Visible-Light-Induced Transition-Metal and Photosensitizer Free Decarbonylative Addition of Amino-Arylaldehydes to Ketones

Yi Wang,[†] Yatao Lang,[†] Chao-Jun Li[‡] and Huiying Zeng,^{*,†}

[†]The State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, P. R. China

[‡]Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada ^{*}Corresponding Authors: <u>zenghy@lzu.edu.cn</u>

Table of Contents

1. Gen	eral information	1	•••••		S2
2. Opti	mizing reaction	conditions			S2
3. Gen	eral procedures	for preparation of s	tarting mat	erials	
4.	General	procedures	for	decarbonylative	cross-
couplin	ıg	S14			
5. GC-]	MS data for CC) gas			S34
6. Emis	ssion spectra of	blue LED			S34
7. UV-1	vis absorption s	pectra			S35
8. Ster	n-Volmer quenc	ching studies with ke	etone 2b		S35
9. Kine	etic isotope expe	riments			
10. Coi	mputational det	ail			
11. Not	tes and referenc	es			S54

12. Copies of ¹H, ¹³C and ¹⁹F NMR spectra......S56

1. General information

All reagents and solvents were purchased from commercial sources and used without further purification unless otherwise stated. All reactions were monitored by thin-layer chromatography (TLC). All reactions were carried out in argon atmosphere unless otherwise stated. Column chromatography was performed on silica gel (200-300 mesh) and visualized with ultraviolet light. Ethyl acetate and petroleum ether were used as eluents. ¹H, ¹³C and ¹⁹F NMR spectra were recorded at room temperature on Varian Mercury plus 300, Bruker AV400 and Agilent INOVA 600 MHz with TMS as an internal standard and CDCl₃ or CD₃OD as solvent. Fourier transform infrared spectra (FT-IR) were recorded on Agilent Technologies Cary 630 instrument or Bruker TENSOR 27 instrument. HRMS analyses were made by Lanzhou University by means of ESI. Melting points were measured on SGWX-4 micro melting point apparatus and uncorrected.

2. Optimizing reaction conditions

Entry	Base	Yield ^b /%
1	-	70
2	K ₂ CO ₃	67
3	NaOH	n.p.
4	Cs_2CO_3	75
5	CsF	88
6	DIPEA	70
7	Pyridine	70
8	DMAP	85

(1) Effects of base on yields^a

^aGeneral conditions: **1a** (0.1 mmol) and base (1.0 equiv.) in acetone (1.0 mL) were irridiated by 405 nm light for 24 h under argon atmosphere. ^bYields were determined by ¹H NMR using nitromethane as an internal standard.

Entry	[Cs⁺]	Yield ^b /%
1	CsBr	76
2	Csl	80
3	CsAc	50
4	CsF	88

(2)	Effects of Cs⁺	sources on	yields ^a
-----	----------------	------------	---------------------

^aGeneral conditions: **1a** (0.1 mmol) and [Cs⁺] (1.0 equiv.) in acetone (1.0 mL) were irridiated by 405 nm light for 24 h under argon atmosphere. ^bYields were determined by ¹H NMR using nitromethane as an internal standard.

1	2		~f [-			a la a
l	.5) Fliecis		sources	OU .	vieids~
۱	~			0001000	· · · ·	,

Entry	[F ⁻]	Yield ^b /%
1	LiF	68
2	KF	76
3	ZnF ₂	67
4	CsF	88

^aGeneral conditions: **1a** (0.1 mmol) and $[F^-]$ (1.0 equiv.) in acetone (1.0 mL) were irridiated by 405 nm light for 24 h under argon atmosphere. ^bYields were determined by ¹H NMR using nitromethane as an internal standard.

Entry	Conditions	Yield ^b /%
1	0.5 equiv.	88
2	1.0 equiv.	88
3	2.0 equiv.	86

(4) The effects of the amount of CsF on yields^a

^aGeneral conditions: **1a** (0.1 mmol) and CsF (X equiv.) in acetone (1.0 mL) were irridiated by 405 nm light for 24 h under argon atmosphere. ^bYields were determined by ¹H NMR using nitromethane as an internal standard.

(5) Effects of light on yields^a

Entry	Light	Yield ^b /%
1	380 nm	83
2	425 nm	41
3	465 nm	40
4	dark	n. r.

^aGeneral conditions: **1a** (0.1 mmol) and CsF (0.5 equiv.) in acetone (1.0 mL) were irridiated by light for 24 h under argon atmosphere. ^bYields were determined by ¹H NMR using nitromethane as an internal standard.

(6) Effects	of reaction	time or	r yields ^a
----	-----------	-------------	---------	-----------------------

Entry	Time	Yield ^b /%
1	4 h	65
2	8 h	78
3	12 h	89 (83)

^aGeneral conditions: **1a** (0.1 mmol) and CsF (0.5 equiv.) in acetone (1.0 mL) were irridiated by 405 nm light under argon atmosphere. ^bYields were determined by ¹H NMR using nitromethane as an internal standard; isolated yields were shown in parentheses.

Evaluation of various conditions with 3-pentanone.

(1) Effects of solvent on yields^a

Entry	Solvent	Yield ^b /%
1	cyclohexane	56
2	THF	61
3	toluene	73
4	1,4-dioxane	47
5	HFIP	n.r.
6	Acetonitrile	n.p.
7	CH ₃ OH	n.r.

^aGeneral conditions: **1a** (0.1 mmol), **2b** (5.0 equiv.), CsF (0.5 equiv.) and solvent (1 mL) for 12 h under argon atmosphere, light (405 nm) . ^bYields were determined by ¹H NMR using nitromethane as an internal standard.

(2) Effects of **2b** amount on yields^a

Entry	2b	Yield ^b /%
1	2.0 equiv.	53
2	5.0 equiv.	73
3	8.0 equiv.	87 (77)
3	10.0 equiv.	82

^aGeneral conditions: **1a** (0.1 mmol), **2b**, CsF (0.5 equiv.) and toluene (1 mL) for 12 h under argon atmosphere, light (405 nm) . ^{*b*}Yields were determined by ¹H NMR using nitromethane as an internal standard.

3. General procedures for preparation of starting materials

i. General procedures for preparation of starting materials 1a~1h, 1l and 1o

The synthesis of starting materials $1a \sim 1h$, 1l and 1o were following the general procedure.¹ 2-Fluorobenzaldehyde (1.24 g, 10 mmol), secondary amine (12 mmol), potassium carbonate (1.66 g, 12 mmol) and DMF (10 mL) were added to a 25 mL round-bottom flask and charged with a magnetic stir bar. The reaction mixture was stirred in an oil bath and the bath temperature was slowly increased to the reflux temperature of DMF (ca. 153 °C) and stirred for 24 h. The reaction was monitored by thin-layer chromatography (TLC). After the reaction was completed, the mixture was cooled to room temperature and extracted with ethyl acetate (3 × 20 mL). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, concentrated, and further purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 80: 1, v/v) to afford the corresponding products.

2-(diethylamino)benzaldehyde (1a)

Yellow oil, 88%

¹**H NMR** (600 MHz, CDCl₃) δ 10.36 (s, 1H), 7.81 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.51 – 7.46 (m, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 7.11 – 7.07 (m, 1H), 3.19 (q, *J* = 7.1 Hz, 4H), 1.07 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 192.2, 154.6, 134.3, 130.8, 128.9, 122.3, 121.7, 48.9,

12.4. The spectra data were consistent with the literature.¹

2-(dimethylamino)benzaldehyde (1b)

Yellow oil, 82%

¹**H NMR** (400 MHz, CDCl₃) δ 10.23 (s, 1H), 7.76 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.07 – 6.96 (m, 2H), 2.92 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 191.2, 155.8, 134.6, 131.0, 127.0, 120.6, 117.6, 45.6. The spectra data were consistent with the literature.²

2-(dihexylamino)benzaldehyde (1c)

Yellow oil, 84%

IR (KBr): 2956, 2929, 2857, 2732, 1688, 1596, 1481, 1454, 1376, 1287, 1189, 1161, 1092, 831, 766, 731, 643, 456 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 10.32 (s, 1H), 7.80 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.15 (d, *J* = 8.2 Hz, 1H), 7.06 (t, *J* = 7.4 Hz, 1H), 3.15 – 3.09 (m, 4H), 1.47 (q, *J* = 7.4, 6.9 Hz, 4H), 1.28 – 1.17 (m, 12H), 0.85 (t, *J* = 6.9 Hz, 6H).

¹³**C NMR** (151 MHz, CDCl₃) δ 192.1, 155.3, 134.2, 130.2, 128.9, 121.9, 121.4, 55.2, 31.6, 27.1, 26.8, 22.6, 14.0.

HRMS (ESI): calcd. for C₁₉H₃₁NO ([M+H]⁺): 304.2635, found: 304.2633.

2-(diallylamino)benzaldehyde (1d) Yellow oil, 60% ¹**H** NMR (600 MHz, CDCl₃) δ 10.35 (s, 1H), 7.80 (d, J = 7.7 Hz, 1H), 7.47 (t, J = 7.3 Hz, 1H), 7.12 – 7.04 (m, 2H), 5.82 (td, J = 10.3, 5.1 Hz, 2H), 5.23 (s, 1H), 5.21 – 5.16 (m, 3H), 3.79 (d, J = 5.9 Hz, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 191.7, 154.2, 134.2, 133.9, 129.5, 129.3, 122.1, 121.3, 118.1, 57.3. The spectra data were consistent with the literature.¹

2-(allyl(methyl)amino)benzaldehyde (1e)

Yellow oil, 65%

IR (KBr): 3069, 2920, 2852, 1684, 1597, 1484, 1453,1281, 1140, 924, 831, 761 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ 10.26 (s, 1H), 7.79 (dd, J = 7.7, 1.8 Hz, 1H), 7.48 (ddd, J = 8.3, 7.2, 1.8 Hz, 1H), 7.09 (d, J = 8.3 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 5.92 (ddt, J = 17.2, 10.2, 5.9 Hz, 1H), 5.38 – 5.16 (m, 2H), 3.74 (d, J = 5.9 Hz, 2H), 2.86 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 191.3, 155.5, 134.5, 134.0, 130.2, 127.7, 121.2, 118.8, 117.9, 62.0, 41.0.

HRMS (ESI): calcd. for C₁₁H₁₃NO ([M+H]⁺): 176.1070, found: 176.1070.

2-(piperidin-1-yl)benzaldehyde (1f)

Yellow oil, 86%

¹**H NMR** (600 MHz, CDCl₃) δ 10.30 (d, J = 0.7 Hz, 1H), 7.80 (dd, J = 7.7, 1.7 Hz, 1H), 7.50 (ddd, J = 8.3, 7.3, 1.8 Hz, 1H), 7.15 – 7.03 (m, 2H), 3.11 – 2.99 (m, 4H), 1.77 (p, J = 5.9 Hz, 4H), 1.64 – 1.57 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 191.7, 157.0, 134.8, 129.2, 128.6, 122.0, 119.0, 55.6, 26.2, 24.1. The spectra data were consistent with the literature.¹

Et_N^{Et}O

4-chloro-2-(diethylamino)benzaldehyde (1g)

Yellow oil, 86%

IR (KBr): 2974, 2934, 2844, 2736, 1690, 1587, 1468, 1411, 1381, 1242, 1189, 1173, 1086, 1011, 919, 838, 811 cm⁻¹.

¹**H NMR** (300 MHz, CDCl₃) δ 10.22 (s, 1H), 7.74 (d, *J* = 8.3 Hz, 1H), 7.10 (d, *J* = 1.8 Hz, 1H), 7.04 (dd, *J* = 8.3, 1.2 Hz, 1H), 3.21 (q, *J* = 7.1 Hz, 4H), 1.09 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 190.7, 155.3, 140.5, 130.5, 128.4, 122.4, 121.5, 48.7, 12.2.

HRMS (ESI): calcd. for C₁₁H₁₄ClNO ([M+H]⁺): 212.0836, found: 212.0840.

4-bromo-2-(diethylamino)benzaldehyde (1h)

Yellow oil, 86%

IR (KBr): 2973, 2933, 2844, 1689, 1581, 1467, 1409, 1362, 1241, 1190, 1173, 1146, 1083, 1009, 912, 834, 809, 663, 592 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 10.23 (s, 1H), 7.66 (d, *J* = 8.3 Hz, 1H), 7.27 (d, *J* = 1.6 Hz, 1H), 7.20 (d, *J* = 8.3 Hz, 1H), 3.20 (q, *J* = 7.1 Hz, 4H), 1.09 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 190.8, 155.2, 130.5, 129.3, 128.8, 125.3, 124.5, 48.7, 12.3.

HRMS (ESI): calcd. for C₁₁H₁₄BrNO ([M+H]⁺): 256.0332, found: 256.0337.

2-(diethylamino)-4-(trifluoromethyl)benzaldehyde (11)

Yellow oil, 86%

IR (KBr): 2977, 2936, 2875, 2850, 1694, 1613, 1576, 1494, 1427, 1382, 1318, 1241,

1170, 1130, 1074, 1015, 940, 882, 845, 830, 778, 731, 667 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 10.30 (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.35 (s, 1H), 7.29 (d, J = 7.9 Hz, 1H), 3.25 (q, J = 7.0 Hz, 4H), 1.11 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 190.9, 154.4, 135.4 (q, J = 32.2 Hz), 132.3, 129.9, 123.6 (d, J = 273.2 Hz), 118.3 (q, J = 3.7 Hz), 118.1 (q, J = 3.7 Hz), 48.7, 12.3. ¹⁹F NMR (282 MHz, CDCl₃) δ -64.2.

HRMS (ESI): calcd. for C₁₂H₁₄F₃NO ([M+H]⁺): 246.1100, found: 246.1099.

2-allyl-6-(diethylamino)benzaldehyde (1m)

Yellow oil, 88%

IR (KBr): 3077, 2974, 2933, 2871, 2838, 1686, 1639, 1585, 1466, 1443, 1382, 1250, 1173, 1086, 1066, 1032, 996, 912, 856, 795, 739, 667 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 10.35 (s, 1H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.07 (d, *J* = 8.1 Hz, 1H), 6.94 (d, *J* = 7.5 Hz, 1H), 6.01 (dt, *J* = 16.8, 8.4 Hz, 1H), 5.11 – 4.95 (m, 2H), 3.84 – 3.64 (m, 2H), 3.14 (q, *J* = 7.0 Hz, 4H), 1.04 (t, *J* = 7.0 Hz, 6H).

¹³**C NMR** (151 MHz, CDCl₃) δ 194.4, 155.5, 142.3, 137.6, 132.8, 129.8, 124.7, 119.9, 115.4, 48.9, 37.6, 12.3.

HRMS (ESI): calcd. for C₁₄H₁₉NO ([M+H]⁺): 218.1538, found:218.1539.

5-bromo-2-(diethylamino)benzaldehyde (1n)

Yellow oil

¹H NMR (400 MHz, CDCl₃) δ 10.3 (s, 1H), 7.9 (d, *J* = 2.5 Hz, 1H), 7.6 (dd, *J* = 8.7, 2.6 Hz, 1H), 7.0 (d, *J* = 8.7 Hz, 1H), 3.2 (q, *J* = 7.1 Hz, 4H), 1.1 (t, *J* = 7.1 Hz, 6H).
¹³C NMR (101 MHz, CDCl₃) δ 190.5, 153.4, 136.8, 132.0, 131.6, 123.6, 115.5, 48.9, 12.3.

HRMS (ESI): calcd. for C₁₁H₁₄BrNO ([M+H]⁺): 256.0332 found: 256.0329.

(¹³C)-2-(diethylamino)benzaldehyde (1a')

Yellow oil

IR (KBr): 3730, 2973, 2931, 2850, 2322, 1652, 1594, 1483, 1452, 1378, 1274, 1242, 1187, 1144, 1093, 819, 764, 638, 419 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 10.36 (d, *J* = 179.2 Hz, 1H), 7.81 (dd, *J* = 8.0, 4.1 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 3.19 (q, *J* = 7.1 Hz, 4H), 1.07 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 192.2, 154.6 (d, *J* = 2.6 Hz), 137.2 (d, *J* = 2.9 Hz), 134.3, 130.8 (d, *J* = 54.2 Hz), 128.9 (d, *J* = 1.7 Hz), 122.0 (dd, *J* = 65.0, 3.2 Hz), 49.0, 12.4.

HRMS (ESI): calcd. for C_{10}^{13} CH₁₆NO ([M+H]⁺): 179.1260, found: 179.1265.

ii. Preparation of starting materials 1k

The compound **1k** was prepared following the literature procedure.³ **1h** (25.6 mg, 1.0 mmol), Cs_2CO_3 (977 mg, 3.0 mmol) and Pd(dppf)Cl₂ (15 mg, 2 mol%) were added to a 25 mL Schlenk tube, and the mixture was dissolved in THF (2.0 mL). Triethylborane (3.0 mL, 1 M solution in THF, 3.0 mmol) was then added, and the mixture was refluxed for 6 h. The reaction mixture was cooled to 0 °C and quenched by 10% aq NaOH and 30% aq H₂O₂, and further stirring for 30 min at rt. The mixture was acidified by dilute aq HCl, and extracted with ether (3×10 mL). The combined organic extracts were dried over anhydrous Na₂SO₄, concentrated, and purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 80: 1, v/v) to afford the products **1k**.

2-(diethylamino)-4-ethylbenzaldehyde (1k)
Yellow oil, 86%
IR (KBr): 3737, 2970, 2933, 2871.8, 2843, 2310, 1681, 1601, 1567, 1546, 1511,

1491, 1455, 1423, 1378, 1278, 1247, 1202, 1100, 1013, 934, 849, 828, 751, 419 cm⁻¹. ¹**H NMR** (600 MHz, CDCl₃) δ 10.31 (s, 1H), 7.74 (d, *J* = 7.9 Hz, 1H), 6.96 (s, 1H), 6.93 (d, *J* = 7.9 Hz, 1H), 3.18 (q, *J* = 7.1 Hz, 4H), 2.66 (q, *J* = 7.6 Hz, 2H), 1.25 (t, *J* = 7.6 Hz, 3H), 1.06 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 191.8, 154.9, 151.5, 129.1, 128.7, 122.3, 121.0, 48.9, 29.4, 15.2, 12.4.

HRMS (ESI): calcd. for C₁₃H₁₉NO ([M+H]⁺): 206.1539, found: 206.1540.

iii. Preparation of starting materials 1i

The compound **1i** was prepared following the literature procedure.⁴ CuI (19 mg, 5 mol %), 8-hydroxyquinoline (29 mg, 10 mol %) and K₃PO₄ (425mg, 2.0mmol) were added to a 25 mL round-bottom flask, and the flask was evacuated and backfilled with argon (3 cycles). **1h** (256 mg, 1.0 mmol) and ethanol (1 mL) were added by syringe at room temperature. The oil bath temperature was slowly increased to 110 °C and stirred for 24 h. The reaction was monitored by TLC. After the reaction was completed, the organic layer was extracted with ethyl acetate (3 × 20 mL) and dried over anhydrous Na₂SO₄. The combined organic layers were concentrated under vacuo and purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 80: 1) to afford the product **1i**.

Et_N^{Et}O

2-(diethylamino)-4-ethoxybenzaldehyde (1i)

Yellow oil, 60%

IR (KBr): 2976, 2933, 2872, 2838, 1677, 1595, 1491, 1476, 1383, 1301, 1287, 1254, 1212, 1100, 1043, 851, 805 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 10.18 (s, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 6.60 (d, *J* = 8.5 Hz, 2H), 4.09 (d, *J* = 7.0 Hz, 2H), 3.18 (q, *J* = 7.1 Hz, 4H), 1.44 (t, *J* = 7.0 Hz, 3H), 1.07 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 190.6, 164.2, 156.7, 131.4, 124.3, 108.3, 107.4, 63.7, 48.7, 14.7. 12.3.

HRMS (ESI): calcd. for C₁₃H₁₉NO₂ ([M+H]⁺): 222.1489, found: 222.1489.

iv. Preparation of starting materials 1j

The compound **1j** was prepared following the literature procedure.⁵ Pd₂(dba)₃ (9.2 mg, 0.01 mmol), DPPF (11.1 mg, 0.02 mmol) and toluene (1.0 mL) were added to a 25 mL round-bottom flask. **1h** (256 mg, 1.0 mmol), *i*-Pr₂NEt (0.19 mL, 1.1 mmol) and ethanol (0.5 mL) were added at room temperature. The bath temperature was slowly increased to 110 °C and stirred for 24 h. The reaction was monitored by TLC. After the reaction was completed, the mixture was extracted with ethyl acetate (3×20 mL) and dried over anhydrous Na₂SO₄. The combined organic layers were concentrated under vacuo and purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 80: 1, v/v) to afford the product **1j**.

2-(diethylamino)-4-(ethylthio)benzaldehyde (1j)

Yellow oil, 70%

IR (KBr): 3730, 2972, 2930, 2871, 2841, 1672, 1582, 1551, 1473, 1453, 1405, 1379, 1364, 1291, 1263, 1239, 1150, 1076, 840, 811, 419 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 10.23 (s, 1H), 7.72 (d, *J* = 8.2 Hz, 1H), 6.99 – 6.92 (m, 2H), 3.19 (q, *J* = 7.1 Hz, 4H), 3.01 (q, *J* = 7.4 Hz, 2H), 1.37 (t, *J* = 7.4 Hz, 3H), 1.07 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 191.0, 154.6, 146.0, 129.5, 127.5, 120.0, 119.1, 48.7, 26.0, 14.0, 12.3.

HRMS (ESI): calcd. for C₁₃H₁₉NOS ([M+H]⁺): 238.1260, found: 238.1260.

v. Preparation of starting materials 1b'

To a 25 mL round-bottom flask, NaH (ca. 60% dispersion in mineral oil, 3.0 mmol) was added and the flask was evacuated and backfilled with argon. 2aminobenzaldehyde (121 mg, 1 mmol) was added to the flask, and the mixture was cooled to 0 °C by ice/water bath. Iodomethane-D3 (187 μ L, 3.0 mmol) was added slowly to the flask. The ice/water bath was removed, and the mixture was stirred overnight at room temperature. The reaction was monitored by TLC. After the reaction was completed, the organic layer was extracted with ethyl acetate (3 × 20 mL) and dried over anhydrous Na₂SO₄. The combined organic layers were concentrated under vacuo and purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 80: 1, v/v) to afford the products **1b**'.

2-(bis(methyl-d3)amino)benzaldehyde (1b')

Yellow oil, 70%

IR (KBr): 2847, 2740, 2241, 2193, 2055, 1684, 1597, 1482, 1453, 1388, 1321, 1292, 1275, 1192, 1177, 1117, 1100, 843, 820, 760, 639 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 7.77 (dd, J = 7.7, 1.8 Hz, 1H), 7.47 (ddd, J = 8.3, 7.2, 1.8 Hz, 1H), 7.07 – 6.97 (m, 2H).

¹³**C NMR** (151 MHz, CDCl₃) δ 191.1, 155.7, 134.5, 131.0, 126.9, 120.5, 117.5, 44.5 (hept, J = 20.1).

HRMS (ESI): calcd. for C₉H₅D₆NO ([M+H]⁺): 156.1290, found: 156.1290.

vi. Preparation of starting materials 1a"

LiAlD₄ (205 mg, 5.0 mmol) and THF (10 mL) were added to a 25 mL roundbottom flask and the mixture was cooled to 0 °C by ice/water bath. **1a** (5.0 mmol, 885.3 mg) in THF (2 mL) was slowly added to the flask. The mixture was further stirred for 2 h at room temperature. The reaction was monitored by TLC. After the reaction was completed, the reaction mixture was slowly quenched with H₂O and the extracted with ethyl acetate (3×10 mL) and dried over anhydrous Na₂SO₄. The combined organic layers were concentrated under vacuo. The residue product was further dissolved in 40 mL CH₂Cl₂ and MnO₂ (20 mmol, 1.74 g) was added. The mixture was further stirred for 48 h at room temperature. After the reaction was completed, the reaction mixture was filtered and the filtrate was concentrated under vacuo. The crude product was further purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 80: 1, v/v) to afford the products **1a''**.

(D)-2-(diethylamino)benzaldehyde (1a'')

IR (KBr): 2974, 2927, 2851, 1667, 1595, 1482, 1451, 1381, 1355, 1291, 1274, 1243, 1209, 1175, 1147, 1105, 1023, 942, 797, 764, 413 cm⁻¹.

¹**H** NMR (600 MHz, CDCl₃) δ 7.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.50 (ddd, J = 8.2, 7.1, 1.8 Hz, 1H), 7.18 – 7.09 (m, 1H), 7.08 (d, J = 7.7 Hz, 1H), 3.19 (q, J = 7.1 Hz, 4H), 1.07 (t, J = 7.1 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 192.0 (t, *J* = 27.4 Hz), 154.6, 134.3, 130.5 (t, *J* = 3.1), 128.9, 122.3, 121.6, 48.9, 12.3.

HRMS (ESI): calcd. for C₁₁H₁₄DNO ([M+H]⁺): 179.1289, found: 179.1288.

4. General procedures for decarbonylative cross-coupling

i. Decarbonylative cross-coupling of aldehyde with acetone

The starting materials 1 (0.1 mmol), CsF (0.05 mmol) and acetone (1 mL) were added to a 20 mL tube with a magnetic stir-bar. Then the tube was evacuated by three freeze-pump-thaw cycles and back-filled with ultra-purified argon. The reaction mixture was stirred at room temperature under 405nm LED for 12 h and monitored by TLC. After the reaction was completed, the mixture was filtered through a pad of diatomite. The organic layers were then concentrated under vacuo and purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 30: 1, v/v) to afford the products **3**.

ii. Decarbonylative cross-coupling of aldehyde with other ketones

The starting materials 1 (0.1 mmol), CsF (0.05 mmol), ketone (0.8 mmol) and toluene (1.0 mL) were added to a 20 mL tube with a magnetic stir-bar. Then the tube was evacuated by three freeze-pump-thaw cycles and back-filled with ultra-purified argon. The reaction was stirred at room temperature under 405nm LED for 12 h. After the reaction was completed, the mixture was filtered through a pad of diatomite. The organic layers were then concentrated under vacuo and purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 30: 1, v/v) to afford the products **3**

Characterization data of products

2-(2-(diethylamino)phenyl)propan-2-ol (3aa)

Colourless oil. 17 mg, 82%

IR (KBr): 3062, 2975, 2931, 2837, 1483, 1442, 1379, 1356, 1278, 1217, 1167, 1120, 1083, 1047, 964, 758, 679, 558 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 10.33 (br, 1H), 7.29 (d, J = 8.2 Hz, 1H), 7.27 – 7.22 (m, 2H), 7.21 – 7.17 (m, 1H), 3.05 (dq, J = 14.2, 7.2 Hz, 2H), 2.94 (dq, J = 14.1, 7.2 Hz, 2H), 1.58 (s, 6H), 1.09 (t, J = 7.2 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 147.2, 145.4, 127.4, 127.3, 126.1, 124.1, 74.7, 50.5, 33.9, 12.9.

HRMS (ESI): calcd. for C₁₃H₂₁NO ([M+H]⁺): 208.1696, found: 208.1700.

2-(2-(dimethylamino)phenyl)propan-2-ol (3ba)

Colourless oil. 14 mg, 78%

IR (KBr): 3101, 3065, 2977, 2945, 2928, 2866, 2833, 2790, 1731, 1682, 1598, 1485, 1457, 1404, 1377, 1357, 1283, 1181, 1118, 1096, 1037, 934, 758, 679, 552 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 9.52 (br, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.29 – 7.24 (m, 2H), 7.17 (t, *J* = 7.5 Hz, 1H), 2.71 (s, 6H), 1.58 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 151.1, 144.1, 127.7, 126.7, 126.3, 123.5, 74.0, 46.6, 32.7.

HRMS (ESI): calcd. for C₁₁H₁₇NO ([M+H]⁺): 180.1383, found: 180.1387.

2-(2-(dihexylamino)phenyl)propan-2-ol (3ca)

Colourless oil. 20 mg, 63%

IR (KBr): 3062, 2957, 2930, 2857, 1466, 1441, 1377, 1356, 1279, 1213, 1175, 1118, 1094, 1084, 1048, 964, 757, 725, 684, 559 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 10.29 (br, 1H), 7.28 – 7.24 (m, 2H), 7.22 (td, *J* = 7.4, 1.9 Hz, 1H), 7.16 (td, *J* = 7.3, 1.7 Hz, 1H), 2.91 (td, *J* = 12.2, 10.7, 5.2 Hz, 2H), 2.82 (td, *J* = 12.2, 10.7, 5.2 Hz, 2H), 1.65 – 1.57 (m, 2H), 1.55 (s, 6H), 1.41 – 1.31 (m, 2H), 1.30–1.18 (m, 12H), 0.88 – 0.81 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 148.3, 144.8, 127.4, 127.3, 125.9, 124.1, 74.6, 57.3, 33.9, 31.6, 27.6, 27.2, 22.2, 14.0.

HRMS (ESI): calcd. for C₂₁H₃₇NO ([M+H]⁺): 320.2948, found: 320.2950.

2-(2-(diallylamino)phenyl)propan-2-ol (3da)

Colourless oil. 11 mg, 48%

IR (KBr): 3078, 2977, 2927, 2848, 1735, 1687, 1644, 1597, 1575, 1483, 1442, 1421, 1377, 1357, 1278, 1174, 1084, 991, 962, 924, 757, 694, 661, 597, 550 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 9.56 (br, 1H), 7.29 – 7.26 (m, 1H), 7.26 – 7.14 (m, 3H), 5.90 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 2H), 5.18 (q, *J* = 1.5 Hz, 1H), 5.16 – 5.10 (m, 3H), 3.57 (dd, *J* = 12.1, 6.8 Hz, 4H), 1.57 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 147.7, 144.8, 133.9, 127.3, 127.2, 126.3, 125.1, 119.0, 74.5, 59.0, 33.4.

HRMS (ESI): calcd. for C₁₅H₂₁NO ([M+H]⁺): 232.1696, found: 232.1700.

2-(2-(allyl(methyl)amino)phenyl)propan-2-ol (3ea)

Colourless oil. 10 mg, 49%

IR (KBr): 3074, 2977, 2926, 2799 1737, 1643, 1597, 1578, 1484, 1453, 1423, 1377, 1357, 1276, 1222, 1176, 1119, 996, 960, 910, 758, 697, 552 cm⁻¹.

¹**H** NMR (600 MHz, CDCl₃) δ 9.43 (br, 1H), 7.30 (t, J = 8.4 Hz, 2H), 7.27 – 7.23 (m,

1H), 7.18 (t, J = 7.6 Hz, 1H), 5.97 – 5.87 (m, 1H), 5.23 (dd, J = 34.4, 13.7 Hz, 2H), 3.59 (d, J = 11.7 Hz, 1H), 3.42 (t, J = 10.7 Hz, 1H), 2.67 (s, 3H), 1.58 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 144.3, 134.1, 127.5, 126.8, 126.3, 124.2, 118.8, 74.1, 61.7, 43.5, 32.9, 32.7.

HRMS (ESI): calcd. for C₁₃H₁₉NO ([M+H]⁺): 206.1539, found: 206.1542.

2-(2-(piperidin-1-yl)phenyl)propan-2-ol (3fa)

Yellow oil, 18 mg, 82%

IR (KBr): 2934, 2853, 2825, 1576, 1484, 1442, 1377, 1355, 1311, 1275, 1212, 1119, 1049, 1033, 959, 913, 863, 757, 695, 539 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 9.62 (br, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 1H), 3.05 (d, *J* = 11.6 Hz, 2H), 2.78 (td, *J* = 11.6, 3.2 Hz, 2H), 1.85 (d, *J* = 13.7 Hz, 1H), 1.79 – 1.67 (m, 4H), 1.58 (s, 6H), 1.39 – 1.32 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 150.8, 144.2, 127.5, 126.7, 126.3, 124.1, 74.0, 55.4, 32.7, 26.4, 23.8.

HRMS (ESI): calcd. for C₁₄H₂₁NO ([M+H]⁺): 220.1696, found: 220.1700.

Et_N_Et

2-(4-chloro-2-(diethylamino)phenyl)propan-2-ol (3ga)

Yellow oil. 22 mg, 91%

IR (KBr): 3064, 2976, 2929, 2838, 1589, 1564, 1473, 1450, 1383, 1358, 1297, 1277, 1214, 1175, 1120, 1028, 965, 918, 867, 820, 804, 787, 637, 549 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 9.89 (br, 1H), 7.23 – 7.19 (m, 2H), 7.16 (d, *J* = 8.5 Hz, 1H), 3.02 (dq, *J* = 14.3, 7.3 Hz, 2H), 2.88 (dq, *J* = 14.0, 7.2 Hz, 2H), 1.53 (s, 6H), 1.08 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 148.7, 144.1, 132.5, 128.6, 126.5, 124.5, 74.4, 50.7,

33.7, 12.9.

HRMS (ESI): calcd. for C₁₃H₂₀ClNO ([M+H]⁺): 242.1306, found: 242.1311.

Et_N_Et OH

2-(4-bromo-2-(diethylamino)phenyl)propan-2-ol (3ha)

Yellow oil. 25 mg, 88%

IR (KBr): 3062, 2975, 2928, 2839, 1582, 1561, 1478, 1382, 1297, 1275, 1212, 1175, 1121, 1100, 1068, 1028, 965, 908, 866 819 780, 626 549 cm⁻¹.

¹H NMR (600 MHz, CDCl₃) δ 9.85 (br, 1H), 7.35 (s, 1H), 7.30 (d, J = 8.7 Hz, 1H),
7.15 (d, J = 8.5 Hz, 1H), 3.02 (dq, J = 14.2, 7.3 Hz, 2H), 2.88 (dq, J = 14.0, 7.4 Hz,
2H), 1.53 (s, 6H), 1.08 (t, J = 7.3 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 148.9, 144.6, 129.4, 129.0, 127.5, 120.3, 74.4, 50.7, 33.7, 12.9.

HRMS (ESI): calcd. for C₁₃H₂₀BrNO ([M+H]⁺): 286.0801, found: 286.0806.

2-(2-(diethylamino)-4-ethoxyphenyl)propan-2-ol (3ia)

Colourless oil. 17 mg, 68%

IR (KBr): 3066, 2975, 2927, 2874, 2850, 1608, 1573, 1478, 1448, 1381, 1312, 1286, 1243, 1197, 1167, 1116, 1047, 963, 866, 851, 820, 672, 549 cm⁻¹.

¹**H NMR** (300 MHz, CDCl₃) δ 10.05 (br, 1H), 7.17 (d, *J* = 8.3 Hz, 1H), 6.77 – 6.70 (m, 2H), 4.08 – 3.93 (m, 2H), 2.95 (dtd, *J* = 27.5, 13.3, 12.5, 7.2 Hz, 4H), 1.53 (s, 6H), 1.41 (td, *J* = 7.0, 1.1 Hz, 3H), 1.07 (td, *J* = 7.2, 1.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 157.9, 148.4, 137.7, 128.0, 112.0, 110.0, 74.2, 63.5, 50.5, 34.0, 14.8, 12.9.

HRMS (ESI): calcd. for C₁₅H₂₅NO₂ ([M+H]⁺): 252.1958, found: 252.1963.

Et-

2-(2-(diethylamino)-4-(ethylthio)phenyl)propan-2-ol (3ja)

Colourless oil. 22 mg, 82%

IR (KBr): 3063, 2974, 2928, 2872, 2836, 1590, 1551, 1477, 1449, 1381, 1357, 1280, 1262, 1213, 1167, 1143, 1120, 1086, 1065, 1029, 964, 921 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 10.07 (br, 1H), 7.22 – 7.17 (m, 2H), 7.14 (dd, *J* = 8.4, 1.8 Hz, 1H), 3.08 – 2.97 (m, 2H), 2.97 – 2.86 (m, 4H), 1.54 (s, 6H), 1.31 (t, *J* = 7.4 Hz, 3H), 1.07 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 147.7, 143.1, 135.2, 127.9, 126.9, 125.1, 74.5, 50.5, 33.8, 27.8, 14.4, 12.9.

HRMS (ESI): calcd. for C₁₅H₂₅NOS ([M+H]⁺): 268.1730, found: 268.1734.

2-(2-(diethylamino)-4-ethylphenyl)propan-2-ol (3ka)

Colourless oil. 14 mg, 60%

IR (KBr): 2972, 2927, 2851, 1611, 1585 1492 1451, 1407, 1378, 1356 1282, 1190, 1167, 1125, 1073, 1030, 964, 827, 792, 747, 703, 668, 554 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 10.33 (br, 1H), 7.17 (d, J = 8.1 Hz, 1H), 7.04 (d, J = 1.8 Hz, 1H), 7.01 (dd, J = 8.1, 1.9 Hz, 1H), 3.02 (dq, J = 12.1, 7.2 Hz, 2H), 2.92 (dq, J = 12.2, 7.2 Hz, 2H), 2.61 (q, J = 7.6 Hz, 2H), 1.54 (s, 6H), 1.22 (t, J = 7.6 Hz, 3H), 1.07 (t, J = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 147.1, 143.3, 142.4, 127.2, 125.7, 123.1, 74.5, 50.4, 33.9, 28.2, 15.4, 12.9.

HRMS (ESI): calcd. for C₁₅H₂₅NO ([M+H]⁺): 236.2009, found: 236.2013.

2-(2-(diethylamino)-4-(trifluoromethyl)phenyl)propan-2-ol (3la)

Colourless oil. 17 mg, 62%

IR (KBr): 2978, 2932, 2842, 1498, 1452, 1406, 1359, 1330, 1292, 1170, 1127, 1096, 1065, 1030, 966, 926, 893, 833, 729, 631cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 9.79 (br, 1H), 7.32 (s, 1H), 7.28 – 7.21 (m, 2H), 2.97 – 2.84 (m, 2H), 2.81 – 2.70 (m, 2H), 1.40 (s, 6H), 0.91 (t, *J* = 7.2 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 149.4, 148.0, 129.8 (q, *J* = 32.7 Hz), 123.8 (q, *J* = 272.7 Hz), 122.9 (q, *J* = 3.6 Hz), 121.5 (q, *J* = 3.8 Hz), 74.7, 50.6, 33.6, 12.8.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.9.

HRMS (ESI): calcd. for C₁₄H₂₀F₃NO ([M+H]⁺): 276.1570, found: 276.1573.

Et_N_Et OF

2-(2-allyl-6-(diethylamino)phenyl)propan-2-ol (3ma)

Colorless oil. 19 mg, 78%

¹**H NMR** (600 MHz, CDCl₃) δ 12.12 (s, 1H), 7.18 (t, *J* = 7.9 Hz, 1H), 7.11 (d, *J* = 8.7 Hz, 2H), 6.01 – 5.91 (m, 1H), 5.09 (d, *J* = 9.8 Hz, 1H), 5.01 (d, *J* = 17.0 Hz, 1H), 3.56 (d, *J* = 5.4 Hz, 2H), 3.07 – 2.98 (m, 2H), 2.93 – 2.82 (m, 2H), 1.66 (s, 6H), 1.07 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (151 MHz, CDCl₃) δ 147.8, 144.1, 136.8, 133.7, 130.2, 126.4, 125.4, 123.0, 75.4, 50.6, 32.1, 14.3, 12.7.

HRMS (ESI): calcd. for C₁₆H₂₅NO ([M+H]⁺): 248.2009, found: 248.2006.

Et_N_Et OH

2-(5-bromo-2-(diethylamino)phenyl)propan-2-ol (3na)

Colourless oil. 20mg, 70 %

¹**H NMR** (400 MHz, CDCl₃) δ 10.0 (s, 1H), 7.4 (d, *J* = 2.4 Hz, 1H), 7.3 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.1 (d, *J* = 8.6 Hz, 1H), 3.0 (dq, *J* = 12.3, 7.2 Hz, 2H), 2.9 (dq, *J* = 12.3, 7.2 Hz, 2H), 1.5 (s, 6H), 1.1 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 147.8, 146.5, 130.5, 130.4, 126.1, 119.7, 74.5, 50.5, 33.7, 12.8.

HRMS (ESI): calcd. for C₁₃H₂₀BrNO ([M+H]⁺): 286.0801, found: 286.0805.

3-(2-(diethylamino)phenyl)pentan-3-ol (3ab)

Colourless oil. 18 mg, 77%

IR (KBr): 3026, 2973, 2935, 2875, 2843, 1482, 1441, 1384, 1297, 1271, 1218, 1170, 1121, 1089, 1061, 1037, 975, 754, 674, 594, 559 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 10.26 (br, 1H), 7.25 – 7.09 (m, 4H), 3.01 (dq, *J* = 12.4, 7.2 Hz, 2H), 2.88 (dq, *J* = 12.4, 7.3 Hz, 2H), 1.86 – 1.68 (m, 4H), 1.10 (t, *J* = 7.2 Hz, 6H), 0.80 (t, *J* = 7.3 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 149.8, 141.7, 128.0, 127.0, 125.9, 124.1, 80.3, 50.4, 37.1, 13.1, 8.5.

HRMS (ESI): calcd. for C₁₅H₂₅NO ([M+H]⁺): 236.2009, found: 236.2012.

3-(2-(diethylamino)phenyl)-2,4-dimethylpentan-3-ol (3ac)

Colourless oil. 15 mg, 57 %

IR (KBr): 2972, 2934, 2875, 2832, 1475, 1441, 1381, 1195, 1179, 1165, 1119, 1101, 1061, 1032, 1012, 998, 865, 771, 753, 673, 629 cm⁻¹.

¹**H** NMR (600 MHz, CDCl₃) δ 10.58 (br, 1H), 7.24 – 7.18 (m, 2H), 7.19 – 7.10 (m, 2H), 3.07 – 2.98 (m, 2H), 2.92 – 2.83 (m, 2H), 2.26 (hept, *J* = 6.8 Hz, 2H), 1.12 (t, *J* = 7.2 Hz, 6H), 0.86 (dd, *J* = 22.0, 6.8 Hz, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 151.4, 139.1, 128.1, 126.9, 125.1, 124.3, 84.2, 50.5, 36.5, 18.6, 17.1, 13.2.

HRMS (ESI): calcd. for C₁₇H₂₉NO ([M+H]⁺): 264.2322, found: 264.2325.

2-(2-(diethylamino)phenyl)-3,3-dimethylbutan-2-ol (3ad)

Colourless oil. 14 mg, 56 %

IR (KBr): 3064, 2978, 2873, 2829, 1787, 1483, 1443, 1388, 1368, 1294, 1276, 1215, 1188, 1167, 1061, 1029, 1004, 935, 759, 729 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 10.44 (br, 1H), 7.25 – 7.18 (m, 3H), 7.13 (ddd, J = 8.0, 6.1, 2.5 Hz, 1H), 3.15 (dq, J = 12.0, 7.3 Hz, 1H), 2.98 (q, J = 7.1 Hz, 2H), 2.69 (dq, J = 12.0, 7.2 Hz, 1H), 1.53 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H), 0.95 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 149.9, 141.7, 129.7, 127.3, 124.7, 124.1, 81.7, 51.2, 49.8, 40.3, 26.5, 26.3, 13.7, 12.1.

HRMS (ESI): calcd. for C₁₆H₂₇NO ([M+H]⁺): 250.2165, found: 250.2170.

2-(2-(diethylamino)phenyl)-4-methylpentan-2-ol (3ae)

Colourless oil. 17 mg, 68 %

IR (KBr): 3062, 3027, 2973, 2926, 2867, 2837, 1482, 1443, 1383, 1367, 1282, 1218, 1167, 1123, 1098, 1048, 1029, 867, 757, 702, 683, 596 cm⁻¹.

¹**H** NMR (600 MHz, CDCl₃) δ 10.26 (br, 1H), 7.25 – 7.19 (m, 3H), 7.15 (t, *J* = 7.1 Hz, 1H), 3.07 – 2.98 (m, 2H), 2.96 – 2.83 (m, 2H), 1.82 – 1.73 (m, 2H), 1.64 (dd, *J* = 13.6, 5.1 Hz, 1H), 1.50 (s, 3H), 1.11 (d, *J* = 7.2 Hz, 3H), 1.06 (t, *J* = 7.2 Hz, 3H), 0.94 (d, *J* = 6.3 Hz, 3H), 0.76 (d, *J* = 6.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 148.0, 144.4, 128.0, 127.2, 125.8, 124.1, 77.7, 54.0, 50.4, 50.4, 33.6, 24.9, 24.7, 24.6, 13.0, 12.8.

HRMS (ESI): calcd. for C₁₆H₂₇NO ([M+H]⁺): 250.2165, found: 250.2170.

2-(2-(diethylamino)phenyl)tridecan-2-ol (3af)

Colourless oil. 24 mg, 69 %

IR (KBr): 3061, 3026, 2971, 2925, 2853, 1482, 1465, 1382, 1294, 1278, 1217, 1168, 1123, 1087, 1064, 1045, 757, 723, 682, 592, 558 cm⁻¹.

¹**H** NMR (600 MHz, CDCl₃) δ 10.26 (br, 1H), 7.20 (dq, J = 21.3, 7.1, 6.0 Hz, 4H), 3.06 – 2.97 (m, 2H), 2.94 – 2.84 (m, 2H), 1.83 (td, J = 12.9, 4.3 Hz, 1H), 1.69 (td, J = 12.9, 4.4 Hz, 1H), 1.50 (s, 3H), 1.46 – 1.39 (m, 1H), 1.31 – 1.19 (m, 17H), 1.07 (dt, J = 15.2, 7.2 Hz, 6H), 0.87 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 148.1, 144.1, 127.8, 127.1, 126.0, 124.1, 50.5, 50.4, 45.7, 33.0, 31.9, 30.1, 29.7, 29.7, 29.6, 29.4, 24.3, 22.7, 14.1, 13.1, 12.9.

HRMS (ESI): calcd. for C₂₃H₄₁NO ([M+H]⁺): 348.2361, found: 348.2362.

1-cyclopropyl-1-(2-(diethylamino)phenyl)ethan-1-ol (3ag)

Colourless oil. 15 mg, 64%

IR (KBr): 3063, 2974, 2926, 2834, 1598, 1576, 1483, 1447, 1383, 1278, 1218, 1169, 1122, 1102, 1064, 1044, 1018, 823, 756, 736, 591, 558, 528 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 10.26 (br, 1H), 7.42 (dt, J = 6.6, 1.5 Hz, 1H), 7.25 – 7.17 (m, 3H), 3.09 – 2.97 (m, 2H), 2.97 – 2.81 (m, 2H), 1.48 (s, 3H), 1.25 (ddd, J = 8.5, 5.6, 2.9 Hz, 1H), 1.07 (dt, J = 9.8, 7.2 Hz, 6H), 0.59 (ddd, J = 9.2, 5.8, 3.5 Hz, 1H), 0.53 – 0.39 (m, 2H), 0.28 (tdd, J = 8.6, 5.8, 3.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 147.3, 145.4, 127.9, 127.1, 126.0, 124.0, 74.7, 50.5, 50.2, 31.5, 24.2, 12.9, 12.7, 1.6, 0.9.

HRMS (ESI): calcd. for C₁₅H₂₃NO ([M+H]⁺): 234.1852, found: 234.1856.

2-(2-(diethylamino)phenyl)-4-phenylbutan-2-ol (3ah)

Colourless oil. 19 mg, 64 %

IR (KBr): 3061, 3026, 2973, 2928, 2837, 1602, 1575, 1483, 1451, 1383, 1294, 1277, 1216, 1166, 1121, 1100, 1064, 1028, 759, 699, 622, 604 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 10.58 (br, 1H), 7.23 (dq, *J* = 20.5, 7.6 Hz, 6H), 7.15 (dd, *J* = 14.8, 7.5 Hz, 3H), 3.05 (dq, *J* = 14.3, 7.2 Hz, 2H), 2.92 (ddq, *J* = 26.6, 13.9, 7.2 Hz, 2H), 2.82 (td, *J* = 13.1, 4.8 Hz, 1H), 2.38 (td, *J* = 13.1, 4.2 Hz, 1H), 2.15 (td, *J* = 13.2, 4.2 Hz, 1H), 2.04 (td, *J* = 13.3, 4.8 Hz, 1H), 1.56 (s, 3H), 1.10 (q, *J* = 7.7 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 148.1, 143.5, 143.3, 128.4, 128.3, 127.6, 127.4, 126.2, 125.4, 124.2, 50.8, 50.3, 47.9, 33.3, 30.9, 13.2, 12.9.

HRMS (ESI): calcd. for C₂₀H₂₇NO ([M+H]⁺): 298.2165, found: 298.2167.

2-(2-(diethylamino)phenyl)-4,4-dimethoxybutan-2-ol (3ai)

Colourless oil. 17 mg, 60 %

IR (KBr): 3060, 2975, 2933, 2830, 1483, 1444, 1382, 1296, 1279, 1211, 1192, 1165, 1122, 1074, 1050, 972, 941, 911, 898, 820, 758, 705, 620cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 10.57 (br, 1H), 7.23 (d, J = 3.8 Hz, 3H), 7.20 – 7.15 (m, 1H), 4.62 (t, J = 4.9 Hz, 1H), 3.34 (s, 3H), 3.17 (s, 3H), 3.02 (ddt, J = 20.8, 14.1, 7.0 Hz, 2H), 2.91 (ddq, J = 26.8, 13.8, 7.2 Hz, 2H), 2.16 – 2.06 (m, 2H), 1.55 (s, 3H), 1.11 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 147.5, 143.9, 127.9, 127.4, 125.9, 124.1, 102.7, 96.7, 75.5, 53.1, 52.1, 50.6, 50.2, 48.4, 32.1, 13.0, 12.7.

HRMS (ESI): calcd. for C₁₆H₂₇NO₃ ([M+H]⁺): 282.2064, found: 282.2068.

5-(2-(diethylamino)phenyl)-5-hydroxyhexan-2-one (3aj)

Yellw oil. 15 mg, 57 %

IR (KBr): 3060, 3025, 2974, 2930, 2875, 2836, 1483, 1443, 1367, 1280, 1217, 1164, 1121, 1085, 1043, 1029, 936, 894, 760, 683, 561, 548 cm⁻¹.

¹**H** NMR (600 MHz, CDCl₃) δ 10.53 (br, 1H), 7.28 – 7.20 (m, 2H), 7.21 – 7.14 (m, 2H), 3.09 – 2.97 (m, 2H), 2.90 (ddq, *J* = 30.1, 12.3, 7.2 Hz, 2H), 2.66 (ddd, *J* = 16.6,

10.9, 5.0 Hz, 1H), 2.28 (ddd, *J* = 16.7, 10.9, 4.7 Hz, 1H), 2.21 – 2.13 (m, 1H), 2.10 (s, 3H), 2.00 (ddd, *J* = 14.0, 10.9, 5.0 Hz, 1H), 1.51 (s, 3H), 1.08 (dt, *J* = 11.3, 7.2 Hz, 6H)

¹³C NMR (101 MHz, CDCl₃) δ 209.7, 147.9, 143.0, 127.6, 127.5, 126.3, 124.3, 76.4, 50.9, 50.1, 39.2, 38.8, 33.2, 29.9, 13.1, 12.8.

HRMS (ESI): calcd. for C₁₆H₂₅NO₂ ([M+H]⁺): 264.1958, found: 264.1960.

4-(2-(diethylamino)phenyl)-4-hydroxycyclohexan-1-one (3ak)

White solid. 11 mg, 42%, m.p. 71.4 - 73.2 °C

IR (KBr): 3026, 2973, 2931, 2873, 2835, 1711, 1598, 1483, 1436, 1382, 1338, 1308, 1279, 1247, 1124, 1087, 1053, 1026, 866, 770, 755, 716, 671 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 11.12 (br, 1H), 7.29 (s, 2H), 7.26 – 7.19 (m, 2H), 3.12 – 3.00 (m, 4H), 2.99 – 2.90 (m, 2H), 2.33 – 2.24 (m, 4H), 2.13 (d, *J* = 12.3 Hz, 2H), 1.08 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 213.1, 147.4, 142.8, 128.0, 126.7, 126.4, 124.3, 74.4, 50.8, 41.3, 37.6, 12.8.

HRMS (ESI): calcd. for C₁₆H₂₃NO₂ ([M+H]⁺): 262.1802, found: 262.1804.

1-(2-(diethylamino)phenyl)cyclobutan-1-ol (3al)

Colourless oil. 15 mg, 68 %

IR (KBr): 3064, 3028, 2976, 2935, 2873, 2837, 1598, 1575.0, 1484, 1446, 1384, 1291, 1223, 1168, 1146, 1129, 1086, 1059, 1028, 897, 752, 683 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 9.64 (br, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.27 – 7.19 (m, 3H), 2.97 (q, *J* = 7.2 Hz, 4H), 2.56 – 2.50 (m, 2H), 2.49 – 2.42 (m, 2H), 2.04 (ddq, *J* = 14.8, 9.9, 4.8 Hz, 1H), 1.85 – 1.75 (m, 1H), 1.04 (t, *J* = 7.2 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 147.4, 142.8, 127.3, 125.9, 125.7, 123.8, 78.4, 49.10, 38.9, 13.3, 12.5.

HRMS (ESI): calcd. for C₁₄H₂₁NO ([M+H]⁺): 220.1696, found: 220.1698.

1-(2-(diethylamino)phenyl)cyclopentan-1-ol (3am)

Colourless oil. 16 mg, 69%

IR (KBr): 3061, 3025, 2971, 2870, 2845, 1722, 1481, 1383, 1340, 1290, 1168, 1121, 1013, 946, 911, 891, 753, 602, 571, 540, 472, 458 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 10.08 (br, 1H), 7.27 – 7.20 (m, 3H), 7.16 (ddd, *J* = 8.4, 6.8, 1.9 Hz, 1H), 3.06 – 2.98 (m, 2H), 2.97 – 2.89 (m, 2H), 2.07 – 1.92 (m, 6H), 1.77 (s, 2H), 1.07 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 148.1, 143.9, 127.2, 126.9, 125.9, 124.0, 84.9, 50.3, 44.9, 24.7, 12.8.

HRMS (ESI): calcd. for C₁₅H₂₃NO ([M+H]⁺): 234.1852, found: 234.1854.

1-(2-(diethylamino)phenyl)cyclohexan-1-ol (3an)

Colourless oil. 18 mg, 73%

IR (KBr): 3060, 2974, 2930, 2845, 1481, 1383, 1281, 1218, 1168, 1141, 1129, 1064, 1047, 1032, 1016, 989, 906, 884, 831, 752, 695, 601, 573, 495 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 10.40 (br, 1H), 7.32 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.24 – 7.21 (m, 2H), 7.21 – 7.15 (m, 1H), 3.01 (dq, *J* = 12.2, 7.2 Hz, 2H), 2.90 (dq, *J* = 12.2, 7.2 Hz, 2H), 1.94 – 1.69 (m, 7H), 1.61 – 1.53 (m, 2H), 1.24 (qt, *J* = 13.1, 3.8 Hz, 1H), 1.05 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 147.3, 145.7, 127.4, 127.2, 126.0, 124.0, 75.7, 50.7, 41.3, 25.8, 22.0, 12.9.

HRMS (ESI): calcd. for C₁₆H₂₅NO ([M+H]⁺): 248.2009, found: 248.2010.

(1R,3S,5r,7r)-2-(2-(diethylamino)phenyl)adamantan-2-ol (3ao)

White solid. 23 mg, 77%

IR (KBr): 2968, 2902, 2851, 1595, 1573, 1481, 1450, 1384, 1334, 1289, 1186, 1163, 1139, 1118, 1103, 1044, 1011, 857, 794, 757, 736, 686, 665, 531 cm⁻¹.

¹**H** NMR (600 MHz, CDCl₃) δ 7.59 (d, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 7.8 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.01 (br, 1H), 3.01 (dq, *J* = 14.1, 7.2 Hz, 2H), 2.84 (dq, *J* = 13.4, 7.3 Hz, 2H), 2.62 (d, *J* = 12.4 Hz, 2H), 2.45 (s, 2H), 1.90 (d, *J* = 12.5 Hz, 2H), 1.87 – 1.76 (m, 4H), 1.73 (s, 2H), 1.59 (d, *J* = 12.3 Hz, 2H), 1.04 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 151.7, 144.2, 127.9, 127.3, 125.0, 124.9, 51.0, 38.3, 37.0, 35.4, 33.5, 27.4, 26.9, 13.2.

HRMS (ESI): calcd. for C₂₀H₂₉NO ([M+H]⁺): 300.2322, found: 300.2323.

2'-(diethylamino)-3,4-dihydro-[1,1'-biphenyl]-1(2H)-ol (3ap)

Colourless oil. 15 mg, 61%

IR (KBr): 3022, 2933, 2832, 1728, 1715, 1650, 1575, 1481, 1451, 1436, 1382, 1338, 1274, 1219, 1195, 1167, 1121, 1086, 1063, 853, 771, 755, 718, 662 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 10.16 (br, 1H), 7.27 – 7.19 (m, 3H), 7.18 – 7.12 (m, 1H), 5.97 – 5.90 (m, 1H), 5.75 (d, *J* = 9.9 Hz, 1H), 3.10 – 2.87 (m, 4H), 2.18 – 2.10 (m, 1H), 2.09 – 1.92 (m, 3H), 1.79 (td, *J* = 12.6, 3.0 Hz, 1H), 1.67 – 1.59 (m, 1H), 1.12 (t, *J* = 7.2 Hz, 3H), 1.04 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 148.0, 144.1, 133.8, 129.1, 128.5, 127.4, 125.9, 123.9, 74.4, 51.2, 49.8, 42.1, 25.0, 18.9, 13.0, 12.8.

HRMS (ESI): calcd. for C₁₆H₂₃NO ([M+H]⁺): 246.1852, found: 246.1854.

4-(2-(diethylamino)phenyl)-1-methylpiperidin-4-ol (3aq)

Colourless oil. 14 mg, 53%

IR (KBr): 3424, 2931, 2669, 2595, 2515, 1726, 1470, 1380, 1285, 1261, 1207, 1063, 1038, 980, 886, 773, 756, 609, 575, 546, 510, 474 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 11.56 (br, 1H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.32 – 7.24 (m, 3H), 3.39 – 3.28 (m, 4H), 3.04 (dt, *J* = 14.3, 7.2 Hz, 2H), 2.92 (dt, *J* = 12.6, 7.0 Hz, 2H), 2.86 – 2.79 (m, 2H), 2.78 (s, 3H), 1.83 (d, *J* = 14.0 Hz, 2H), 1.03 (t, *J* = 7.2 Hz, 6H).

¹³**C NMR** (151 MHz, CD₃OD) δ 146.8, 140.9, 128.5, 127.6, 127.1, 123.9, 71.4, 51.0, 50.8, 43.6, 38.3, 12.7.

HRMS (ESI): calcd. for C₁₆H₂₆N₂O ([M+H]⁺): 263.2118, found: 263.2119.

Et_N_Et OF

4-(2-(diethylamino)phenyl)tetrahydro-2H-pyran-4-ol (3ar)

Colourless oil. 17 mg, 68%

IR (KBr): 2951, 2867, 1598, 1575, 1481, 1449, 1425, 1383, 1280, 1238, 1169, 1129, 1099, 1064, 1030, 1017, 978, 840, 769, 753, 707, 554, 537 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 10.78 (br, 1H), 7.32 (d, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 17.9 Hz, 3H), 4.02 (t, *J* = 11.8 Hz, 2H), 3.85 (dd, *J* = 11.2, 4.8 Hz, 2H), 3.03 (dq, *J* = 14.0, 7.2 Hz, 2H), 2.91 (dq, *J* = 13.7, 7.3 Hz, 2H), 2.18 (td, *J* = 12.8, 4.8 Hz, 2H), 1.64 (d, *J* = 13.1 Hz, 2H), 1.05 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 147.2, 143.8, 127.7, 127.3, 126.4, 124.1, 73.2, 64.1, 50.8, 41.5, 12.8.

HRMS (ESI): calcd. for C₁₅H₂₃NO₂ ([M+H]⁺): 250.1802, found: 250.1803.

4-(2-(diethylamino)phenyl)tetrahydro-2H-thiopyran-4-ol (3as)

Colourless oil. 16 mg, 60%

IR (KBr): 3058, 3025, 2972, 2924, 2831, 1481, 1448, 1422, 1381, 1274, 1214, 1123, 1077, 1065, 970, 941, 895, 769, 752, 698, 657, 602, 574, 539 cm⁻¹.

¹**H** NMR (600 MHz, CDCl₃) δ 10.75 (br, 1H), 7.32 (d, J = 7.8 Hz, 1H), 7.27 – 7.20 (m, 3H), 3.34 (t, J = 13.3 Hz, 2H), 3.01 (dt, J = 14.0, 7.1 Hz, 2H), 2.90 (dq, J = 14.0, 7.2 Hz, 2H), 2.39 (d, J = 13.0 Hz, 2H), 2.13 (td, J = 13.0, 3.6 Hz, 2H), 2.00 (d, J = 13.2 Hz, 2H), 1.04 (t, J = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 146.8, 144.4, 127.7, 127.4, 126.3, 124.1, 74.2, 50.8, 41.9, 24.3, 12.8.

HRMS (ESI): calcd. for C₁₅H₂₃NOS ([M+H]⁺): 266.1573, found: 266.1574.

(9S,10R,13S,14S,17S)-17-(2-(diethylamino)phenyl)-13-methyl-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-

cyclopenta[a]phenanthren-17-ol (3at)

Yellow solid. 23 mg, 59%: $[\alpha]_{D}^{28.0} = +79.37$ (*c* 0.015, CHCl₃), m.p. 165.8-167.0 °C

IR (KBr): 2923, 2851, 1741, 1596, 1541, 1472, 1447, 1381, 1336, 1299, 1265, 1217, 1191, 1143, 1120, 1086, 1054, 1030, 837, 756, 739, 432 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 9.52 (br, 1H), 7.26 – 7.18 (m, 2H), 7.17 – 7.11 (m, 1H), 7.05 (d, *J* = 7.8 Hz, 1H), 5.36 (d, *J* = 2.7 Hz, 1H), 3.14 (dq, *J* = 12.1, 7.3 Hz, 1H), 2.96 (ddq, *J* = 26.6, 12.9, 7.0, 6.6 Hz, 2H), 2.75 (dq, *J* = 12.1, 7.2 Hz, 1H), 2.29 – 2.16 (m, 2H), 2.15 – 2.06 (m, 1H), 2.01 (t, *J* = 13.5 Hz, 1H), 1.92 – 1.80 (m, 3H), 1.78 – 1.68 (m, 3H), 1.64 – 1.58 (m, 2H), 1.53 (qd, *J* = 12.5, 5.4 Hz, 1H), 1.47 – 1.36 (m, 2H), 1.34 – 1.28 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.12 (qd, *J* = 13.4, 4.3 Hz, 1H), 1.05 (s, 3H), 0.99 – 0.94 (m, 1H), 0.93 (t, *J* = 7.2 Hz, 3H), 0.87 (td, *J* = 12.6, 3.5 Hz, 1H), 0.43 – 0.31 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 150.6, 142.9, 140.6, 128.9, 127.2, 125.1, 123.95, 119.7, 89.3, 51.8, 49.8, 49.7, 49.2, 49.0, 42.0, 41.9, 39.9, 35.6, 33.5, 31.9, 28.6, 26.2, 25.5, 24.2, 22.0, 15.8, 13.9, 12.3.

HRMS (ESI): calcd. for C₂₈H₄₁NO ([M+H]⁺): 408.3261, found: 408.3260.

1-(2-(diethylamino)phenyl)-3-methylbutan-1-ol (3au)

Colourless oil. 13mg, 55%

IR (KBr): 3026, 2955, 2933, 2868, 2818, 1959, 1597,1486, 1465, 1449, 1383, 1367, 1293, 1234, 1170, 1120, 1064, 1045, 838, 793, 749, 545, 419 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 7.37 (br, 1H), 7.23 (dt, J = 3.5, 1.6 Hz, 2H), 7.14 (dd, J = 3.6, 2.0 Hz, 2H), 4.96 (dd, J = 10.2, 3.7 Hz, 1H), 3.05 – 2.90 (m, 4H), 2.03 – 1.90 (m, 1H), 1.73 (ddd, J = 14.0, 10.1, 4.5 Hz, 1H), 1.48 (ddd, J = 13.2, 9.1, 3.7 Hz, 1H), 1.06 (t, J = 7.2 Hz, 6H), 0.99 (dd, J = 10.5, 6.7 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 148.6, 141.5, 127.5, 127.2, 125.4, 123.6, 72.0, 49.6, 49.2, 24.7, 23.9, 21.7, 12.8.

HRMS (ESI): calcd. for C₁₅H₂₅NO ([M+H]⁺): 236.2009, found: 236.2010.

1-(2-(diethylamino)phenyl)-2,2-dimethylpropan-1-ol (3av)

Colourless oil. 11 mg, 47%

IR (KBr): 2971, 2869, 1483, 1463, 1447, 1385, 1361, 1294, 1235, 1215, 1179, 1169, 1119, 1099,1069, 1042, 1009, 825, 794, 767 cm⁻¹.

¹**H** NMR (600 MHz, CDCl₃) δ 7.25 – 7.20 (m, 2H), 7.15 (d, J = 7.3 Hz, 2H), 7.11 (ddd, J = 8.0, 5.7, 2.6 Hz, 1H), 4.67 (s, 1H), 3.05 (dq, J = 12.9, 7.4 Hz, 2H), 2.85 (dq, J = 14.3, 7.1 Hz, 2H), 1.07 (t, J = 7.1 Hz, 6H), 0.95 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 150.7, 137.4, 130.0, 127.4, 124.3, 123.9, 82.5, 50.0, 37.6, 26.5, 12.8.

HRMS (ESI): calcd. for C₁₅H₂₅NO ([M+H]⁺): 236.2009, found: 236.2010.

Cyclohexyl(2-(diethylamino)phenyl)methanol (3aw)

Colourless oil. 15 mg, 57%

IR (KBr): 3358, 2971, 2851, 1959, 1594, 1509, 1450, 1419, 1385, 1365, 1315, 1083, 1042, 925, 866, 837, 817, 668, 611, 579, 484, 472, 419 cm⁻¹.

¹**H** NMR (600 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H), 7.16 – 7.07 (m, 2H), 4.55 (d, J = 7.2 Hz, 1H), 2.99 (ddd, J = 14.4, 9.7, 6.5 Hz, 2H), 2.91 (ddt, J = 11.6, 7.0, 3.7 Hz, 2H), 1.96 (d, J = 12.3 Hz, 1H), 1.80 – 1.68 (m, 2H), 1.66 – 1.55 (m, 2H), 1.43 – 1.36 (m, 1H), 1.22 – 1.10 (m, 5H), 1.08 – 1.01 (m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 149.4, 139.7, 128.7, 127.2, 125.1, 123.8, 79.3, 49.8, 46.1, 30.3, 28.5, 26.5, 26.3, 12.8.

HRMS (ESI): calcd. for C₁₇H₂₇NO ([M+H]⁺): 262.2165, found: 262.2166.

(2-(diethylamino)phenyl)(phenyl)methanol (3ax)

Colourless oil. 10 mg, 39%

IR (KBr): 3061, 3028, 2972, 2931, 2872, 1650, 1598, 1580, 1487, 1451, 1383, 1293, 1234, 1172, 1120, 1097, 1062, 1026, 794, 765, 744, 699, 650, 419 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 8.24 (br, 1H), 7.39 (d, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.28 – 7.23 (m, 3H), 7.10 (ddd, *J* = 8.3, 5.7, 2.8 Hz, 1H), 6.97 (d, *J* = 7.7 Hz, 1H), 6.00 (s, 1H), 2.90 (qd, *J* = 12.7, 6.3 Hz, 4H), 1.02 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 148.7, 144.6, 140.0, 129.3, 128.1, 127.7, 126.9, 126.9, 125.2, 123.8, 76.1, 49.0, 12.5.

HRMS (ESI): calcd. for C₁₇H₂₁NO ([M+H]⁺): 256.1696, found: 256.1697.

Et_N_Et OH

(2-(diethylamino)phenyl)(furan-2-yl)methanol (3ay)

Colourless oil. 13 mg, 53%

IR (KBr): 2972, 2930, 2872, 1663, 1597, 1581, 1488, 1449, 1382, 1295, 1238, 1224, 1171, 1085, 1064, 1031, 1008, 939, 834, 815, 793, 766, 733, 598, 563, 459 cm⁻¹. **¹H NMR** (600 MHz, CDCl₃) δ 8.71 (br, 1H), 7.38 – 7.36 (m, 1H), 7.29 (dd, *J* = 16.5, 8.2 Hz, 2H), 7.18 – 7.13 (m, 1H), 7.10 (d, *J* = 7.6 Hz, 1H), 6.31 (dd, *J* = 3.3, 1.8 Hz, 1H), 6.18 (d, *J* = 3.2 Hz, 1H), 6.02 (s, 1H), 3.03 – 2.89 (m, 4H), 1.04 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 157.2, 148.6, 141.9, 137.1, 128.9, 128.0, 125.5, 123.8, 110.0, 106.39, 71.1, 49.2, 12.5.

HRMS (ESI): calcd. for C₁₅H₁₉NO₂ ([M+H]⁺): 246.1489, found: 246.1491.

3-allyl-*N*,*N*-diethylaniline (5)

Yellow oil, 16 mg, 85%

¹**H NMR** (600 MHz, CDCl₃) δ 7.14 (t, *J* = 7.8 Hz, 1H), 6.55 – 6.45 (m, 3H), 6.03 – 5.91 (m, 1H), 5.10 (d, *J* = 16.2 Hz, 1H), 5.04 (d, *J* = 10.0 Hz, 1H), 3.37 – 3.29 (m, 6H), 1.15 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (151 MHz, CDCl₃) δ 148.0, 141.1, 137.9, 129.2, 115.7, 115.3, 112.1, 109.8, 44.3, 40.8, 12.6.

HRMS (ESI): calcd. for C₁₃H₁₉N ([M+H]⁺): 190.1590, found: 190.1590.

bis(2-(diethylamino)phenyl)methanol (8)

Colourless oil.

IR (KBr): 3384, 3061, 3027, 2971, 2932, 2872, 2816, 1598, 1485, 1450, 1382, 1295, 1237, 1174, 1118, 1093, 1017, 794, 756, 712, 668, 646, 484, 472, 419 cm⁻¹.

¹**H NMR** (600 MHz, CDCl₃) δ 8.11(br, 1H), 7.23 (dt, *J* = 13.5, 7.7 Hz, 4H), 7.05 (t, *J* = 7.2 Hz, 2H), 6.99 (d, *J* = 7.7 Hz, 2H), 6.75 (s, 1H), 3.05 (q, *J* = 7.1 Hz, 8H), 1.05 (t, *J* = 7.1 Hz, 12H).

¹³C NMR (151 MHz, CDCl₃) δ 149.3, 141.4, 129.3, 127.4, 124.7, 122.8, 69.4, 48.7, 12.7.

HRMS (ESI): calcd. for C₂₁H₃₀N₂O ([M+H]⁺): 327.2430, found: 327.2435.

1-ethyl-2-methyl-1H-indole(9)

Colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.52 (d, *J* = 7.8 Hz, 1H), 7.32 – 7.20 (m, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 7.05 (t, *J* = 7.4 Hz, 1H), 6.23 (s, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 2.43 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 136.2, 136.0, 128.2, 120.4, 119.7, 119.1, 108.8, 99.8,
 37.7, 15.3, 12.6. The spectra data were consistent with the literature.⁶

2-(2-(bis(methyl-d3)amino)phenyl)propan-2-ol (3b'a)

Colorless oil, 13 mg, 70%

¹**H NMR** (600 MHz, CDCl₃) δ 9.58 (s, 1H), 7.35 (d, *J* = 7.9 Hz, 1H), 7.30 – 7.22 (m, 2H), 7.20 – 7.14 (m, 1H), 1.58 (s, 6H).

¹³**C** NMR (151 MHz, CDCl₃) δ 151.0, 144.0, 127.6, 126.6, 126.2, 123.4, 73.9, 45.6 (hept, J = 21.0 Hz), 32.6.

HRMS (ESI): calcd. for C₁₁H₁₁D₆NO ([M+H]⁺): 186.1760, found: 186.1758.

N,N-diethylaniline-2-d (4a')

Colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.2 (t, *J* = 6.3 Hz, 2H), 6.7 (d, *J* = 8.5 Hz, 1H), 6.6 (t, *J* = 7.3 Hz, 1H), 3.4 (q, *J* = 7.0 Hz, 4H), 1.2 (t, *J* = 6.9 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 147.7, 129.2, 129.1, 115.3, 111.8, 111.4 (t, *J* = 22.8 Hz), 44.3, 12.6.

HRMS (ESI): calcd. for C₁₀H₁₄DN ([M+H]⁺): 152.1374, found: 152.1377.

5. GC-MS data of CO gas

Scheme S1 Analysis of the reaction atmosphere by GC-MS

Figure S1 GC-MS analysis of the gas phase mixture of 1a' and 1a

It can be seen from Figure S1 that the intensity of the signal peak with mass-tocharge ratio (m/e) of 29 in the gas phase component of **1a'** (Scheme S1-b) was significantly higher than that of the system of **1a** (Scheme S1-a), which indicated that the ¹³C isotope labelled carbon monoxide is formed in **1a'** system.

6. Emission spectra of blue LED

Figure S2 Emission spectra of blue LED

7. UV-vis absorption spectra

Figure S3 UV-vis absorption spectra

The UV-vis absorption spectra were recorded in toluene with the combination of **1a**, **2b** and CsF. [1a] = 1.0 M: 1.77 mg dissolved in 10 ml toluene; [1a + CsF]: solution of 1.77 mg of **1a** and 0.07 mg of CsF in 10 ml toluene; [1a + 2b] : solution of 1.77 mg of **1a** and 6.88 mg of **2b** in 10 ml toluene; [1a + 2b + CsF] : solution of 1.77 mg of **1a** , 6.88 mg of **2b** and 0.07 mg of CsF in 10 ml toluene.

8. Stern-Volmer quenching studies with ketone 2b

Figure S4 Quenching of the 1a in the presence of 2b

The samples were prepared by mixing compound 1a ($[1a] = 10^{-3}$ M) with the different amounts of 2b in 2 mL toluene in a 10×10 mm light path quartz fluorescence cuvette equipped with Silicone/PTFE 3.2 mm septum. The excitation wavelength was fixed at 405 nm (incident light slit regulated to 1 mm), and the emission light was acquired from 400 nm to 700 nm (emission light slit regulated to 5 mm). A solvent blank was acquired from all measurements.

The Stern-Vomer plot shows a linear correlation between the concentration of **2b** and the ratio I_0/I . The Stern-Vomer constant K_{sv} could be calculated of 0.795 M⁻¹, based on the following Equation S1.

$$I_0/I = 1 + K_{sv}[Q]$$
 Eq. S1
9. Kinetic isotope experiments

Scheme S2 Kinetic isotope experiments

The conversion of isotope labelled substrate **1a**'' was significantly higher than that of normal substrate **1a** (Scheme S2), which maybe due to the much higher bond energy of C-D bond than C-H bond, thus hindering the vibrational relaxation process of excited state and prolonging the lifetime of single excited state $(S_1)^7$

10. Computational details

All the calculations were carried out with Gaussian 16 software package.⁸ Geometry optimizations were carried out at CAM-B3LYP⁹/6-311G(d,p)¹⁰, SDD¹¹ for Cs/IEFPCM¹²(toluene) level of theory. Vibrational frequencies were also calculated for all stationary points to verify them as energy minima or transition states. Intrinsic reaction coordinate (IRC)¹³ calculations were carried out as well to confirm whether the transition states were connected with expected reactants and products. Time-dependent density functional theory (TD-DFT)¹⁴ calculation was also performed at CAM-B3LYP/6-311G(d,p), SDD for Cs /IEFPCM (toluene) level of theory and first 6 excited states were reported. The orbitals were displayed using VMD 1.9.3.¹⁵ The optimized geometries were displayed using CYLview20.¹⁶

i. Configuration study

1a has two possible conformations, where the Gibbs free energy of **syn-1a** is 1.7 kal/mol higher than that of **trans-1a**. Thus, **trans-1a** is the more stable conformation and use as the main conformation for the next calculation.

ii Time-dependent density functional theory calculations

TD-DFT calculations of 1a. Orbital 48 is HOMO and orbital 49 is LUMO.

Excited State	1: Singlet-A	A 3.7037 eV 334.76 nm f=0.0326 <s**2>=0.000</s**2>
45 -> 49	0.12242	
46 -> 49	0.42599	(n_O, π^*) 36% contribution
46 -> 51	0.11102	
48 -> 49	0.51333	(n_N, π^*) 53% contribution

Excited State	2: Singlet-A	4.2036 eV 294.9	95 nm f=0.0782 <s< th=""><th>**2>=0.000</th></s<>	**2>=0.000
45 -> 49	-0.10892			
46 -> 49	-0.46490			
46 -> 51	-0.10131			
47 -> 49	-0.10916			
48 -> 49	0.46887			

Excited State	3: Singlet-A	5.0698 eV 244.55 nm f=0.0267 <s**2>=0.000</s**2>
45 -> 49	0.15919	
47 -> 49	-0.44822	
47 -> 50	0.10534	
48 -> 50	0.49328	

Excited State	4:	Singlet-A	5.5426 eV	223.69 nm	f=0.5119	<s**2>=0.000</s**2>	
46 -> 49	-0.	10934					
47 -> 49	0.	50531					
48 -> 50	0.	45457					

Excited State	5: Singlet-A	5.8194 eV 213.05 nm f=0.0159 <s**2>=0.000</s**2>
45 -> 49	0.58074	
46 -> 49	-0.16689	
47 -> 50	0.26556	
48 -> 50	-0.18310	
Excited State	6: Singlet-A	6.5345 eV 189.74 nm f=0.1066 <s**2>=0.000</s**2>
Excited State 45 -> 49	6: Singlet-A 0.21773	6.5345 eV 189.74 nm f=0.1066 <s**2>=0.000</s**2>
Excited State 45 -> 49 46 -> 49	6: Singlet-A 0.21773 -0.13475	6.5345 eV 189.74 nm f=0.1066 <s**2>=0.000</s**2>
Excited State 45 -> 49 46 -> 49 47 -> 50	6: Singlet-A 0.21773 -0.13475 -0.41334	6.5345 eV 189.74 nm f=0.1066 <s**2>=0.000</s**2>
Excited State 45 -> 49 46 -> 49 47 -> 50 48 -> 51	6: Singlet-A 0.21773 -0.13475 -0.41334 0.42619	6.5345 eV 189.74 nm f=0.1066 <s**2>=0.000</s**2>

Orbital of 1a, (localized by PM-Mulliken method¹⁶ with Multiwfn 3.7¹⁷)

TD-DFT Calculations of **1a-Cs**. Orbital 52 is HOMO and orbital 53 is LUMO.

Excited State	1: Singlet-A	3.5734 eV 346.97 nm f=0.0840 <s**2>=0.000</s**2>
49 -> 53	0.14972 (n_0, π^*) 4% contribution
50 -> 53	-0.16679	
52 -> 53	0.65922 ((n_N, π^*) 87% contribution

Excited State 2: Singlet-A 4.2130 eV 294.29 nm f=0.0342 <S**2>=0.000

49 -> 53	-0.39608
49 -> 60	0.12867
50 -> 53	0.49254
50 -> 60	-0.11153
52 -> 53	0.22902

Excited State	3: Singlet-A	4.9578 eV	250.08 nm	f=0.0490	<s**2>=0.000</s**2>	
49 -> 53	0.15407					
51 -> 53	0.55445					
52 -> 58	0.36756					
Excited State	4: Singlet-A	5.4238 eV	228.59 nm	f=0.4908	<s**2>=0.000</s**2>	
49 -> 53	0.17168					
50 -> 53	0.15787					
51 -> 53	-0.41752					
52 -> 58	0.47914					
Excited State	5: Singlet-A	5.5371 eV	223.91 nm	f=0.0015	<s**2>=0.000</s**2>	
49 -> 53	0.12684					
50 -> 53	0.11469					
52 -> 54	0.63385					
52 -> 57	0.22531					
Excited State	6: Singlet-A	5.5976 eV	221.49 nm	f=0.0408	<s**2>=0.000</s**2>	
49 -> 53	0.43653					
50 -> 53	0.36385					
51 -> 58	-0.17096					
52 -> 54	-0.16348					
52 -> 58	-0.31865					
s pe	~)ee	3)	R	. 1 3	
		2		-	Java .	
	• 1	•		~		•
, A			, T		· ·	
-	34					
	à.					
المية.						
1	Orbit	al 49	Orbital 52		Orbital 53	Localized orbital 49
Localized	orbital 52					

Figure S7

TD-DFT Calculations of 1n. Orbital 48 is HOMO and orbital 49 is LUMO.

Excited State	1: Singlet-A	3.9498 eV 313.90 nm f=0.0162 <s**2>=0.000</s**2>
30 -> 33	0.61830	(n_0, π^*) 76% contribution
30 -> 36	0.13937	
30 -> 37	-0.15007	
32 -> 33	-0.25287	
Excited State	2: Singlet-A	4.1025 eV 302.22 nm f=0.1317 <s**2>=0.000</s**2>
30 -> 33	0.23969	
31 -> 34	-0.11368	
32 -> 33	0.64532	
Excited State	3: Singlet-A	5.2623 eV 235.61 nm f=0.1152 <s**2>=0.000</s**2>
31 -> 33	0.61811	
32 -> 34	0.30600	
Excited State	4: Singlet-A	5.9383 eV 208.79 nm f=0.5305 <s**2>=0.000</s**2>
31 -> 33	-0.31506	
32 -> 34	0.61213	
Excited State	5: Singlet-A	6.4529 eV 192.14 nm f=0.0579 <s**2>=0.000</s**2>
29 -> 33	0.12390	
29 -> 35	0.10969	
31 -> 34	0.23941	
32 -> 34	0.11341	
32 -> 35	0.62117	
Excited State	6: Singlet-A	6.5721 eV 188.65 nm f=0.0830 <s**2>=0.000</s**2>
29 -> 33	0.19148	
31 -> 34	0.48472	
32 -> 35	-0.26525	
32 -> 36	0.21205	

32 -> 37 -0.27909

TD-DFT Calculations of 10. Orbital 48 is HOMO and orbital 49 is LUMO. 4.1194 eV 300.98 nm f=0.0004 <S**2>=0.000 Excited State 1: Singlet-A 47 -> 49 0.66603 (n_0, π^*) 89% contribution 47 -> 52 0.11394 47 -> 54 0.14562 47 -> 55 0.10150 Excited State 2: Singlet-A 4.3911 eV 282.35 nm f=0.6913 <S**2>=0.000 48 -> 49 0.68506 48 -> 50 0.10369 Excited State 3: Singlet-A 4.7677 eV 260.05 nm f=0.0696 <S**2>=0.000 46 -> 49 -0.29970 48 -> 49 -0.10383 48 -> 50 0.62350 Excited State 4: Singlet-A 5.8062 eV 213.54 nm f=0.1841 <S**2>=0.000 46 -> 49 0.62578 48 -> 50 0.30920 6.3108 eV 196.46 nm f=0.0207 <S**2>=0.000 Excited State 5: Singlet-A 45 -> 51 0.10168 48 -> 51 0.67026

48 -> 53 -0.13266

Excited State 6: Singlet-A 6.7195 eV 184.51 nm f=0.0807 <S**2>=0.000 45 -> 49 0.40374 46 -> 50 0.25301

iii Potential complete energy surface

Figure S10 Potential complete energy surface

iv Cartesian coordinate

trans-1a

Charge = 0	Multiplicity	= 1	
С	0.73638100	-1.67813800	-0.46015600
С	2.10556000	-1.87053100	-0.55143700
С	2.99131800	-0.82190600	-0.33202800
С	2.48504200	0.41549000	0.01330800
С	1.11173400	0.61979200	0.13789500
С	0.20714800	-0.42472800	-0.13742300
Ν	-1.18209400	-0.17454500	-0.09048600
С	-2.06048800	-1.31829000	0.14452300
С	-1.88014000	-1.93628900	1.52276600
С	-1.69154300	0.72904900	-1.13558800

С	-2.84019600	1.61434000	-0.67391300
С	0.64936600	1.92062800	0.66236200
0	1.35930000	2.89200300	0.78772600
Н	0.07625900	-2.50967900	-0.66299000
Н	2.48405900	-2.85209100	-0.81250500
Н	4.05945400	-0.97707900	-0.41594300
Н	3.13851600	1.25267300	0.22646600
Н	-3.08283500	-0.95023300	0.06276700
Н	-1.95411600	-2.08013100	-0.64241400
Н	-2.58750000	-2.75649200	1.66142600
Н	-0.87448900	-2.33286900	1.66662700
Н	-2.06198700	-1.18919500	2.29721600
Н	-0.86716600	1.35554800	-1.47464200
Н	-2.00489100	0.13779500	-2.00930000
Н	-3.16233400	2.25860500	-1.49483800
Н	-3.70669500	1.03296300	-0.35510000
Н	-2.53638300	2.25037200	0.15904300
Н	-0.40472500	1.94909800	0.98390900

syn-1a

Multiplicity	= 1	
-1.20995900	1.40903100	-0.37405300
-2.58957200	1.32106900	-0.40645100
-3.23398100	0.10641700	-0.21186300
-2.45817100	-1.00192300	0.05404100
-1.06136900	-0.94425100	0.10925000
-0.39611100	0.28531400	-0.15251300
0.99237400	0.39122900	-0.17234400
1.58450400	1.72070600	-0.04548400
1.38513500	2.33834000	1.33151600
1.73012000	-0.48252600	-1.09680400
3.06764100	-0.96453400	-0.55674000
-0.42760100	-2.17568900	0.60708200
0.74182800	-2.37815800	0.83080200
-0.75531000	2.37141900	-0.55419200
-3.16778500	2.21683300	-0.60228700
-4.31316900	0.03524100	-0.24671700
-2.93525100	-1.95501000	0.25687900
2.65321400	1.60226100	-0.21451000
1.23387000	2.39874200	-0.83684500
1.88232600	3.30944300	1.38271900
0.33151400	2.48753400	1.56948000
1.81343200	1.68901200	2.09654100
	Multiplicity - -1.20995900 -2.58957200 -3.23398100 -2.45817100 -1.06136900 -0.39611100 0.99237400 1.58450400 1.38513500 1.73012000 3.06764100 -0.42760100 0.74182800 -0.75531000 -3.16778500 -4.31316900 -2.93525100 2.65321400 1.23387000 1.88232600 0.33151400 1.81343200	Multiplicity = 1 -1.20995900 1.40903100 -2.58957200 1.32106900 -3.23398100 0.10641700 -2.45817100 -1.00192300 -1.06136900 -0.94425100 -0.39611100 0.28531400 0.99237400 0.39122900 1.58450400 1.72070600 1.38513500 2.33834000 1.73012000 -0.48252600 3.06764100 -0.96453400 -0.42760100 -2.17568900 0.74182800 -2.37815800 -0.75531000 2.37141900 -3.16778500 2.21683300 -4.31316900 0.03524100 2.65321400 1.60226100 1.23387000 2.39874200 1.88232600 3.30944300 0.33151400 2.48753400 1.81343200 1.68901200

Н	1.10821000	-1.34207900	-1.32704000
Н	1.87997800	0.06032700	-2.04233100
Н	3.53362000	-1.63570100	-1.28229200
Н	3.76541700	-0.14354700	-0.38108800
Н	2.91434500	-1.50688600	0.37333500
Н	-1.16946600	-2.97265100	0.82045000

1n

Charge = 0	Multiplicity	= 1	
С	-0.04843900	-1.41161700	0.02651800
С	1.29991300	-1.68794900	0.01652200
С	2.19999300	-0.62173900	-0.01560900
С	1.75480700	0.68314000	-0.02201900
С	0.38345100	0.97897900	-0.00078300
С	-0.52729400	-0.09687200	0.00556400
Н	-0.78571400	-2.20481800	0.03868900
Н	1.65639100	-2.70963600	0.02800100
Н	3.26643300	-0.81499300	-0.02882200
Н	2.46772000	1.50007400	-0.03594000
Ν	-0.02328800	2.29856700	-0.03200100
Н	-0.90077000	2.53518800	0.39957600
Н	0.69630200	2.97980800	0.15135400
С	-1.98054900	0.10793000	-0.05123000
Н	-2.32503700	1.15095800	-0.18489900
0	-2.80045100	-0.77972200	0.01278300

10

Charge = 0	Multiplicity	= 1	
С	0.31949600	-0.01574400	-0.18552000
С	-0.36238700	1.19747800	-0.43225700
С	-1.73760300	1.26330200	-0.37674100
С	-2.50837200	0.14590800	-0.06066000
С	-1.84574500	-1.05165900	0.20979200
С	-0.47367300	-1.13753900	0.15815200
Н	0.18474200	2.09660900	-0.66993900
Н	-2.22870500	2.20999500	-0.57916500
Н	-2.43646500	-1.92149200	0.47133100
Н	-0.01116000	-2.08301600	0.39386100
С	-3.96590400	0.23496800	-0.00235300
Н	-4.37581900	1.24073600	-0.23154200
0	-4.71199000	-0.67967600	0.26769800
N	1.68756300	-0.11019600	-0.28196100

2.49588200	1.10024800	-0.37081200
2.05112500	1.76678500	-1.10945600
2.33143200	-1.36881300	0.10465500
2.19259000	-1.55301100	1.17867500
1.82087500	-2.17807600	-0.41997100
3.81001500	-1.46820900	-0.23418900
4.42497900	-0.77081500	0.33602500
4.14976000	-2.47628000	0.00902600
3.99011300	-1.30436400	-1.29828600
3.46569800	0.83013500	-0.78094200
2.68046000	1.82210900	0.96171600
3.18562500	1.17940200	1.68613100
3.28700700	2.72060700	0.82744400
1.72100400	2.11927500	1.38825700
	2.49588200 2.05112500 2.33143200 2.19259000 1.82087500 3.81001500 4.42497900 4.14976000 3.99011300 3.46569800 2.68046000 3.18562500 3.28700700 1.72100400	2.495882001.100248002.051125001.766785002.33143200-1.368813002.19259000-1.553011001.82087500-2.178076003.81001500-1.468209004.42497900-0.770815004.14976000-2.476280003.99011300-1.304364003.465698000.830135002.680460001.822109003.185625001.179402003.287007002.720607001.721004002.11927500

S1

Charge = 0	Multiplicity	= 1	
С	0.95264700	-1.67369100	-0.33596500
С	2.34201000	-1.71801500	-0.42092300
С	3.07635500	-0.52963100	-0.31395200
С	2.45516800	0.68306300	-0.12518300
С	1.04210400	0.74185700	-0.03081100
С	0.30453300	-0.46966500	-0.14251000
Ν	-1.11318100	-0.35271300	-0.07158800
С	-1.77446900	-1.01392600	1.05187700
С	-1.26094600	-0.54911100	2.40395400
С	-1.81143700	-0.39457300	-1.36123900
С	-3.11753900	0.38536900	-1.38513900
С	0.26610200	1.90668400	0.16694400
0	0.59023800	3.09643000	0.30553300
Н	0.37115500	-2.58500900	-0.42438900
Н	2.84600600	-2.66410500	-0.56741700
Н	4.15820300	-0.56557800	-0.37597400
Н	3.03133400	1.59460600	-0.03730100
Н	-2.84405000	-0.82268600	0.97134200
Н	-1.63494500	-2.09968200	0.94925800
Н	-1.77533100	-1.09583000	3.19571200
Н	-0.19072600	-0.72903800	2.50556900
Н	-1.44522900	0.51661000	2.54532500
Н	-1.12355600	0.01644200	-2.09908200
Н	-1.98811700	-1.44462100	-1.63311000
Н	-3.53165700	0.35737100	-2.39426800
Н	-3.86889500	-0.02832900	-0.71202000

Н	-2.94793800	1.42961100	-1.11728900
Н	-0.83307000	1.60762100	0.20818300

T1

Charge = 0	Multiplicity	= 3	
С	0.68220700	-1.79705700	-0.23990000
С	2.03197100	-2.05996100	-0.25879700
С	2.95264800	-0.95690300	-0.25458600
С	2.52836400	0.32735800	-0.13643700
С	1.14338900	0.63175200	0.04985600
С	0.18447500	-0.48497000	-0.17952400
Ν	-1.15853900	-0.21426200	-0.27950800
С	-2.13764900	-1.28551900	-0.08872000
С	-2.22811000	-1.75129600	1.35799500
С	-1.63544600	0.93421400	-1.06491200
С	-2.73574500	1.73794800	-0.38872600
С	0.78785900	1.90567400	0.57459100
0	1.61416700	2.82338100	0.74927300
Н	-0.00802100	-2.62176900	-0.35120400
Н	2.39576800	-3.07348000	-0.35072600
Н	4.01498500	-1.16111000	-0.33271900
Н	3.22543600	1.15113200	-0.07097200
Н	-3.10259900	-0.89966000	-0.41033900
Н	-1.90658200	-2.12068500	-0.75707100
Н	-2.97923900	-2.53840300	1.44494900
Н	-1.27667000	-2.14615200	1.71364200
Н	-2.51834200	-0.92469700	2.00814300
Н	-0.78329200	1.56908800	-1.29202900
Н	-1.99107200	0.53830900	-2.02349900
Н	-3.03105400	2.56011200	-1.04269400
Н	-3.62649000	1.14059900	-0.18960400
Н	-2.39360000	2.16299000	0.55524900
Н	-0.26657300	2.06907900	0.83620500

TS1

Charge = 0 Multiplicity = 1

Imaginary frequency = -205.78 cm⁻¹

С	1.13962900	-1.29107700	-0.74455000
С	2.51668100	-1.19163900	-0.86534500
С	3.17340200	-0.06586800	-0.36823200
С	2.46597200	0.94759900	0.25232000

С	1.07540800	0.88489900	0.36976900
С	0.45572100	-0.25120000	-0.13573700
Ν	-1.02411400	-0.25714200	-0.00812500
С	-1.62555600	-1.57277800	0.38186600
С	-1.06716600	-2.08749300	1.69445300
С	-1.66314900	0.38621700	-1.21694900
С	-3.14253900	0.66144800	-1.03653700
Н	0.62571500	-2.16398700	-1.12884900
Н	3.07529900	-1.98818700	-1.33979200
Н	4.25013100	0.01158000	-0.46819100
Н	2.98325500	1.81029100	0.65925900
С	0.24067400	1.86230600	1.21624400
Н	-1.20058300	0.39932300	0.77214700
Н	-1.45806500	-2.26744000	-0.44021700
Н	-2.69733800	-1.40783400	0.46491700
Н	-1.60993100	-2.98942500	1.97937700
Н	-1.19411400	-1.35117700	2.49036100
Н	-0.00877800	-2.33141400	1.62074900
Н	-1.45534800	-0.26681200	-2.06473100
Н	-1.12058000	1.32233000	-1.33439200
Н	-3.48224100	1.25825300	-1.88379700
Н	-3.32190700	1.24952800	-0.13403800
Н	-3.75175300	-0.24175700	-1.00620400
0	-0.48492800	2.63278100	0.57330800

³TS1

Charge = 0 Multiplicity = 3 Imaginary frequency = $-406 \ 10 \ c$

-				
Imaginary frequency = -406.10 cm^{-1}				
С	1.28820600	-1.25317400	-0.78564200	
С	2.65836100	-1.02479000	-0.80988900	
С	3.17399300	0.13912100	-0.24567800	
С	2.34205700	1.08011000	0.33862600	
С	0.95164100	0.89190400	0.37708100	
С	0.47715500	-0.30211400	-0.20194900	
Ν	-0.97941600	-0.41610500	-0.10855800	
С	-1.49684400	-1.72677900	0.37793000	
С	-1.01294200	-2.04851100	1.77864500	
С	-1.69046500	0.08815300	-1.33537900	
С	-3.01091200	0.74572800	-0.98415800	
Н	0.87724700	-2.15687600	-1.22094900	
Н	3.31880400	-1.75320500	-1.26280900	
Н	4.24373500	0.31264900	-0.26587200	
Н	2.75258400	1.97967600	0.77978700	

С	-0.00967700	1.77517100	1.02850700
Н	-1.11672500	0.34870200	0.65060600
Н	-1.19406900	-2.49076200	-0.33964300
Н	-2.58378600	-1.66056300	0.35239100
Н	-1.45218800	-2.99344100	2.10039400
Н	-1.31475900	-1.27449000	2.48600100
Н	0.07168900	-2.14539200	1.81719200
Н	-1.80264700	-0.75694100	-2.01695300
Н	-1.02423500	0.81572600	-1.79274400
Н	-3.48396000	1.10502000	-1.89894600
Н	-2.82433300	1.60366000	-0.33537700
Н	-3.70789000	0.06112400	-0.49814900
0	-0.74087500	2.71611700	0.62205200

IM1

Charge $= 0$	Multiplicity	= 1	
С	1.08594300	-1.48550200	-0.22996900
С	2.47198900	-1.50421200	-0.32730600
С	3.19129700	-0.31815600	-0.30761600
С	2.51342000	0.88441700	-0.18944700
С	1.12271200	0.93157500	-0.08837400
С	0.41117300	-0.27892600	-0.11159300
Ν	-1.03811400	-0.23436700	-0.03038900
С	-1.57999100	-0.97550800	1.12354400
С	-1.11014300	-0.40857700	2.45303900
С	-1.66346400	-0.62239400	-1.31330100
С	-3.09101500	-0.11752100	-1.45905300
Н	0.53359200	-2.41730500	-0.24909500
Н	2.98860200	-2.45215600	-0.42059700
Н	4.27148700	-0.33365200	-0.38360400
Н	3.04194100	1.83000200	-0.16772900
С	0.55779900	2.32075900	0.04806900
Н	-1.11291200	1.39305500	0.13280800
Н	-1.32124900	-2.04034900	1.04954800
Н	-2.66631000	-0.90934200	1.06718100
Н	-1.56679700	-0.96461900	3.27347200
Н	-1.39379000	0.64051400	2.55377600
Н	-0.02703700	-0.48007200	2.56153000
Н	-1.62811800	-1.71332500	-1.43619400
Н	-1.04982800	-0.19374500	-2.10679200
Н	-3.46556100	-0.36951700	-2.45290300
Н	-3.13225800	0.96766000	-1.34804800
Н	-3.77037500	-0.56414200	-0.73215700
			- 10

S49

³IM1

Charge $= 0$	Multiplicity	= 3	
С	1.12151300	-1.49805400	-0.03665300
С	2.50997100	-1.52807000	-0.12757900
С	3.20882200	-0.31131400	-0.26681100
С	2.55127500	0.88802100	-0.31116300
С	1.12696800	0.96488000	-0.21562100
С	0.45330600	-0.29488900	-0.07728600
Ν	-1.02085800	-0.24472500	-0.01091000
С	-1.57987900	-0.75731500	1.28263400
С	-1.08158700	0.05196200	2.46388100
С	-1.66483100	-0.85527700	-1.22355700
С	-3.10490100	-0.41531200	-1.41301700
Н	0.57046900	-2.42721400	0.06502700
Н	3.03894700	-2.47085900	-0.09406000
Н	4.29039600	-0.32639200	-0.34052200
Н	3.10111400	1.81543500	-0.41745500
С	0.41785100	2.17253200	-0.24681100
Н	-1.22636300	0.79176200	-0.04865600
Н	-1.30094700	-1.80801400	1.36368600
Н	-2.66449200	-0.69625000	1.20722600
Н	-1.55605600	-0.31528300	3.37463500
Н	-1.33169100	1.10737100	2.34574100
Н	-0.00162800	-0.03513100	2.57795600
Н	-1.57363100	-1.93806400	-1.13263700
Н	-1.05547600	-0.53704200	-2.06755300
Н	-3.46350900	-0.79538200	-2.37042800
Н	-3.17858900	0.67355900	-1.43847800
Н	-3.77182500	-0.79602600	-0.63956000
0	-0.81022000	2.37095100	-0.15958200

TS2

Charge = 0	Multiplicity $= 1$				
Imaginary frequency = -116.66 cm^{-1}					
С	1.33763300	-1.45921000	-0.09421000		
С	2.71383300	-1.32271700	-0.18897400		
С	3.27131600	-0.04902400	-0.29225100		
С	2.45481400	1.07547800	-0.30228900		
С	1.05974400	0.99447300	-0.21296600		
С	0.58230600	-0.29176700	-0.10765400		

N	-0.91865500	-0.39601600	-0.03248400
С	-1.42322300	-1.08453900	1.19835600
С	-0.99933500	-0.36289600	2.46245800
С	-1.50053600	-0.94311300	-1.30310800
С	-2.98225600	-0.65369600	-1.45779900
Н	0.89291100	-2.44635100	-0.01463800
Н	3.34723300	-2.20173200	-0.18225100
Н	4.34958300	0.05508300	-0.36469800
Н	2.92511700	2.05497800	-0.38167000
С	-0.26683900	2.89069400	-0.06039700
Н	-1.20846500	0.58957100	0.02666400
Н	-1.04582700	-2.10646700	1.17075600
Н	-2.50906500	-1.12148800	1.12553400
Н	-1.42483400	-0.87727900	3.32499500
Н	-1.36281900	0.66624100	2.46774700
Н	0.08418500	-0.34478600	2.56873000
Н	-1.28585700	-2.01172500	-1.32077900
Н	-0.93280200	-0.47302700	-2.10415400
Н	-3.29650400	-0.96444100	-2.45490900
Н	-3.18455200	0.41540500	-1.36549600
Н	-3.59935600	-1.19153000	-0.73813100
0	-1.35038800	2.49594600	0.07783600

IM2

Charge $= 0$	Multiplicity = 1			
С	1.04388800	-0.12107600	1.16090100	
С	2.42587400	-0.21691800	1.20402500	
С	3.13493500	-0.30390100	0.00665700	
С	2.46694200	-0.29645100	-1.21320600	
С	1.06427300	-0.20009200	-1.33291700	
С	0.45454000	-0.11562000	-0.09750200	
Ν	-1.04550300	-0.02804900	-0.20259400	
С	-1.64339000	1.20726500	0.38946000	
С	-1.07272300	2.47083600	-0.22408900	
С	-1.71018900	-1.29402300	0.24194900	
С	-3.16149200	-1.40995800	-0.18687700	
Н	0.47109600	-0.05360000	2.08144100	
Н	2.94343400	-0.22445100	2.15605600	
Н	4.21830400	-0.37765900	0.03583400	
Н	3.07519600	-0.36790600	-2.11411200	
Н	-1.10245200	0.01994400	-1.23331700	
Н	-1.45842400	1.16471900	1.46331300	
Н	-2.71944500	1.15866400	0.23011100	
Н	-1.56363300	3.33545800	0.22486000	

Н	-1.24802600	2.50085900	-1.30098600
Н	-0.00054300	2.54912300	-0.05366100
Н	-1.59972300	-1.34900700	1.32515800
Н	-1.11409900	-2.09281200	-0.19654500
Н	-3.51646100	-2.41355700	0.05092700
Н	-3.26733000	-1.27081300	-1.26500100
Н	-3.81531700	-0.70299000	0.32368200

IM3

Charge = 0	Multiplicity	= 1	
С	2.58433100	-0.35031000	-0.00779900
С	3.50823500	0.67717100	-0.10861100
С	3.04964800	1.97684400	-0.31028100
С	1.68657100	2.23232200	-0.41074300
С	0.68934100	1.23789700	-0.31570200
С	1.23791000	-0.01569400	-0.11067300
Ν	0.23149400	-1.13290600	-0.02425000
С	0.29307000	-1.93285200	1.23773700
С	0.06001800	-1.07268700	2.46401000
С	0.23893600	-1.97561300	-1.26388700
С	-0.97975000	-2.87264800	-1.39449400
Н	2.92423000	-1.37034100	0.14597700
Н	4.56875600	0.46766500	-0.03243100
Н	3.76650000	2.78910600	-0.38976900
Н	1.38934200	3.26831000	-0.57211900
Н	-0.66138200	-0.61729100	-0.01860200
Н	1.26682600	-2.42188700	1.26361100
Н	-0.47306400	-2.70302600	1.16815500
Н	0.09017700	-1.70415600	3.35326600
Н	-0.92048900	-0.59777200	2.41197700
Н	0.81915900	-0.29800900	2.56035000
Н	1.17034900	-2.54265800	-1.26323100
Н	0.28228400	-1.26360600	-2.08669200
Н	-0.99803500	-3.29456400	-2.40037800
Н	-1.89700900	-2.30022300	-1.24681100
Н	-0.97005200	-3.70551500	-0.69112400
0	-2.57930600	-0.20431200	0.24811700
С	-2.72099900	0.98297600	0.00994100
С	-2.74925700	1.49505700	-1.39677400
Н	-3.05010300	0.70676200	-2.08532600
Н	-3.38157700	2.37516500	-1.51365100
Н	-1.70747500	1.77264300	-1.60362700
С	-2.74283600	1.99523200	1.11534800

Н	-1.73322100	2.42015000	1.14253700
Н	-3.44989600	2.80315800	0.92495300
Н	-2.95262400	1.51475900	2.06930300

TS3

Charge = 0 Multiplicity = 1

Imaginary frequency = -72.53 cm^{-1}				
С	-2.48411500	0.30274600	-0.08439600	
С	-3.34090800	-0.78042400	-0.19729100	
С	-2.79981400	-2.05547100	-0.34498300	
С	-1.42102300	-2.23192500	-0.38143700	
С	-0.49224100	-1.17708200	-0.27400500	
С	-1.11707800	0.04713900	-0.12227100	
N	-0.17815900	1.22200000	-0.03223200	
С	-0.35998900	2.07787400	1.17988100	
С	-0.12495600	1.29629700	2.45791600	
С	-0.15176300	2.00050600	-1.31204400	
С	1.06074000	2.90634100	-1.43699700	
Н	-2.88950900	1.30379500	0.02801400	
Н	-4.41415400	-0.63260400	-0.17117500	
Н	-3.46453100	-2.91011300	-0.43276300	
Н	-1.05651300	-3.25269000	-0.50145100	
Н	0.74594700	0.76663900	0.05454300	
Н	-1.36521200	2.49682200	1.13783600	
Н	0.35178400	2.89851800	1.10463400	
Н	-0.22592700	1.96677900	3.31256500	
Н	0.88189200	0.87640400	2.46408400	
Н	-0.84190900	0.48353000	2.56626100	
Н	-1.09039600	2.55209900	-1.37782000	
Н	-0.14974800	1.24879800	-2.09966900	
Н	1.10400300	3.29901800	-2.45385400	
Н	1.97813600	2.34556600	-1.24906900	
Н	1.02592800	3.75892500	-0.75847300	
0	2.42532000	0.11605700	0.32234500	
С	2.36393800	-1.08243200	0.07474700	
С	2.63136900	-1.60856300	-1.30819000	
Н	2.56446700	-0.80329200	-2.03690500	
Н	3.64669300	-2.02190500	-1.32823500	
Н	1.92950800	-2.39974600	-1.56134600	
С	2.28068600	-2.09788000	1.18020200	
Н	1.71061000	-2.97209300	0.87349300	
Н	3.30186000	-2.41556200	1.42325300	
Н	1.83254600	-1.65409700	2.06614800	

IM4

Charge = 0	Multiplicity = 1		
С	0.01379500	2.15431000	-0.35261100
С	-1.19371200	2.81243100	-0.50319000
С	-2.37021200	2.08245600	-0.43925400
С	-2.32047200	0.71529700	-0.22404100
С	-1.11487900	0.02863600	-0.06107400
С	0.06882500	0.77863400	-0.13620400
Ν	1.36241800	0.13398400	-0.01315800
С	2.19573000	0.68394000	1.06887500
С	1.53205500	0.59490800	2.43421800
С	2.07608300	0.08106900	-1.30097100
С	3.11351100	-1.03076500	-1.36310800
Н	0.93880800	2.71595400	-0.40648300
Н	-1.21491200	3.88245400	-0.67105000
Н	-3.32843200	2.57476300	-0.55464700
Н	-3.25201600	0.16747800	-0.17814500
Н	0.73170800	-1.40858400	0.58114500
Н	2.47773800	1.72547800	0.85371000
Н	3.12201400	0.10832300	1.08303500
Н	2.22757100	0.93394400	3.20428400
Н	1.23379100	-0.42969000	2.65770300
Н	0.64024700	1.22104100	2.48632100
Н	2.54708100	1.05132900	-1.51962200
Н	1.32879100	-0.08316800	-2.07830400
Н	3.55688700	-1.06678800	-2.36038700
Н	2.65230400	-1.99882200	-1.15820600
Н	3.92568900	-0.88237700	-0.65022300
0	-0.02558500	-1.95464100	0.87920200
С	-1.13702200	-1.50059100	0.12061000
С	-1.11342000	-2.16482900	-1.26409300
Н	-0.20190700	-1.89787600	-1.80217900
Н	-1.13219400	-3.24974100	-1.14259900
Н	-1.96953400	-1.86091300	-1.87079400
С	-2.36023100	-1.97822300	0.90051800
Н	-3.28906000	-1.87132900	0.33975500
Н	-2.21870600	-3.03668600	1.12244700
Н	-2.44842200	-1.43917900	1.84468200

11. Notes and references

[1] L. Josa-Culleré, M. G. Hirst, J. P. Lockett, A. L. Thompson, M. G. Moloney, J. Org. Chem. 2019,

84, 9671-9683.

- [2] A. Gao, Y. Mu, J. Zhang, W. Yao, Eur. J. Inorg. Chem. 2009, 2009, 3613-3621.
- [3] H.-X. Sun, Z.-H. Sun, B. Wang, Tetrahedron Lett. 2009, 50, 1596-1599.
- [4] J. Niu, P. Guo, J. Kang, Z. Li, J. Xu, S. Hu, J. Org. Chem. 2009, 74, 5075-5078.
- [5] T. Okauchi, K. Kuramoto, M. Kitamura, Synlett 2010, 2010, 2891-2894.
- [6] G. Yan, C. Kuang, Y. Zhang and J. Wang, Org. Lett., 2010, 12, 1052.
- [7] R. G. Miller, E. K. C. Lee, Chem. Phy. Lett. 1976, 41, 52-54.

[8] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
[9] T. Yanai, D. Tew, and N. Handy, *Chem. Phys. Lett.* 2004, 393, 51–57.

[10] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B,

1988, 37, 785; c) V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, L. A. Curtiss, *J. Comp. Chem.* **2001**, 22, 976.

- [11] L. von Szentpály, P. Fuentealba, H. Preuss and H. Stoll, Chem. Phys. Lett. 1982, 93, 555.
- [12] J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999.
- [13] K. Fukui, Acc. Chem. Res., 1981, 14, 363-368. (b) C. Gonzalez and B. Schlegel, J. Chem. Phys., 1989, 90, 2154.
- [14] C. Adamo and D. Jacquemin, Chem. Soc. Rev. 2013, 42, 845.
- [15] W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics, 1996, 14, 33.
- [16] CYLview20; Legault, C. Y., Université de Sherbrooke, 2020 (http://www.cylview.org)
- [17] J. Pipek and P. G. Mezey, J. Chem. Phy. 1989, 90, 4916.
- [18] Tian Lu, Feiwu Chen, J. Comput. Chem. 2012, 33, 580-592.

12. Copies of ¹H ,¹³C and ¹⁹F NMR spectra.

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1c

S57

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1g

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1i

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1j

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1k

 $^1\text{H},\,^{13}\text{C}$ and ^{19}F NMR spectra of compound 11

S63

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1m

¹H and ¹³C NMR spectra of compound **1n**

S66

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1b'

¹H and ¹³C NMR spectra of compound **1a**"

S69

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3aa

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3ba**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3ca

¹H and ¹³C NMR spectra of compound **3da**

¹H and ¹³C NMR spectra of compound **3ea**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{3fa}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{3ga}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3ha**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3ia**

¹H and ¹³C NMR spectra of compound **3ja**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3ka

¹H, ¹³C and ¹⁹F NMR spectra of compound **3la**

¹H and ¹³C NMR spectra of compound **3ma**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1n

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{3ab}$

10.26 77.24 77.27 77.27 77.22 77.12 77.12 77.13 77.13 77.13 77.13 77.13 77.13 77.13 77.13 77.13 77.13 77.13 77.13 77.13 77.13 77.13 77.13 77.13 77.14 77

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3ac

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\boldsymbol{3ad}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3ae

$\begin{array}{c} 10.26\\ 7.12\\ 7.12\\ 7.12\\ 7.15\\ 7.15\\ 7.15\\ 7.15\\ 7.15\\ 3.06\\ 3.06\\ 3.03\\ 3.05\\ 3.03\\ 3.06\\ 3.03\\ 3.06\\ 3.03\\ 3.06\\ 3.02\\ 3.03\\ 3.02\\ 3.03\\ 3.02\\ 3.03\\ 3.02\\ 3.03\\ 3.02\\ 3.02\\ 3.02\\ 3.03\\ 3.02\\ 3.02\\ 3.03\\ 3.02\\ 3.02\\ 3.03\\ 3.02\\ 3.05\\ 3.02\\ 3.02\\ 3.02\\ 3.05\\ 3.02\\ 3.02\\ 3.05\\ 3.02\\ 3.05\\ 3.02\\ 3.02\\ 3.05\\ 3.02\\ 3.05\\ 3.02\\ 3.05\\ 3.02\\ 3.05\\ 3.02\\ 3.05\\ 3.02\\ 3.05\\ 3.02\\ 3.05\\ 3.02\\ 3.05\\ 3.02$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{3af}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\boldsymbol{3ag}$

$\begin{array}{c} 7.7.44\\ 7.7.42\\ 7.7.42\\ 7.7.43\\ 7.7.23\\$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{3ah}$

10.58 7.72

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3ai

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3aj

10.53 1.10.53 1.10.54 1.10.

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{3ak}$

¹H and ¹³C NMR spectra of compound **3al**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3am

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3an**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3ao

¹H and ¹³C NMR spectra of compound **3ap**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3aq

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3ar

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3as**

¹H and ¹³C NMR spectra of compound **3at**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3au

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3av

¹H and ¹³C NMR spectra of compound **3aw**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 3ax

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\boldsymbol{3ay}$

¹H and ¹³C NMR spectra of compound **bis(2-(diethylamino)phenyl)methanol (8)**

 $\left\{\begin{array}{c} -8.11\\ 7.25\\ 7.23\\ 7.23\\ 7.23\\ 7.20\\ 7.20\\ 7.04\\ 7.06\\ 7.04\\ 6.75\\ 3.05\\ 6.75\\ 3.05\\ 3.05\\ 7.06\\ 7.00\\ 6.75\\ 3.05\\ 7.06\\ 7.00\\ 1.06\\ 1.06\\ 1.06\\ 1.06\end{array}\right\}$

¹H and ¹³C NMR spectra of compound **3b'a**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\boldsymbol{5}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $4a^{\prime}$

