly, after which the mixture was allowed to warm to room temperature for 15 h . The mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$ with a dry ice/acetone bath, and triisopropylborate ($24.7 \mathrm{~mL}, 107 \mathrm{mmol}$) was added slowly. The mixture was slowly warmed to room temperature and stirred for 1 h . A 3 M aqueous solution of $\mathrm{HCl}(101 \mathrm{~mL})$ was added, the flask was equipped with a reflux condenser, and the mixture was then heated to reflux for 30 min . After cooling to room temperature, the reaction mixture was extracted with diethyl ether (3×50 $\mathrm{mL})$. The combined organic layers were treated with 1 M aqueous $\mathrm{NaOH}(760 \mathrm{~mL})$. The aqueous phase was collected, acidified with 3 M aqueous $\mathrm{HCl}(253 \mathrm{~mL})$, and extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic layers were concentrated in vacuo until a solid white solid was observed. The solid was then triturated with diethyl ether and further dried in vacuo to afford the title compound as an off-white solid ($0.215 \mathrm{~g}, 3.3 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.59$ $(\mathrm{s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.69(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 6 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[11]}$

((2-formyl-5-methoxyphenyl)boronic acid) (81): The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[11]} \mathrm{A}$ flamed dried 1 L round bottom flask was charged with trimethylenediamine ($2.30 \mathrm{~mL}, 15.8 \mathrm{mmol}$) in THF (33.3 mL) and then cooled to $-20^{\circ} \mathrm{C}$ in a NaCl-ice bath. A 2.5 M solution of $\mathrm{n}-\mathrm{BuLi}$ in hexanes ($6.2 \mathrm{~mL}, 15.5 \mathrm{mmol}$) was added and the mixture was stirred for 15 minutes. A solution of 4-methoxybenzaldehyde ($2.00 \mathrm{~g}, 14.7 \mathrm{mmol}$) in THF (3.3 mL) was added and the solution was stirred for another 15 minutes. Then, another 2.5 M solution of $\mathrm{n}-\mathrm{BuLi}$ in hexanes ($17.6 \mathrm{~mL}, 44.0$ mmol) was added slowly, after which the mixture was allowed to warm to room temperature for 15 h . The mixture was then cooled to $-78^{\circ} \mathrm{C}$ with a dry ice/acetone bath, and triisopropylborate $(10.8 \mathrm{~mL}, 47.0 \mathrm{mmol})$ was added slowly, and the mixture was slowly warmed to room temperature and stirred for 1 h . A 3 M aqueous HCl solution (44.0 mL) was added, the flask was equipped with a reflux condenser, and the mixture was heated to reflux for 30 min . After cooling to room temperature, the reaction mixture was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic layers were treated with 1 M aqueous $\mathrm{NaOH}(333 \mathrm{~mL})$. The aqueous phase was collected, acidified with 3 M aqueous $\mathrm{HCl}(111 \mathrm{~mL})$, and extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic layers were concentrated in vacuo until a solid white solid was observed. The solid was then triturated with diethyl ether and dried in vacuo to afford the title compound as an off-white solid ($0.520 \mathrm{~g}, 20 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5$ Hz, 1H), 7.09 (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[11]}$

(tert-butyl (2-(4-bromo-3-formylphenoxy)ethyl)carbamate) (82): The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[12]}$ To a 25 mL round bottom flask equipped with a stir bar was added 2-bromo-5hydroxybenzaldehyde ($1.00 \mathrm{~g}, 5.00 \mathrm{mmol}$), N-Boc-bromoethylamine ($1.30 \mathrm{~g}, 5.50 \mathrm{mmol}$), potassium carbonate $(2.10 \mathrm{~g}, 15.0 \mathrm{mmol})$, and DMF (5 mL). The reaction mixture was heated to
$80^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was diluted with water (50.0 mL) and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude residue was purified by silica gel chromatography using $0-$ 25% gradient to afford the title compound as a light yellow oil ($461 \mathrm{mg}, 27 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.31(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J$ $=8.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[12]}$

tert-butyl(2-(3-formyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)ethyl)carbamate (83): The compound was prepared according to a published procedure and the characterization data matched that of the reported compound. ${ }^{[12]}$ To a 25 mL round bottom flask equipped with a stir bar was added compound $\mathbf{8 3}(461 \mathrm{mg}, 1.34 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{pin}_{2}(0.850 \mathrm{~g}, 3.30$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(54.4 \mathrm{mg}, 74.3 \mu \mathrm{~mol})$, potassium acetate $(411 \mathrm{mg}, 4.19 \mathrm{mmol})$ and dioxane $(8.40 \mathrm{~mL})$. The reaction mixture was purged with nitrogen gas for 15 min and heated to $85^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with water $(50.0 \mathrm{~mL}$) and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude residue was purified by silica gel chromatography using 0-25\% gradient to afford the title compound as a light yellow oil ($326 \mathrm{mg}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.66(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.3$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{q}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{~s}$, $9 \mathrm{H}), 1.37(\mathrm{~s}, 10 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum matched with the reported values. ${ }^{[12]}$

Kinetic Study

Figure S1. Stacked ${ }^{1} \mathrm{H}$ NMR spectra of the cycloreversion reaction of cycloadduct intermediate 37 at $60^{\circ} \mathrm{C}$ in THF- $d 8$ with mesitylene as an internal standard. Note that the mixture (containing stoichiometric amount of [2.2.1]-hydrazinium 10 and starting material 7) was heated at $40^{\circ} \mathrm{C}$ for 5 hours prior to give 82% conversion of starting material 7 into either cycloadduct 37 or benzoisoquinoline 8

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of the cycloreversion reaction of cycloadduct intermediate $\mathbf{3 7}$ at 60 ${ }^{\circ} \mathrm{C}$ in THF- $d 8$ with mesitylene as an internal standard at $\mathrm{t}=0$. Note that the mixture (containing stoichiometric amount of [2.2.1]-hydrazinium $\mathbf{1 0}$ and starting material 7) was heated at $40{ }^{\circ} \mathrm{C}$ for 5 hours prior to give 82% conversion of starting material 7 into either cycloadduct 37 or benzoisoquinoline 8. Integrated peaks are speculated to belong to cycloadduct intermediate 37, note the two singlets at 4.64 and 4.16 ppm belonging to the bridgehead $\mathrm{C}-\mathrm{H}$ protons, and the doublet at $3.83 \mathrm{ppm}(J=9.6 \mathrm{~Hz})$ belonging to pyrazolidium C -H proton adjacent to the hydrazine moiety.

Figure S3. Plot of mole fraction of starting material 7, cycloadduct intermediate 37, and benzoisoquinoline product $\mathbf{8}$ versus time at $60{ }^{\circ} \mathrm{C}$ in THF- $d 8$ as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy versus mesitylene as an internal standard. The mixture (containing stoichiometric amount of [2.2.1]-hydrazinium 10 and starting material 7) was heated at $40^{\circ} \mathrm{C}$ for 5 hours prior to give 82% conversion of starting material 7 into either cycloadduct $\mathbf{3 7}$ or benzoisoquinoline $\mathbf{8}$. The conversion of starting material 7 and cycloadduct 37 was determined based on the diminishment of representative singlets at $\delta 9.58 \mathrm{ppm}$ and $\delta 9.14 \mathrm{ppm}$, respectively. The formation of benzoisoquinoline $\mathbf{8}$ was determined based on the appearance of a representative singlet at $\delta 10.04$ ppm.

Figure S4. Plot of the natural \log of the concentration of cycloadduct 37 versus time at $60{ }^{\circ} \mathrm{C}$ in THF- d_{8} as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy versus mesitylene as an internal standard. The rate constant for cycloreversion $\mathrm{k}_{\mathrm{CR}}=2.14 \times 10^{-4} \mathrm{~s}^{-1}$ was obtained through a first-order fit to $f(\mathrm{x})$ $=(a-1) \mathrm{e}^{-b x}$.

Computational Data

All DFT calculations were performed with the Gaussian 09 program package ${ }^{[13]}$. The geometry optimization of all the minima and transition states involved was carried out at the M06-2X level of theory ${ }^{[14,15]}$ with the $6-31 \mathrm{G}(\mathrm{d})$ basis set ${ }^{[16]}$. The vibrational frequencies were computed at the same level to check whether each optimized structure was an energy minimum or a transition state and to evaluate its zero-point vibrational energy (ZPVE) and thermal corrections at 298 K . Solvent effects in toluene were computed at the M06-2X/6-311+G(d,p) level using the gas-phase optimized structures. Solvation energies were evaluated by a self-consistent reaction field (SCRF) using the PCM model.

Table 1. Geometric coordinates and thermally corrected M06-2X energies for $\mathbf{1 0}$.

$$
G_{T H F}=-306.615451985 \text { Hartree }
$$

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
N	1.1968860	0.7386940	-0.4543960
N	1.1968880	-0.7386940	-0.4543960
C	-1.2716960	0.7800090	-0.5159960
C	-1.2716960	-0.7800080	-0.5159960
C	-0.0823890	1.1243410	0.3817210
C	-0.0823900	-1.1243410	0.3817200
C	-0.0341380	-0.0000010	1.4137650
H	-2.1764150	1.1873040	-0.0564550
H	-1.2060250	1.2276020	-1.5126020
H	-1.2060250	-1.2276000	-1.5126030

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
H	-2.1764150	-1.1873040	-0.0564560
H	0.0516170	2.1589860	0.7026150
H	0.8353630	-0.0000010	2.0791120
H	-0.9392850	-0.0000020	2.0288580
H	0.0516170	-2.1589870	0.7026130
H	2.0678710	-1.0872490	-0.0189560
H	1.1636310	-1.0986440	-1.4234540
H	2.0678710	1.0872510	-0.0189580
H	1.1636280	1.0986440	-1.4234540

Table 2. Geometric coordinates and thermally corrected M06-2X energies for 7.

$\mathbf{Y} \quad \mathbf{Z}$

O	3.7800530	1.1793320	1.5644830
N	-0.4660540	3.1857180	-0.7976230
C	-2.8616490	-1.2837780	0.5040740
C	2.6683850	1.0259020	1.1119660
C	-1.6901330	-0.6593400	0.6966220
C	-3.1404720	-2.6026530	1.1733110
C	-3.9680080	-0.7858070	-0.3883290
C	2.3041890	-0.1148770	0.2250990
C	3.2513780	-1.1323100	0.0652580
C	1.0403010	-0.2228370	-0.3815170
C	0.0303580	0.8668330	-0.3127380
C	-1.2810960	0.6500810	0.1526050
C	2.9538620	-2.2625730	-0.6796380
C	1.6941810	-2.3851000	-1.2685970
C	0.7502090	-1.3767470	-1.1203770
C	-2.1449190	1.7503900	0.1451130

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
C	-1.7002290	2.9761880	-0.3353730
C	0.3629780	2.1450530	-0.7757240
H	-2.3206780	-2.9108890	1.8260960
H	-3.3062000	-3.3883110	0.4264510
H	-4.0561930	-2.5414700	1.7739200
H	-4.8072080	-0.4025500	0.2057780
H	-4.3619730	-1.6152980	-0.9862790
H	-3.6406250	0.0036490	-1.0671310
H	-0.9385130	-1.1623660	1.3034970
H	4.2138690	-1.0092880	0.5520190
H	1.4500680	-3.2672960	-1.8525230
H	3.6921510	-3.0489080	-0.7996790
H	-0.2239120	-1.4652550	-1.5922380
H	-2.3663430	3.8359790	-0.3409990
H	-3.1491610	1.6559060	0.5447800
H	1.3659750	2.3218440	-1.1638000

Table 3. Geometric coordinates and thermally corrected M06-2X energies for $\mathbf{H}_{3} \mathbf{O}^{+}$.

$G_{\text {THF }}=-76.7850672652$ Hartree

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Atom \mathbf{X}	\mathbf{Y}	\mathbf{Z}	
O	0.0000000	-0.0000010	0.0000110	H	0.2382740	0.9525620	-0.0000290
H	-0.9440930	-0.2699310	-0.0000290	H	0.7058200	-0.6826250	-0.0000290

Table 4. Geometric coordinates and thermally corrected M06-2X energies for $\boldsymbol{Z} \mathbf{- 3 5}$.

$G_{\text {THF }}=-978.22542247$ Hartree

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
C	-0.1067020	2.9131560	0.3268470
C	-0.5078260	3.4561250	-0.8882250
C	0.3251810	1.6881660	-2.0361910
H	-5.1101700	-1.2018000	-0.5149200
H	-3.7899280	-2.0902910	-1.2745190
H	-3.0682950	-2.8145200	0.9166640
H	-4.3765570	-1.8734860	1.6400470
H	-3.5912940	0.6087720	-1.4744830
H	-2.6341350	1.4412800	0.8276470
H	-4.2413870	0.6998760	1.1601440
H	-2.2362350	-0.7005030	2.3661390
H	1.4867250	0.1869110	4.0480340
H	3.1676560	0.7423540	3.9378600
H	2.7587630	-0.8827940	3.4118420
H	3.2408480	1.2198810	0.2439090
H	3.5553290	-0.4314080	0.8180280
H	4.2463280	0.9423050	1.6782270
H	-0.1590300	-1.6959630	1.7039010
H	0.1931960	1.2187220	2.4552010
H	1.1587620	-3.4839270	0.3096980
H	3.7675580	-1.9619280	-2.7356390

H	3.0150580	-3.8404220	-1.2888640	H	-0.2818440	3.4583250	1.2499040
H	2.7362950	0.2708140	-2.5046120	H	0.4693140	1.2003920	-3.0001300
H	-1.0144300	4.4174550	-0.9212680	H	-1.5369500	-0.9429600	-1.5767350

Table 5. Geometric coordinates and thermally corrected M06-2X energies for $\boldsymbol{E} \mathbf{- 3 5}$.

$G_{\text {THF }}=-978.220419615$ Hartree

| Atom | \mathbf{X} | \mathbf{Y} | \mathbf{Z} | Atom | \mathbf{X} | \mathbf{Y} | \mathbf{Z} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| N | 2.1679600 | -0.9790890 | -1.3985680 | H | 5.3863630 | 0.0570700 | -1.3264600 |
| N | 1.6506510 | 0.0671310 | -0.5832540 | H | 4.1028170 | 0.3190650 | -2.5189180 |
| N | -4.1144460 | -0.5917960 | -1.7381760 | H | 3.2417040 | 2.0863490 | -1.1360400 |
| C | 4.3078130 | 0.1626660 | -1.4589770 | H | 4.4934250 | 1.7568230 | 0.0709850 |
| C | 3.7283010 | 1.2966390 | -0.5588920 | H | 3.9872270 | -2.0438750 | -1.2500730 |
| C | 3.5775840 | -1.0847090 | -0.9367860 | H | 2.8449710 | -1.5375080 | 1.1032080 |
| C | 2.7323540 | 0.5274280 | 0.3334100 | H | 4.4098730 | -0.6634250 | 1.0714760 |
| C | 3.4525840 | -0.8048830 | 0.5660940 | H | 2.3011110 | 1.0432380 | 1.1893870 |
| C | -0.2665900 | -2.2159520 | 1.4540890 | H | 0.3808060 | -1.5103170 | 3.3977850 |
| C | 0.4393920 | 0.4773900 | -0.7288150 | H | 1.5772860 | -2.5261330 | 2.5565620 |
| C | -1.1266250 | -1.1959850 | 1.2981520 | H | 0.1577210 | -3.2612510 | 3.2717210 |
| C | 0.5074000 | -2.3702080 | 2.7362340 | H | -0.4271540 | -3.0459950 | -0.5565640 |
| C | -0.0292400 | -3.2973700 | 0.4310940 | H | -0.4905760 | -4.2427630 | 0.7415320 |
| C | -0.2171520 | 1.5760220 | -0.0404760 | H | 1.0455970 | -3.5085270 | 0.3479780 |
| C | 0.4640760 | 2.7426320 | 0.3447010 | H | -0.1390640 | -0.0861890 | -1.4601510 |
| C | -1.6222080 | 1.4910000 | 0.1074600 | H | -1.1705240 | -0.4437480 | 2.0857230 |
| C | -2.3726280 | 0.2833080 | -0.3147330 | H | 1.5297730 | 2.8404770 | 0.1677420 |
| C | -2.0988410 | -1.0005510 | 0.2003450 | H | -2.1652570 | 4.5639950 | 1.4638600 |
| C | -0.2334750 | 3.8119730 | 0.8851800 | H | 0.2958420 | 4.7152620 | 1.1674450 |
| C | -1.6168860 | 3.7280410 | 1.0420960 | H | -3.3775510 | 2.5151160 | 0.7837300 |
| C | -2.3018060 | 2.5806930 | 0.6533960 | H | -4.4618560 | -2.6183020 | -1.6337920 |
| C | -2.8732280 | -2.0550950 | -0.2916160 | H | -2.7489030 | -3.0566180 | 0.1063250 |
| C | -3.8505490 | -1.8052600 | -1.2507160 | H | -3.6108580 | 1.4028040 | -1.6769610 |
| C | -3.3902050 | 0.4182760 | -1.2669150 | H | 1.6476540 | -1.8255990 | -1.1524740 |

Table 6. Geometric coordinates and thermally corrected M06-2X energies for $\mathbf{3 6}$.

$G_{\text {THF }}=-978.191924052$ Hartree

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
N	2.1771940	-1.0591300	0.3157540
N	0.8307710	-1.2950640	0.0140950
N	-1.3085110	3.1496620	-1.7953400
C	2.7927950	-2.3206470	-1.7090050
C	1.2747730	-2.4854820	-2.0251790
C	2.8374030	-0.9434260	-1.0156400
C	0.6747820	-1.1847690	-1.4540090
C	1.7655330	-0.1580100	-1.7823410
C	1.6368060	0.8520320	1.8705990
C	-0.0389710	-0.9795150	0.9987430
C	0.2819870	0.8718020	1.5024800
C	2.7572010	1.6108520	1.2220080
C	1.9939300	0.2395660	3.1927730
C	-1.4967920	-1.0569820	0.7116340
C	-2.1989560	-2.1958830	1.1053070
C	-2.1461650	0.0055310	0.0629130
C	-1.4111080	1.2307000	-0.3250550
C	-0.2826290	1.6893300	0.3841640
C	-3.5597560	-2.3024500	0.8427000
C	-4.2187240	-1.2521380	0.2080440
C	-3.5225590	-0.1086550	-0.1673280
C	0.2377550	2.9331670	0.0253330
C	-0.3057180	3.6217720	-1.0564010
C	-1.8435090	1.9926300	-1.4190560

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
H	3.3996580	-2.3083700	-2.6174830
H	3.1827780	-3.1128010	-1.0637630
H	0.8303670	-3.3678320	-1.5617300
H	1.0896660	-2.5345010	-3.1008080
H	3.8204100	-0.4864670	-0.8983000
H	1.5582920	0.8401350	-1.3935530
H	1.9770370	-0.1076850	-2.8520010
H	-0.3552400	-0.9614390	-1.7226220
H	3.7057150	1.0896690	1.3738860
H	2.8495580	2.5890060	1.7146260
H	2.6097450	1.7882180	0.1570770
H	2.2647130	1.0420560	3.8915920
H	2.8745480	-0.4049520	3.1060340
H	1.1717050	-0.3212160	3.6442520
H	0.2581990	-1.3991720	1.9607320
H	-0.4049270	0.7413810	2.3434600
H	-1.6749400	-3.0012000	1.6129170
H	-5.2854240	-1.3145680	0.0203740
H	-4.1038890	-3.1904360	1.1452390
H	-4.0609490	0.7194760	-0.6160990
H	0.0914760	4.5915310	-1.3445240
H	1.0450110	3.3856380	0.5878210
H	-2.6635670	1.6302340	-2.0353430
H	2.5554110	-1.8315310	0.8705480

Table 7. Geometric coordinates and thermally corrected M06-2X energies for 37a.

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
N	1.8471850	-1.1977010	0.0462860
N	1.7429150	-0.2142800	-1.0484860
N	-4.5801000	-0.9232520	-0.0416320
C	4.2447740	-0.9980970	0.2763640
C	4.1673480	-0.0775750	-0.9777730
C	2.9302440	-0.6658550	0.9928120
C	2.8586630	0.7095480	-0.7502150
C	2.8093080	0.8439860	0.7788590
C	0.4445540	-1.5558860	0.5366640
C	0.3021340	0.1620590	-1.2053480
C	-0.3566650	-1.1450700	-0.7300440
C	0.4062280	-3.0592840	0.7886500
C	0.0741720	-0.8095670	1.8143830
C	-0.2822250	1.4103750	-0.5365200
C	0.3779800	2.6410990	-0.5672810
C	-1.5810670	1.3614300	0.0188860
C	-2.4120370	0.1429940	-0.1102220
C	-1.8360830	-1.0686370	-0.5026920
C	-0.1559930	3.7744020	0.0376120
C	-1.3863610	3.6947860	0.6789310
C	-2.0928240	2.5006640	0.6526990
C	-2.6434150	-2.1913740	-0.6515700
C	-4.0063940	-2.0734110	-0.3958090
C	-3.8019800	0.1475870	0.0800550

$G_{\text {THF }}=-978.243109483$ Hartree
Atom $\mathbf{X} \quad \mathbf{Y} \quad \mathbf{Z}$

H	5.0840420	-0.7405110	0.9259610
H	4.3376790	-2.0622890	0.0364830
H	4.1290260	-0.6331480	-1.9166060
H	5.0171220	0.6066560	-1.0223500
H	2.7851230	-1.0800530	1.9892640
H	1.8939650	1.2989750	1.1555690
H	3.6774640	1.3594920	1.1962380
H	2.7821330	1.6035220	-1.3600370
H	0.6707510	-3.6317440	-0.1075700
H	-0.6087040	-3.3432950	1.0794660
H	1.0761270	-3.3432450	1.6067690
H	0.1611040	0.2731980	1.7337260
H	0.6745760	-1.1612210	2.6575790
H	-0.9700760	-1.0384840	2.0421660
H	0.1630160	0.2620300	-2.2873850
H	-0.1546920	-1.9096700	-1.4902530
H	1.3225060	2.7440170	-1.0846590
H	-1.8068250	4.5621680	1.1763530
H	0.3890740	4.7116020	0.0024840
H	-3.0608680	2.4546990	1.1384270
H	-4.6657780	-2.9314890	-0.4940900
H	-2.2254250	-3.1401860	-0.9771040
H	-4.3222420	1.0697500	0.3233470
H	2.2187370	-2.0491800	-0.3875980

Table 8. Geometric coordinates and thermally corrected M06-2X energies for 37b.

$$
\mathrm{G}_{\mathrm{THF}}=-978.24118955 \text { Hartree }
$$

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
N	1.8231700	-1.2968190	-0.0209050
N	1.7714600	-0.1813500	-0.9865630
N	-4.5423600	-0.8305070	0.1273260
C	4.1958000	-1.0511750	0.3441740
C	4.1886150	0.0578410	-0.7462430
C	2.8161850	-0.8583930	0.9896290
C	2.8554700	0.7844920	-0.4958060
C	2.6703030	0.6717890	1.0120820
C	0.4358600	-1.6527940	0.3877780
C	0.2903520	0.1903920	-1.2554820
C	-0.3765610	-1.1320430	-0.8367330
C	0.3722480	-3.1786060	0.4688210
C	-0.0243730	-1.0718970	1.7314500
C	-0.2512820	1.4340680	-0.5808360
C	0.3794290	2.6720610	-0.7374820
C	-1.4945620	1.3819050	0.0849500
C	-2.3544530	0.1816710	-0.0279030
C	-1.8434170	-1.0113960	-0.5496750
C	-0.0953260	3.8118480	-0.1007790
C	-1.2386280	3.7249950	0.6878280
C	-1.9406580	2.5295440	0.7535290
C	-2.6955060	-2.0952560	-0.7258730
C	-4.0327300	-1.9608080	-0.3619630
C	-3.7237740	0.2070900	0.2708960

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
H	4.9918600	-0.8882700	1.0742720
H	4.3017360	-2.0549730	-0.0686200
H	4.2658650	-0.3330770	-1.7662330
H	5.0053860	0.7715800	-0.6173010
H	2.6589060	-1.3996670	1.9207650
H	1.7105790	1.0466080	1.3684340
H	3.4838840	1.1668590	1.5468240
H	2.7499930	1.7496120	-0.9757200
H	0.7053600	-3.6333290	-0.4674080
H	-0.6489090	-3.5036040	0.6883020
H	1.0170830	-3.5414070	1.2753170
H	-0.0566430	0.0181000	1.7567470
H	0.6198450	-1.4236500	2.5412900
H	-1.0317870	-1.4366390	1.9462400
H	0.2506070	0.3263160	-2.3413380
H	-0.2259270	-1.8576700	-1.6448150
H	1.2329920	2.7704640	-1.3986610
H	-1.6089350	4.5973040	1.2156670
H	0.4185710	4.7583190	-0.2279550
H	-2.8590020	2.4926360	1.3279330
H	-4.7243780	-2.7907510	-0.4783910
H	-2.3301390	-3.0286480	-1.1445080
H	-4.1955950	1.1187280	0.6265110
H	2.1048010	-0.5760720	-1.8705270

Table 9. Geometric coordinates and thermally corrected M06-2X energies for $\mathbf{3 8}$.

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
N	2.1003060	0.1759380	0.0544690
N	1.7161760	-1.0818490	0.5122460
N	-2.7858610	2.7075710	-1.3977160
C	3.2955700	-0.6685590	-1.8499670
C	2.9654480	-2.1033060	-1.3348960
C	2.0433570	0.1298430	-1.4249390
C	1.5660180	-1.9134630	-0.7125140
C	0.9258780	-0.8908230	-1.6559900
C	1.8508970	1.2203330	0.8990860
C	-0.1697150	-0.3820080	1.6941630
C	-0.0509910	1.0071900	1.4304960
C	2.5113300	1.0717840	2.2645160
C	2.0518100	2.5901910	0.2963780
C	-1.1532980	-1.2099560	1.0504130
C	-1.2600480	-2.5700850	1.4055510
C	-2.0173670	-0.6571280	0.0759010
C	-1.9179140	0.7740540	-0.2299000
C	-1.0028160	1.5893860	0.4661170
C	-2.1955720	-3.3834210	0.8009390
C	-3.0464450	-2.8417890	-0.1739590
C	-2.9618790	-1.5060740	-0.5268430
C	-1.0730810	2.9734490	0.2576690
C	-1.9669060	3.4796280	-0.6697200
C	-2.7619260	1.4063680	-1.1650360

Atom $\mathbf{X} \quad \mathbf{Y} \quad \mathbf{Z}$

H	3.3960710	-0.6441470	-2.9376150
H	4.2055310	-0.2536930	-1.4132620
H	3.6913970	-2.4718640	-0.6048710
H	2.9210000	-2.8291720	-2.1501750
H	1.9355510	1.1225620	-1.8539410
H	-0.0589200	-0.5465320	-1.3496340
H	0.8985460	-1.2462090	-2.6878180
H	0.9966380	-2.8122890	-0.4725940
H	2.2701340	0.1304730	2.7620420
H	2.2193170	1.8909990	2.9239900
H	3.5968890	1.1194410	2.1260090
H	1.4042930	2.7739110	-0.5621420
H	3.0970660	2.6965590	-0.0143710
H	1.8530690	3.3551890	1.0493200
H	0.2899390	-0.7881160	2.5907020
H	0.1314890	1.6315480	2.3047320
H	-0.5955900	-2.9677000	2.1692780
H	-3.7889190	-3.4728960	-0.6512760
H	-2.2795180	-4.4281130	1.0799220
H	-3.6494470	-1.1216770	-1.2705630
H	-2.0369970	4.5496650	-0.8448330
H	-0.4457280	3.6506140	0.8284190
H	-3.4614160	0.8212290	-1.7554930
H	2.4011550	-1.4650850	1.1663840

Table 10. Geometric coordinates and thermally corrected M06-2 X energies for $\mathbf{3 9}$.

| Atom | \mathbf{X} | \mathbf{Y} | \mathbf{Z} | Atom | \mathbf{X} | \mathbf{Y} | \mathbf{Z} |
| :--- | :---: | :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| | | | | | | | |
| N | 0.4434510 | -0.1062370 | 0.1966510 | H | -3.1348750 | -0.0098540 | -1.0915580 |
| N | -0.2435470 | -1.3371650 | 0.0505660 | H | -0.0958960 | 1.8257490 | 0.9460410 |
| C | -1.2939370 | 1.1872050 | -0.8654320 | H | -1.2099930 | -0.1867580 | 2.2518510 |
| C | -2.0544720 | -0.1610640 | -1.0518290 | H | -2.5181530 | 0.7074140 | 1.4194730 |
| C | -0.5678260 | 0.9662110 | 0.4755740 | H | -2.2647360 | -1.8267680 | 0.4326500 |
| C | -1.6691430 | -0.9414910 | 0.2157640 | H | 0.0565440 | -1.9542020 | 0.8093970 |
| C | -1.5849400 | 0.1573430 | 1.2844250 | H | 2.7767740 | -1.7303080 | 0.5727400 |
| C | 1.7087770 | 0.0147150 | -0.0219780 | H | 3.4237840 | -0.9345800 | -0.8653760 |
| C | 2.5016440 | -1.2056100 | -0.3518560 | H | 1.9094940 | -1.8909030 | -0.9644300 |
| C | 2.3574590 | 1.3595030 | 0.1028090 | H | 1.7561810 | 2.1449120 | -0.3615820 |
| H | -1.9748040 | 2.0358310 | -0.7671180 | H | 3.3391790 | 1.3425760 | -0.3695980 |
| H | -0.5970090 | 1.4055770 | -1.6779960 | H | 2.4976270 | 1.6137740 | 1.1601260 |
| H | -1.7488160 | -0.6995180 | -1.9499960 | | | | |

| Atom | \mathbf{X} | \mathbf{Y} | \mathbf{Z} | Atom | \mathbf{X} | \mathbf{Y} | \mathbf{Z} |
| :--- | :---: | :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| | | | | | | | |
| N | 0.4434510 | -0.1062370 | 0.1966510 | H | -3.1348750 | -0.0098540 | -1.0915580 |
| N | -0.2435470 | -1.3371650 | 0.0505660 | H | -0.0958960 | 1.8257490 | 0.9460410 |
| C | -1.2939370 | 1.1872050 | -0.8654320 | H | -1.2099930 | -0.1867580 | 2.2518510 |
| C | -2.0544720 | -0.1610640 | -1.0518290 | H | -2.5181530 | 0.7074140 | 1.4194730 |
| C | -0.5678260 | 0.9662110 | 0.4755740 | H | -2.2647360 | -1.8267680 | 0.4326500 |
| C | -1.6691430 | -0.9414910 | 0.2157640 | H | 0.0565440 | -1.9542020 | 0.8093970 |
| C | -1.5849400 | 0.1573430 | 1.2844250 | H | 2.7767740 | -1.7303080 | 0.5727400 |
| C | 1.7087770 | 0.0147150 | -0.0219780 | H | 3.4237840 | -0.9345800 | -0.8653760 |
| C | 2.5016440 | -1.2056100 | -0.3518560 | H | 1.9094940 | -1.8909030 | -0.9644300 |
| C | 2.3574590 | 1.3595030 | 0.1028090 | H | 1.7561810 | 2.1449120 | -0.3615820 |
| H | -1.9748040 | 2.0358310 | -0.7671180 | H | 3.3391790 | 1.3425760 | -0.3695980 |
| H | -0.5970090 | 1.4055770 | -1.6779960 | H | 2.4976270 | 1.6137740 | 1.1601260 |
| H | -1.7488160 | -0.6995180 | -1.9499960 | | | | |

H
$G_{\text {THF }}=-422.921477266$ Hartree

Table 11. Geometric coordinates and thermally corrected M06-2X energies for $\mathbf{8}$.

Atom X

N	-2.8391440	-1.5706920	-0.0000020
C	0.6550890	2.0932840	-0.0000010
C	-0.6983710	2.0979580	0.0000010
C	1.4024090	0.8640640	-0.0000010
C	2.8128980	0.8849430	-0.0000030
C	0.7179830	-0.3766030	0.0000010
C	-0.7357650	-0.3687610	0.0000000
C	-1.4304510	0.8614450	0.0000010
C	3.5365140	-0.2862000	0.0000000
C	2.8615270	-1.5190720	0.0000020
C	1.4833730	-1.5624200	0.0000030
C	-2.8383950	0.8288530	0.0000020

$G_{\text {THF }}=-555.352106284$ Hartree
Atom $\mathbf{X} \quad \mathbf{Y} \quad \mathbf{Z}$

C	-3.4844520	-0.3859070	0.0000000
C	-1.5204620	-1.5442460	-0.0000040
H	1.2108490	3.0274210	-0.0000020
H	-1.2555050	3.0305000	0.0000030
H	3.3191910	1.8467280	-0.0000040
H	3.4279740	-2.4449450	0.0000050
H	4.6214600	-0.2601990	-0.0000010
H	0.9900570	-2.5278020	0.0000060
H	-4.5700720	-0.4387160	0.0000030
H	-3.4022800	1.7570050	0.0000040
H	-1.0390490	-2.5191820	-0.0000070

Table 12. Geometric coordinates and thermally corrected M06-2X energies for 9 .

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
O	-0.0217140	1.3876680	0.0000440
C	0.0055140	0.1788740	-0.0001680
C	-1.2822700	-0.6293650	0.0000210
C	1.3049740	-0.5959450	0.0000230
H	-1.8710110	-0.3577720	-0.8805910

$$
G_{T H F}=-193.070934767 \text { Hartree }
$$

Atom $\mathbf{X} \quad \mathbf{Y} \quad \mathbf{Z}$

H	-1.8707680	-0.3577960	0.8808060

H $\quad-1.1078740-1.7072780 \quad-0.0000110$
H $\quad 1.3522040 \quad-1.2466040 \quad 0.8803540$
$\begin{array}{llll}\mathrm{H} & 2.1494200 & 0.0933230 & 0.0001320\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.3524270 & -1.2466000 & -0.8802960\end{array}$

References

[1] C. C. McAtee, P. S. Riehl, C. S. Schindler, J. Am. Chem. Soc. 2017, 139, 2960-2963.
[2] M. A. Düfert, K. L. Billingsley, S. L. Buchwald, J. Am. Chem. Soc. 2013, 135, 1287712885.
[3] S. He, P. Li, X. Dai, H. Liu, Z. Lai, D. Xiao, C. C. McComas, C. Du, Y. Liu, J. Yin, Q. Dang, N. Zorn, X. Peng, R. P. Nargund, A. Palani, Tetrahedron Lett. 2017, 58, 1373-1375.
[4] X. Jiang, J. Yang, F. Zhang, P. Yu, P. Yi, Y. Sun, Y. Wang, Adv. Synth. Catal. 2016, 358, 2678-2683.
[5] S. Staniland, R. W. Adams, J. J. W. McDouall, I. Maffucci, A. Contini, D. M. Grainger, N. J. Turner, J. Clayden, Angew. Chem. 2016, 128, 10913-10917.
[6] D. Ding, Y. Zhao, Q. Meng, D. Xie, B. Nare, D. Chen, C. J. Bacchi, N. Yarlett, Y.-K. Zhang, V. Hernandez, Y. Xia, Y. Freund, M. Abdulla, K.-H. Ang, J. Ratnam, J. H. McKerrow, R. T. Jacobs, H. Zhou, J. J. Plattner, ACS Med. Chem. Lett. 2010, 1, 165-169.
[7] K. Kowalska, A. Adamczyk-Woźniak, P. Gajowiec, B. Gierczyk, E. Kaczorowska, Ł. Popenda, G. Schroeder, A. Sikorski, A. Sporzyński, J. Fluor. Chem. 2016, 187, 1-8.
[8] A. Adamczyk-Woźniak, J. T. Gozdalik, D. Wieczorek, I. D. Madura, E. Kaczorowska, E. Brzezińska, A. Sporzyński, J. Lipok, Molecules 2020, 25, 799.
[9] Y. Hoshimoto, C. Nishimura, Y. Sasaoka, R. Kumar, S. Ogoshi, Bull. Chem. Soc. Jpn. 2020, 93, 182-186.
[10] M. Koepf, F. Melin, J. Jaillard, J. Weiss, Tetrahedron Lett. 2005, 46, 139-142.
[11] Z. el abidine Chamas, E. Marchi, A. Modelli, Y. Fort, P. Ceroni, V. Mamane, Eur. J. Org. Chem. 2013, 2013, 2316-2324.
[12] S. Cambray, A. Bandyopadhyay, J. Gao, Chem. Commun. 2017, 53, 12532-12535.
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox 2009.
[14] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
[15] Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157-167.
[16] W. J. Hehre, L. Radom, P. von R. Schleyer, J. Pople, Ab Initio Molecular Orbital Theory, Wiley: New York, 1986.

NMR Spectra

S67

47
${ }^{13} \mathrm{C}$ NMR (126 MHz) CDCl_{3}

47
${ }^{19} \mathrm{~F}$ NMR (470 MHz) CDCl_{3}

48
${ }^{19}$ F NMR (376 MHz) CDCl_{3}

$\int \mid$

S81

56
${ }^{13} \mathrm{C}$ NMR (101 MHz) CDCl_{3}

S91

,	1	1	1	1	1	1	1	1	,	1	1	1	1	1		1		1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

S105

S106

65
${ }^{1} \mathrm{H}$ NMR (500 MHz) CDCl_{3}

S109

S111

12
${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ CDCl_{3}

S113

12
${ }^{19} \mathrm{~F}$ NMR (470 MHz) CDCl_{3}

S125

${ }^{19} \mathrm{~F}$ NMR (470 MHz) CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (126 MHz) CDCl_{3}

,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

24
${ }^{1} \mathrm{H}$ NMR (500 MHz) CDCl_{3}

S139

26
${ }^{1} \mathrm{H}$ NMR (500 MHz) CDCl_{3}

S143
(126 MHz

${ }^{13} \mathrm{C}$ NMR (126 MHz) CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz)

 CDCl_{3}

31
${ }^{1} \mathrm{H}$ NMR (500 MHz) CDCl_{3}

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

68
${ }^{1} \mathrm{H}$ NMR (400 MHz) CDCl_{3}

69
${ }^{1} \mathrm{H}$ NMR (500 MHz) CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (126 MHz) CDCl_{3}

