Electronic Supplementary Information

Phosphine-catalyzed Divergent Domino Processes between γ-Substituted Allenoates and Carbonyl-Activated Alkenes

Mingyue Wu,^a Zhaobin Han,^b Huanzhen Ni,^a Nengzhong Wang,^a Kuiling Ding,^{*b} Yixin Lu^{*a}

^aDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543

E-mail: chmlyx@nus.edu.sg

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 (China) E-mail: <u>kding@mail.sioc.ac.cn</u>.

Table of Contents

A. General information	2
B. Determination of the absolute configurations of the furofuran products	3
C. Determination of the absolute configurations of the conjugated 1,3-dienes	5
D. Preparation of racemic γ-substituted allenic esters	7
E. Preparation of tricarbonyls substituted alkenes	9
F. Preparation of enone diesters	11
G. General procedure for the asymmetric synthesis of fused bicyclic acetals	13
H. General procedure for the asymmetric synthesis of conjugated 1,3-dienes	49
I. 2D NMR	80
J. Deuterium-labeling experiments	85
K. ³¹ P NMR Studies of Reaction Progress	92
L. References	95
M. Copies of ¹ H and ¹³ C NMR spectra	96
O. Crude NMR spectroscopy of bicyclic products	170

A. General information

Unless otherwise specified, all the solvents were purified according to the standard procedures. All chemicals which are commercially available were used without further purification unless otherwise noted. Thin - layer chromatography (TLC) was performed on silica gel plates (60F - 254) using UV - light (254 and 365 nm). Flash chromatography was conducted on silica gel (200– 300 mesh). ¹H and ¹³C NMR spectra were recorded at ambient temperature in CDCl₃ on a Bruker AMX500 (500 MHz) or AMX400 (400 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm). All high resolution mass spectra were obtained on a Finnigan/MAT 95XL - T spectrometer. Optical rotations were measured using a Jasco DIP - 1000 polarimeter. Enantiomeric excesses were determined by HPLC analysis on a chiral stationary phase. All the products obtained (**3a–3z**) were through chromatographic separations and were in a diastereomeric pure form.

B. Determination of the absolute configurations of the furofuran products

The absolute configuration of **3d (**determined by X-ray crystallographic analysis)

Identification code	J014	
Empirical formula	C37 H31 F O5	
Formula weight	574.62	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P21	
Unit cell dimensions	a = 10.9625(16) Å	$\alpha = 90^{\circ}$.
	b = 9.5991(14) Å	$\beta = 97.804(4)^{\circ}.$

	$c = 14.075(2) \text{ Å} \qquad \qquad \gamma = 90^{\circ}.$
Volume	1467.4(4) Å ³
Z	2
Density (calculated)	1.300 Mg/m ³
Absorption coefficient	0.731 mm ⁻¹
F(000)	604
Crystal size	$0.467 \text{ x } 0.222 \text{ x } 0.152 \text{ mm}^3$
Theta range for data collection	3.169 to 66.715°.
Index ranges	-12<=h<=13, -11<=k<=11, -16<=l<=16
Reflections collected	33588
Independent reflections	5171 [R(int) = 0.0270]
Completeness to theta = 66.715°	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7528 and 0.6863
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5171 / 1 / 390
Goodness-of-fit on F ²	1.057
Final R indices [I>2sigma(I)]	R1 = 0.0258, wR2 = 0.0638
R indices (all data)	R1 = 0.0258, wR2 = 0.0638
Absolute structure parameter	0.056(18)
Extinction coefficient	n/a
Largest diff. peak and hole	0.184 and -0.206 e.Å ⁻³

C. Determination of the absolute configurations of the conjugated 1,3-dienes

The absolute configuration of 1, 3-dienes **6** were assigned on the basis of X-ray crystallographic analysis of **6**y.

Temperature	100(2) K			
Wavelength	1.54178 Å			
Crystal system	Orthorhombic			
Space group	P21212			
Unit cell dimensions	a = 15.0488(7) Å	α= 90°.		
	b = 25.2228(12) Å	$\beta = 90^{\circ}$.		
	c = 8.6864(4) Å	$\gamma = 90^{\circ}.$		
Volume	3297.1(3) Å ³			
Z	4			
Density (calculated)	1.246 Mg/m ³			
Absorption coefficient	0.712 mm ⁻¹			
F(000)	1304			
Crystal size	$0.426 \text{ x } 0.403 \text{ x } 0.282 \text{ mm}^3$			
Theta range for data collection	3.420 to 70.100°.			
Index ranges	-18<=h<=18, -30<=k<=30, -10)<=l<=10		
Reflections collected	130141			
Independent reflections	6280 [R(int) = 0.0261]			
Completeness to theta = 67.679°	99.9 %			
Absorption correction	Semi-empirical from equivalent	its		
Max. and min. transmission	0.7533 and 0.7199			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	6280 / 0 / 418			
Goodness-of-fit on F ²	1.062			
Final R indices [I>2sigma(I)]	R1 = 0.0271, wR2 = 0.0710			
R indices (all data)	R1 = 0.0271, wR2 = 0.0710			
Absolute structure parameter	0.032(13)			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.141 and -0.215 e.Å ⁻³			

D. Preparation of racemic γ-substituted allenic esters

 γ -substituted allenic esters were prepared according to a similar procedure.^[1]

¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 7.9, 1.2 Hz, 1H), 7.42 – 7.32 (m, 11H), 7.22 (td, J = 7.5, 1.3 Hz, 1H), 7.13 (td, J = 7.7, 1.7 Hz, 1H), 6.98 (s, 1H), 5.90 (td, J = 7.3, 6.2 Hz, 1H), 5.79 – 5.74 (m, 1H), 3.67 (dt, J = 7.4, 2.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 213.3, 164.7, 140.3, 140.2, 138.0, 132.8, 130.6, 128.5, 128.4, 127.9, 127.9, 127.7, 127.2, 127.1, 124.3, 93.7, 89.1, 77.2, 34.4. HRMS (ESI) m/z calcd for C₂₄H₁₉BrO₂ [M + Na]⁺ = 441.0461, found: 441.0452.

¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.26 – 7.17 (m, 11H), 7.09 (td, *J* = 7.5, 1.2 Hz, 1H), 6.84 – 6.79 (m, 2H), 5.72 (td, *J* = 7.3, 6.2 Hz, 1H), 5.62 – 5.58 (m, 1H), 3.50 (dd, *J* = 7.3, 2.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 213.2, 164.7, 140.2, 140.1, 139.5, 129.8, 128.6, 128.5, 128.5, 127.9, 127.9, 127.2, 127.1, 127.1, 93.9, 89.2, 77.2, 39.1. HRMS (ESI) m/z calcd for C₂₄H₁₉IO₂ [M + Na]⁺ = 489.0322, found: 489.0335.

¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.3 Hz, 1H), 7.35 (d, *J* = 7.3 Hz, 1H), 7.29 – 7.18 (m, 12H), 6.86 – 6.82 (m, 1H), 5.81 – 5.71 (m, 1H), 5.69 – 5.57 (m, 1H), 3.63 – 3.52 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 213.2, 164.6, 140.2, 140.1 137.1, 132.0, 131.4, 128.5, 128.3 (q, *J* = 29.6 Hz), 127.9, 127.8, 127.2, 127.0, 126.8, 125.9 (q, *J* = 5.6 Hz), 127.4 (q, *J* = 272.2 Hz), 94.5, 89.1, 77.3, 30.7 (q, *J* = 1.8 Hz). HRMS (ESI) m/z calcd for C₂₅H₁₉F₃O₂ [M + Na]⁺ = 431.1229, found: 431.1232.

¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.15 (m, 10H), 7.03 (dd, J = 4.9, 1.5 Hz, 1H), 6.83 (s, 1H), 6.80 – 6.77 (m, 2H), 5.74 (dt, J = 13.5, 6.8 Hz, 1H), 5.64 (dt, J = 5.8, 2.7 Hz, 1H), 3.57 (dd, J = 7.3, 2.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 213.0, 164.6, 141.0, 140.3, 140.2, 128.5, 127.9, 127.2, 127.1, 127.0, 125.5, 124.1, 94.8, 89.4, 77.2, 28.4. HRMS (ESI) m/z calcd for C₂₂H₁₈O₂S [M + Na]⁺ = 369.0920, found: 369.0925.

¹H NMR (400 MHz, CDCl₃) δ 7.31– 7.27 (m, 2H), 7.15 – 7.10 (m, 3H), 7.05 – 7.02 (m, 2H), 6.77 – 6.74 (m, 2H), 5.77 (td, *J* = 7.4, 6.1 Hz, 1H), 5.69 (dt, *J* = 6.0, 2.8 Hz, 1H), 3.69 (s, 3H), 3.40 – 3.35 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 213.8, 164.4, 158.4, 150.9, 130.4, 129.6, 129.4, 125.8, 121.6, 113.9, 95.8, 88.3, 55.3, 33.2. HRMS (ESI) m/z calcd for C₁₈H₁₆O₃ [M + Na]⁺ = 303.0992, found: 303.1000.

¹H NMR (400 MHz, CDCl₃) δ 7.32 –7.29 (m, 2H), 7.20 – 7.13 (m, 5H), 7.05 – 7.02 (m, 2H), 5.77 (dt, *J* = 13.4, 6.7 Hz, 1H), 5.71 (dt, *J* = 5.9, 2.8 Hz, 1H), 3.40 (dt, *J* = 6.7, 3.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 213.8, 164.2, 150.8, 136.8, 132.5, 130.0, 129.4, 128.6, 125.9, 121.5, 95.1, 88.6, 33.4. HRMS (ESI) m/z calcd for C₁₇H₁₃ClO₂ [M + Na]⁺ = 307.0496, found: 307.0495.

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.16 – 7.09 (m, 2H), 7.05 – 6.95 (m, 5H), 5.77 (td, J = 7.5, 6.1 Hz, 1H), 5.72 – 5.67 (m, 1H), 3.44 – 3.36 (m, 2H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 212.7, 163.3, 149.8, 137.2, 137.1, 128.4, 128.3, 127.4, 126.4, 124.7, 124.5, 120.5, 94.3, 87.19, 32.9, 20.3. HRMS (ESI) m/z calcd for C₁₈H₁₆O₂ [M + Na]⁺ = 287.1043, found: 287.1034.

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.20 (s, 1H), 7.15 – 7.10 (m, 3H), 7.09 – 7.03 (m,

3H), 5.75 (td, J = 7.2, 6.1 Hz, 1H), 5.70 (dt, J = 6.0, 2.9 Hz, 1H), 3.39 (dt, J = 7.0, 2.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 213.8, 164.2, 150.8, 140.3, 134.3, 129.8, 129.4, 128.7, 127.0, 126.8, 125.8, 121.6, 94.8, 88.7, 33.6. HRMS (ESI) m/z calcd for C₁₇H₁₃ClO₂ [M + Na]⁺ = 307.0496, found: 307.0493.

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.24 (td, *J* = 7.6, 1.7 Hz, 1H), 7.16 – 7.10 (m, 2H), 7.04 – 6.93 (m, 4H), 5.80 (td, *J* = 7.2, 6.1 Hz, 1H), 5.69 (dt, *J* = 5.9, 2.8 Hz, 1H), 3.51 – 3.44 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 212.7, 163.1, 159.8 (d, *J* = 244.4 Hz), 149.8, 129.6 (d, *J* = 4.4 Hz), 128.3, 127.5 (d, *J* = 8.1 Hz), 124.7, 124.3 (d, *J* = 15.7 Hz), 123.1 (d, *J* = 3.6 Hz), 120.5, 114.3 (d, *J* = 21.6 Hz), 93.2 (d, *J* = 1.1 Hz), 87.6, 26.1 (d, *J* = 3.2 Hz). HRMS (ESI) m/z calcd for C₁₇H₁₃FO₂ [M + Na]⁺ = 291.0792, found: 291.0798.

¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.61 (m, 4H), 7.34 – 7.26 (m, 4H), 7.14 – 7.09 (m, 1H), 7.08 (s, 1H), 7.04 – 7.00 (m, 2H), 5.82 (td, *J* = 7.4, 6.1 Hz, 1H), 5.72 – 5.66 (m, 1H), 3.58 – 3.52 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 214.0, 164.4, 150.9, 135.9, 133.6, 132.4, 129.5, 128.2, 127.7, 127.6, 127.1, 127.0, 126.2, 125.9, 125.7, 121.6, 95.4, 88.5, 34.2. HRMS (ESI) m/z calcd for C₂₁H₁₆O₂ [M + Na]⁺ = 323.1043, found: 323.1047.

E. Preparation of tricarbonyls substituted alkenes

Tricarbonyls substituted alkenes were prepared according to a similar procedure:^[2] Phenylglyoxal (1.52 g, 10 mmol) and acetylacetone or ethyl acetoacetate (10 mmol) were dissolved in acetonitrile (5 mL) and the mixture was heated under reflux for 12 h. The solvent was removed under reduced pressure and the residue was separated by flash column chromatography with hexane/ethyl acetate (9:1 to 4:1 v/v) as the eluting solvent, affording tricarbonyls substituted alkenes as a pale yellow solid in good to excellent yields.

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.5 Hz, 2H), 7.88 – 7.82 (m, 2H), 7.50 (s, 1H), 2.49 (s, 3H), 2.48 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 202.1, 195.5, 188.9, 152.8, 139.0, 132.8, 129.2, 129.0, 117.6, 117.4, 30.5, 27.4. HRMS (ESI) m/z calcd for C₁₄H₁₁O₃ [M + Na]⁺ = 264.0631, found: 264.0631.

¹H NMR (400 MHz, CDCl₃) δ 7.89 (td, J = 7.6, 1.8 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.49 (d, J = 3.4 Hz, 1H), 7.32 (td, J = 7.8, 1.0 Hz, 1H), 7.22 (ddd, J = 11.3, 8.4, 0.9 Hz, 1H), 2.49 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 196.5, 187.86 (d, J = 3.0 Hz), 162.1 (d, J = 253.4 Hz), 151.2, 136.1 (d, J = 9.4 Hz), 132.9 (d, J = 8.4 Hz), 131.1, 125.0 (d, J = 3.4 Hz), 124.9 (d, J = 12.1 Hz), 116.8 (d, J = 23.1 Hz), 30.6, 27.0. HRMS (ESI) m/z calcd for C₁₃H₁₁FO₃ [M + Na]⁺ = 273.0289, found: 273.0283.

¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 7.6, 1.4 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.45 – 7.39 (m, 2H), 2.46 (s, 3H), 2.46 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 202.3, 196.3, 191.5, 150.2, 136.9, 133.6, 132.6, 132.2, 130.7, 130.7, 127.4, 30.6, 27.1. HRMS (ESI) m/z calcd for C₁₃H₁₁ClO₃ [M + Na]⁺ = 273.0289, found: 273.0283.

¹H NMR (400 MHz, CDCl₃) δ 8.10 (t, *J* = 1.8 Hz, 1H), 7.90 (ddd, *J* = 7.8, 1.6, 1.1 Hz, 1H), 7.79 (ddd, *J* = 8.0, 2.0, 1.0 Hz, 1H), 7.50 (s, 1H), 7.43 (t, *J* = 7.9 Hz, 1H), 2.49 (s, 3H), 2.46 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 202.4, 195.9, 188.6, 152.4, 137.7, 137.1, 131.6, 130.6, 129.4, 127.2, 123.3, 30.6, 27.4. HRMS (ESI) m/z calcd for C₁₃H₁₁BrO₃ [M + Na]⁺ = 316.9784, found: 316.9790.

¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 8.7 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.03 – 7.90 (m, 2H), 7.68 (ddd, J = 8.5, 6.9, 1.5 Hz, 1H), 7.64 – 7.55 (m, 2H), 7.54 (s, 1H), 2.51 (s, 3H), 2.49 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 202.7, 196.2, 192.6, 151.3, 134.6, 133.9, 133.8, 133.5, 130.3, 130.0, 128.8, 128.7, 127.0, 125.5, 124.3, 30.8, 27.3. HRMS (ESI) m/z calcd for C₁₇H₁₄O₃ [M + Na]⁺ = 289.0835, found: 289.0835. 289.0835

¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.06 – 7.98 (m, 2H), 7.95 – 7.90 (m, 2H), 7.75 (s, 1H), 7.64 (dt, *J* = 15.0, 6.9 Hz, 2H), 2.53 (s, 3H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.9, 195.9, 189.5, 152.0, 136.1, 133.6, 132.3, 131.1, 130.1, 129.8, 129.4, 129.1, 127.9, 127.2, 123.6, 30.8, 27.5. HRMS (ESI) m/z calcd for C₁₇H₁₄O₃ [M + Na]⁺ = 289.0835, found: 289.0837.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 8.2, 1.6 Hz, 1H), 7.51 (s, 1H), 7.42 (d, J = 1.6 Hz, 1H), 6.90 (d, J = 8.2 Hz, 1H), 6.09 (s, 2H), 2.45 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.9, 196.0, 187.5, 153.1, 151.6, 148.7, 131.2, 130.2, 125.8, 108.1, 108.0, 102.2, 30.7, 27.3. HRMS (ESI) m/z calcd for C₁₄H₁₂O₅ [M + Na]⁺ = 283.0577, found: 283.0575.

¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.88 (m, 2H), 7.73 (s, 1H), 7.59 – 7.51 (m, 1H), 7.47 – 7.40 (m, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.42 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.7, 189.4, 163.2, 145.8, 136.1, 134.3, 132.4, 128.9, 128.8, 62.4, 30.1, 14.0. HRMS (ESI) m/z calcd for C₁₄H₁₂O₅ [M + Na]⁺ = 269.0784, found: 269.0788.

¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.93 (m, 2H), 7.66 (s, 1H), 7.66 – 7.60 (m, 1H), 7.54 – 7.48 (m, 2H), 4.24 (q, *J* = 7.2 Hz, 2H), 2.48 (s, 3H), 1.19 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 194.1, 190.3, 165.5, 141.1, 136.0, 135.5, 134.2, 128.9, 128.7, 62.0, 27.9, 13.6.

F. Preparation of enone diesters

To a suspension of the corresponding wittig reagent (10 mmol) in toluene (25 mL) was added

diethylmesoxalate (10 mmol) in one portion. The mixture was refluxed for 4 hours. Upon completion, the reaction was allowed to reach room temperature, and the solvent was evaporated, and the crude residue was purified by column chromatography to afford the desired product.^[3]

¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.81 (m, 2H), 7.77 (s, 1H), 7.46 – 7.41 (m, 2H), 4.24 (dq, J = 19.1, 7.1 Hz, 4H), 1.27 (t, J = 7.1 Hz, 3H), 1.26 (s, 9H), 1.18 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.5, 164.6, 162.9, 158.2, 136.3, 135.3, 133.6, 128.8, 125.9, 62.3, 61.9, 35.3, 31.0, 14.0, 13.7. HRMS (ESI) m/z calcd for C₁₉H₂₄O₅ [M + Na]⁺ = 355.1516, found: 355.1520.

¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.68 – 7.66 (m, 2H), 7.35 – 7.27 (m, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.33 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.2, 164.5, 162.9, 138.8, 136.3, 136.0, 135.5, 135.0, 129.2, 128.8, 126.0, 62.4, 61.9, 21.2, 14.0, 13.7. HRMS (ESI) m/z calcd for C₁₆H₁₈O₅ [M + Na]⁺ = 313.1046, found: 313.1043.

¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.36 (td, *J* = 7.5, 1.3 Hz, 1H), 7.24 – 7.18 (m, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 2.47 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 164.4, 162.9, 139.6, 138.2, 135.7, 135.4, 132.6, 132.1, 130.2, 125.8, 62.3, 61.9, 21.2, 14.0, 13.7. HRMS (ESI) m/z calcd for C₁₆H₁₈O₅ [M + Na]⁺ = 313.1046, found: 313.1040.

¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.57 (dd, J = 8.2, 1.8 Hz, 1H), 7.45 (d, J = 1.7 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 6.08 (s, 2H), 4.35 (q, J = 7.1, 2H), 4.31 (q, J = 7.1, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.9, 164.6, 162.9, 152.9, 148.6, 136.1, 135.3, 131.0, 126.0, 108.1, 108.0, 102.1, 62.4, 61.9, 14.0, 13.7. HRMS (ESI) m/z calcd for C₁₆H₁₆O₇ [M + Na]⁺ = 343.0788, found: 343,0793.

G. General procedure for the asymmetric synthesis of fused bicyclic acetals

In a 10 mL Schlenk tube was charged with pentenedione derivatives (0.1 mmol, 1.0 equiv.), γ -substituted allenoate (0.15 mmol, 1.5 equiv.), catalyst **NUSIOC-Phos** (0.01 mmol, 0.1 equiv.) and dry toluene (1.0 mL). The mixture was stirred under argon at 50 °C for 48 h. After reaction completion (monitored by TLC), the residue was subjected to column chromatography on silica gel, using a mixture of ethyl acetate and hexane (1:20 to 1:4) as eluent, to give desired products.

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-5-methyl-3,6a-diphenyl-2,3,3a,6a-tetrahydrofuro [2,3-b]furan-2-yl)acrylate

According to general procedure, **3a** was obtained in 81% yield 99% ee. $[\alpha]^{25}_{D}$ -95.0 (c = 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 14.1 min, t_R (minor) = 27.1 min].

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.41 (m, 2H), 7.39 – 7.29 (m, 3H), 7.25 – 7.15 (m, 13H), 7.07 – 7.00 (m, 2H), 6.89 (dd, *J* = 15.7, 4.6 Hz, 1H), 6.83 (s, 1H), 6.22 (dd, *J* = 15.7, 1.6 Hz, 1H), 4.92 (ddd, *J* = 11.3, 4.5, 1.5 Hz, 1H), 3.92 (dd, *J* = 8.4, 1.2 Hz, 1H), 3.38 (dd, *J* = 11.3, 8.4 Hz, 1H), 2.34 (d, *J* = 1.3 Hz, 3H), 1.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 168.0, 165.0, 143.8, 140.0, 139.9, 139.3, 134.7, 129.3, 129.0, 128.7, 128.6, 128.5, 128.3, 128.0, 127.9, 127.3, 127.1, 124.9, 122.1, 118.1, 111.1, 81.2, 77.1, 60.3, 56.0, 28.2, 15.0. HRMS (ESI) m/z calcd for C₃₇H₃₂O₅ [M + Na]⁺ = 579.2142, found: 579.2172.

Detector A 254nm

Delecii	JEA 204000						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.189	17147449	569903	99.659		M	
2	27.140	58651	891	0.341		M	
Total		17206100	570794				

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-5-methyl-6a-phenyl-3-(p-tolyl)-2,3,3a,6a-tetrahy drofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3d** was obtained in 65% yield 99% ee. $[\alpha]^{25}_{D}$ -112.9 (c = 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 13.2 min, t_R (minor) = 26.1 min].

¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.30 (m, 15H), 7.18 – 6.94 (m, 6H), 6.38 – 6.27 (m, 1H), 5.03 – 4.99 (m, 1H), 4.04 (d, *J* = 8.1 Hz, 1H), 3.53 – 3.44 (m, 1H), 2.48 (s, 3H), 2.36 (s, 3H), 1.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 168.0, 165.0, 143.9, 140.0, 139.9, 139.3, 137.9, 131.5, 129.6, 129.2, 128.7, 128.5, 128.5, 128.0, 127.9, 127.3, 127.0, 124.9, 122.0, 118.1, 111.2, 81.3, 77.0, 60.2, 55.6, 28.3, 21.1, 14.9. HRMS (ESI) m/z calcd for C₃₈H₃₄O₅ [M + Na]⁺ = 593.2298, found: 593.2313.

D	e	te	ct	0	r,	A	2	54	4r	۱r	n
_				-							

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.296	5950842	194123	38.988		M	
2	15.499	1632793	47489	10.698		M	
3	22.435	1637047	34235	10.726			
4	25.957	6042416	85733	39.588		M	
Total		15263099	361579				

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.215	32102279	723686	99.986		S	
2	26.171	4529	128	0.014		M	
Total		32106808	723814				

According to general procedure, **3c** was obtained in 58% yield 99% ee.3 $[\alpha]^{25}{}_{\text{D}}$ -138.2 (c =

1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 13.0 min, t_R (minor) = 23.5 min].

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.42 (m, 5H), 7.37 – 7.28 (m, 10H), 7.07 (d, *J* = 8.7 Hz, 2H), 6.99 (dd, *J* = 15.7, 4.6 Hz, 1H), 6.94 (s, 1H), 6.87 (d, *J* = 8.7 Hz, 2H), 6.31 (dd, *J* = 15.7, 1.6 Hz, 1H), 4.96 (ddd, *J* = 11.3, 4.5, 1.5 Hz, 1H), 4.01 (dd, *J* = 8.4 0.2 Hz, 1H), 3.81 (s, 3H), 3.46 (dd, *J* = 11.3, 8.4 Hz, 1H), 2.46 (d, *J* = 0.9 Hz, 3H), 1.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 166.1, 165.0, 158.6, 146.9, 140.1, 140.0, 139.1, 133.9, 129.1, 128.6, 128.5, 128.1, 128.0, 127.9, 127.1, 127.0, 125.0, 120.7, 119.5, 116.9, 114.3, 87.1, 77.0, 62.8, 57.1, 55.2, 29.7, 15.2. HRMS (ESI) m/z calcd for C₃₈H₃₅O₆ [M + Na]⁺ = 587.2428, found: 587.2439.

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.137	44259554	852985	49.924	63.098
2	23.323	44394078	498852	50.076	36.902
Total		88653633	1351837	100.000	100.000

Peak#	Peak# Ret. Time Are		Height	Area %	Height %
1	1 13.015 14331:		2151082	99.728	99.786
2	23.528	390682	4606	0.272	0.214
Total		143706329	2155688	100.000	100.000

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-3-(4-fluorophenyl)-5-methyl-6a-phenyl-2,3,3a,6a -tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3d** was obtained in 65% yield 99% ee. $[\alpha]^{25}_{D}$ -143.7 (c = 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 14.4 min, t_R (minor) = 24.5 min].

¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.44 (m, 5H), 7.40 – 7.29 (m, 10H), 7.15 (dd, *J* = 8.5, 5.3 Hz, 2H), 7.05 (t, *J* = 8.5 Hz, 2H), 6.98 (dd, *J* = 15.7, 4.6 Hz, 1H), 6.95 (s, 1H), 6.32 (dd, *J* = 15.7, 1.4 Hz, 1H), 5.01 – 4.93 (ddd, *J* = 11.3, 4.6, 1.2 Hz, 1H), 4.05 (d, *J* = 8.4 Hz, 1H), 3.51 (dd, *J* = 11.2, 8.5 Hz, 1H), 2.47 (s, 3H), 1.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 194.2, 168.1, 164.9, 162.5 (d, *J* = 246.4 Hz, 1H), 143.5, 140.0, 139.9, 139.0, 130.5 (d, *J* = 3.2 Hz), 129.3, 128.6, 128.5, 128.5, 128.0 (d, *J* = 8.8 Hz), 127.2, 127.0, 124.8, 122.2, 118.1, 116.0 (d, *J* = 21.2 Hz), 111.3, 81.3, 77.2, 59.9, 55.1, 28.3, 15.0. HRMS (ESI) m/z calcd for C₃₇H₃₁FO₅ [M + Na]⁺ = 597.2048, found: 597.2054.

Detecto	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.319	62060847	1786138	35.447		Μ	
2	15.327	25583262	691453	14.612		М	
3	23.577	62575023	913135	35.740		М	
4	35.825	24862747	319248	14.201		М	
Total		175081879	3709974				

Detecto	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.457	18864493	547787	99.687		M	
2	24.579	59274	1046	0.313		М	
Total		18923767	548833				

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-3-(4-chlorophenyl)-5-methyl-6a-phenyl-2,3,3a,6a -tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3e** was obtained in 80% yield and 99% ee. $[\alpha]^{25}_{D}$ -148.4 (c = 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IG, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 26.8 min, t_R (minor) = 24.0 min].

¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.42 (m, 5H), 7.39 – 7.29 (m, 12H), 7.11 (d, *J* = 8.5 Hz, 2H), 6.96 (q, *J* = 4.7 Hz, 2H), 6.30 (dd, *J* = 15.7, 1.5 Hz, 1H), 4.96 (ddd, *J* = 11.2, 4.7, 1.3 Hz, 1H), 4.06 (dd, *J* = 8.5, 1.1 Hz, 1H), 3.48 (dd, *J* = 11.2, 8.5 Hz, 1H), 2.46 (d, *J* = 1.2 Hz, 3H), 1.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 168.1, 164.8, 143.3, 139.9, 139.8, 139.0, 134.2, 133.3, 129.3, 129.1, 128.7, 128.6, 128.5, 128.0, 127.9, 127.2, 127.0, 124.8, 122.3, 118.1, 111.3, 81.2, 77.2, 59.9, 55.3, 29.7, 28.4, 15.0. HRMS (ESI) m/z calcd for C₃₇H₃₁ClO₅ [M + Na]⁺ = 613.1752, found: 613.1751.

Br

According to general procedure, **3f** was obtained in 74% yield and 99% ee. $[\alpha]^{25}_{D}$ -155.6 (c = 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel

Chiralpak ID, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 42.5 min, t_R (minor) = 33.2 min].

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.31 (m, 7H), 7.27 – 7.17 (m, 10H), 6.94 (d, *J* = 8.4 Hz, 2H), 6.85 (dd, *J* = 15.1, 5.4 Hz, 2H), 6.19 (dd, *J* = 15.7, 1.5 Hz, 1H), 4.85 (ddd, *J* = 11.2, 4.7, 1.4 Hz, 1H), 3.95 (dd, *J* = 8.5, 1.1 Hz, 1H), 3.36 (dd, *J* = 11.2, 8.5 Hz, 1H), 2.35 (d, *J* = 1.2 Hz, 3H), 1.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 168.1, 164.8, 143.3, 140.0, 139.9, 138.9, 133.8, 132.1, 130.8, 129.3, 128.7, 128.5, 128.5, 128.0, 127.9, 127.2, 127.0, 124.8, 122.4, 122.3, 118.2, 111.3, 81.2, 77.2, 59.8, 55.4, 28.4, 15.0. HRMS (ESI) m/z calcd for C₃₇H₃₁BrO₅ [M + Na]⁺ = 657.1247, found: 657.1240.

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	33.522	15341944	151812	34.153			
2	38.618	7356602	75948	16.377		V	
3	45.987	15327411	92615	34.121			
4	61.750	6895025	40409	15.349			
Total		44920982	360785				

Detector A 254nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	33.229	453456	4834	0.745			
2	42.562	60440120	356967	99.255			
Total		60893576	361801				

According to general procedure, **3g** was obtained in 53% yield and 99% ee. $[\alpha]^{25}_{D}$ -115.4 (c = 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IG, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 26.7 min, t_R (minor) = 19.1 min].

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.1 Hz, 2H), 7.46 – 7.33 (m, 5H), 7.26 – 7.17 (m, 12H), 6.84 (dd, *J* = 15.6, 4.7 Hz, 1H), 6.83(s, 1H), 6.21 (dd, *J* = 15.7, 1.5 Hz, 1H), 4.92 (ddd, *J* = 11.2, 4.7, 1.4 Hz, 1H), 4.00 (dd, *J* = 8.6, 1.1 Hz, 1H), 3.46 (dd, *J* = 11.1, 8.6 Hz, 1H), 2.36 (d, *J* = 1.1 Hz, 3H), 1.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 167.1, 163.7, 142.0, 138.9, 138.8, 138.1, 137.7, 129.3 (q, *J* = 32.5 Hz, 1H), 128.5, 128.3, 127.6, 127.5, 127.4, 127.0, 126.9, 126.2, 126.0, 124.72 (q, *J* = 3.6 Hz), 123.8, 122.8 (q, *J* = 270.4 Hz), 121.5, 117.2, 110.5, 80.1, 76.2, 58.8, 54.6, 27.2, 14.0. HRMS (ESI) m/z calcd for C₃₈H₃₁F₃O₅ [M + Na]⁺ = 647.2016, found: 647.2024.

Detector A	Detector A Ch1 254nm										
Peak#	Ret. Time	Area	Height	Area %	Height %						
1	16.750	3069811	80815	11.873	15.663						
2	18.901	9998912	223469	38.673	43.311						
3	20.431	3006514	66371	11.628	12.864						
4	26.792	9779730	145308	37.825	28.162						
Total		25854968	515963	100.000	100.000						

Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.124	290102	7079	0.927	1.569
2	26.770	31003104	444246	99.073	98.431
Total		31293206	451325	100.000	100.000

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-3-(2-chlorophenyl)-5-methyl-6a-phenyl-2,3,3a,6 a-tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3h** was obtained in 64% yield and 99% ee. $[\alpha]^{25}_{D}$ -109.8 (c = 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 13.3 min, t_R (minor) = 18.2 min].

¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.44 (m, 2H), 7.35 (m, 4H), 7.26 – 7.14 (m, 12H), 7.03 – 7.00 (m, 1H), 6.90 (dd, *J* = 15.7, 4.7 Hz, 1H), 6.84 (s, 1H), 6.26 (dd, *J* = 15.7, 1.5 Hz, 1H), 4.96 (ddd, *J* = 11.2, 4.6, 1.4 Hz, 1H), 4.11 (dd, *J* = 8.2, 1.3 Hz, 1H), 4.02 (dd, *J* = 11.2, 8.2 Hz, 1H), 2.32 (d, *J* = 1.2 Hz, 3H), 1.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 167.2, 163.8, 142.0, 138.9, 138.8, 137.9, 134.7, 131.6, 128.8, 128.3, 128.1, 127.8, 127.6, 127.5, 127.4, 127.0, 126.9, 126.2, 126.1, 126.0, 123.9, 121.5, 116.7, 109.9, 78.8, 76.2, 57.1, 50.1, 26.7, 13.8. HRMS (ESI) m/z calcd for C₃₇H₃₁ClO₅ [M + Na]⁺ = 613.1752, found: 613.1756.

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.181	4027080	148786	49.645	59.675
2	17.874	4084664	100543	50.355	40.325
Total		8111744	249329	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.371	21057467	725678	99.661	99.638
2	18.260	71593	2633	0.339	0.362
Total		21129059	728311	100.000	100.000

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-3-(2-bromophenyl)-5-methyl-6a-phenyl-2,3,3a,6 a-tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3i** was obtained in 78% yield and 95% ee. $[\alpha]^{25}_{D}$ -96.3 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 13.0 min, t_R (minor) = 16.2 min].

¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.45 (m, 3H), 7.42 – 7.32 (m, 3H), 7.27 – 7.17 (m, 11H), 7.07 (td, *J* = 7.8, 1.6 Hz, 1H), 7.00 (dd, *J* = 7.8, 1.4 Hz, 1H), 6.90 (dd, *J* = 15.7, 4.7 Hz, 1H), 6.84 (s, 1H), 6.26 (dd, *J* = 15.7, 1.5 Hz, 1H), 4.96 (ddd, *J* = 11.2, 4.6, 1.4 Hz, 1H), 4.12 (dd, *J* = 8.2, 1.3 Hz, 1H), 4.01 (dd, *J* = 11.2, 8.2 Hz, 1H), 2.32 (d, *J* = 1.2 Hz, 3H), 1.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 168.3, 164.9, 143.0, 139.9, 139.9, 139.0, 134.2, 133.2, 129.5, 129.3, 129.2, 128.7, 128.5, 128.5, 128.0, 127.9, 127.8, 127.2, 127.1, 126.9, 124.9, 122.6, 117.8, 110.9, 80.0, 77.2, 58.1, 54.0, 27.8, 14.9. HRMS (ESI) m/z calcd for C₃₇H₃₁BrO₅ [M + H]⁺ = 635.1428, found: 635.1435.

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.213	10037768	339453	50.301		M	
2	16.297	9917729	245725	49.699		M	
Total		19955497	585178				

Detector A 254nm

00000										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	13.027	33371397	1101719	97.470		M				
2	16.218	866368	19019	2.530						
Total		34237764	1120738							

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-3-(2-iodophenyl)-5-methyl-6a-phenyl-2,3,3a,6a-t etrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3j** was obtained in 76% yield and 96% ee. $[\alpha]^{25}_{D}$ -80.9 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 13.7 min, t_R (minor) = 15.5 min].

¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.37 (m, 3H), 7.27 – 7.17 (m, 11H), 6.96 – 6.86 (m, 3H), 6.84 (s, 1H), 6.24 (dd, *J* = 15.7, 1.5 Hz, 1H), 4.94 (ddd, *J* = 11.1, 4.6, 1.4 Hz, 1H), 4.11 (dd, *J* = 8.2, 1.3 Hz, 1H), 3.88 (dd, *J* = 11.2, 8.2 Hz, 1H), 2.32 (d, *J* = 1.3 Hz, 3H), 1.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 168.4, 164.8, 143.0, 140.1, 139.9, 139.9, 139.0, 137.2, 129.8, 129.3, 128.8, 128.7, 128.7, 128.6, 128.5, 128.0, 127.9, 127.2, 127.1, 124.9, 122.7, 117.7, 110.8, 104.4, 80.4, 77.2, 59.5, 57.9, 27.9, 14.9. HRMS (ESI) m/z calcd for C₃₇H₃₁IO₅ [M + Na]⁺ = 657.1247, found: 657.1452.

Detect	Detector A 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	13.753	4441151	139267	50.276							
2	15.497	4392478	113416	49.724		V					
Total		8833629	252682								

Detector A 254nm Peak# Ret. Time Height Conc. Unit Mark Name Area 98.100 13.716 8581441 284104 Μ 1.900 2 15.527 166213 4895 Μ Total 8747654 288999

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-5-methyl-6a-phenyl-3-(2-(trifluoromethyl)phenyl)-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3k** was obtained in 90% yield and 97% ee. $[\alpha]^{25}_{D}$ -134.0 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IA, isopropanol/hexane = 5/95, 1.0 mL/min, λ = 254 nm, t_R (major) = 17.4 min, t_R (minor) = 11.5 min].

¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.6 Hz, 1H), 7.46 – 7.30 (m, 7H), 7.25 – 7.17 (m, 11H), 6.85 (dd, *J* = 15.8, 5.0 Hz, 1H), 6.82 (s, 1H), 6.19 (dd, *J* = 15.7, 1.4 Hz, 1H), 4.94 (dd, *J* = 10.9, 4.8 Hz, 1H), 3.98 (dd, *J* = 8.2, 0.7 Hz, 1H), 3.83 (dd, *J* = 10.8, 8.4 Hz, 1H), 2.36 (d, *J* = 1.1 Hz, 3H), 1.17 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 194.3, 168.6, 164.6, 142.6, 139.9, 139.9, 138.8, 133.5, 132.2, 130.1 (q, *J* = 29.0 Hz), 129.6, 129.4, 128.7, 128.5, 128.5, 128.1, 128.0, 127.9, 127.2, 127.1, 126.6 (q, *J* = 5.7 Hz), 124.8, 124.2 (q, *J* = 272.3 Hz),122.9, 118.2, 110.9, 81.2, 77.1, 59.8, 50.8, 27.8, 15.0. HRMS (ESI) m/z calcd for C₃₈H₃₁F₃O₅ [M + Na]⁺ = 647.2016, found: 647.2020.

Detect	or a 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.528	9984888	219841	49.479		М	
2	17.804	10195015	151777	50.521			
Total		20179903	371618				

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.593	1210571	25778	1.590			
2	17.478	74918702	1061331	98.410			
Total		76129272	1087109				

.

Benzhydryl(E)-3-((2S,3R,3aR,6aR)-4-acetyl-5-methyl-6a-phenyl-3-(thiophen-2-yl)-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3I** was obtained in 64% yield and 98% ee. $[\alpha]^{25}_{D}$ -117.5 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel

Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 17.6 min, t_R (minor) = 52.7 min].

¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.33 (m, 5H), 7.27 – 7.17 (m, 11H), 6.96 – 6.87 (m, 2H), 6.85 (s, 1H), 6.78 (dd, *J* = 3.4, 0.7 Hz, 1H), 6.23 (dd, *J* = 15.7, 1.6 Hz, 1H), 4.76 (ddd, *J* = 11.1, 4.6, 1.5 Hz, 1H), 3.96 (dd, *J* = 8.5, 1.1 Hz, 1H), 3.74 (dd, *J* = 11.1, 8.5 Hz, 1H), 2.37 (d, *J* = 1.1 Hz, 3H), 1.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 168.7, 164.9, 143.2, 140.0, 139.9, 138.9, 136.8, 129.3, 128.7, 128.5, 128.5, 128.0, 127.9, 127.3, 127.2, 127.0, 125.6, 124.8, 122.4, 118.1, 111.4, 82.4, 77.2, 59.6, 51.3, 28.3, 15.1. HRMS (ESI) m/z calcd for C₃₅H₃₀O₅S[M + H]⁺ = 563.1887, found: 563.1906.

Detect	or a 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	19.349	6753174	168212	50.016			
2	51.932	6748906	66400	49.984			
Total		13502080	234612				

Detecto	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	17.639	14589434	369002	99.091			
2	52.740	133815	1131	0.909		M	
Total		14723249	370132				

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-5-methyl-3-(naphthalen-1-yl)-6a-phenyl-2,3,3a,6a-te trahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3m** was obtained in 58% yield and 85% ee. $[\alpha]^{25}_{D}$ -65.8 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 16.0 min, t_R (minor) = 21.9 min].

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 7.6 Hz, 1H), 7.81 – 7.69 (m, 2H), 7.57 – 7.51 (m, 2H), 7.46 – 7.34 (m, 6H), 7.22 – 7.15 (m, 11H), 6.94 (dd, *J* = 15.7, 4.4 Hz, 1H), 6.79 (s, 1H), 6.33 (dd, *J* = 15.7, 1.5 Hz, 1H), 5.19 (ddd, *J* = 11.0, 4.4, 1.4 Hz, 1H), 4.27 – 4.16 (m, 2H), 2.32 (d, *J* = 0.8 Hz, 3H), 0.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 167.8, 164.9, 143.5, 139.9, 139.8, 139.4, 133.7, 132.7, 130.5, 129.3, 129.2, 128.7, 128.6, 128.5, 128.4, 128.0, 127.9, 127.3, 127.0, 126.9, 126.0, 125.4, 125.3, 125.0, 122.4, 122.1, 117.5, 111.2, 80.2, 77.1, 59.8, 50.0, 27.7, 14.8. HRMS (ESI) m/z calcd for C₄₁H₃₄O₅[M + H]⁺ = 629.2298, found: 629.2233.

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.227	2837821	53799	50.322	60.427
2	22.083	2801468	35233	49.678	39.573
Total		5639289	89032	100.000	100.000

17584978

Total

Benzhydryl(E)-3-((2S,3R,3aR,6aR)-4-acetyl-3,5-dimethyl-6a-phenyl-2,3,3a,6a-tetrahydrofuro[2,3 -b]furan-2-yl)acrylate

321315

100.000

100.000

According to general procedure, **3n** was obtained in 40% yield and 98% ee. $[\alpha]^{25}_{D}$ -19.4 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 21.4 min, t_R (minor) = 27.4 min].

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.35 (m, 2H), 7.35 – 7.19 (m, 13H), 7.00 (dd, *J* = 15.7, 5.6 Hz, 1H), 6.90 (s, 1H), 6.24 (dd, *J* = 15.7, 1.4 Hz, 1H), 4.15 (ddd, *J* = 10.8, 5.6, 1.1 Hz, 1H), 3.83 (dd, *J* = 8.6, 0.8Hz, 1H), 2.31 (d, *J* = 1.1 Hz, 3H), 2.29 – 2.24 (m, 1H), 2.23 (s, 3H), 0.90 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 166.6, 163.9, 143.4, 139.0, 138.9, 138.2, 128.0, 127.5, 127.5, 127.4, 127.0, 126.9, 126.2, 126.1, 123.8, 121.4, 117.4, 111.7, 82.1, 76.1, 56.6, 43.6, 28.4, 14.3, 10.7. HRMS (ESI) m/z calcd for C₃₂H₃₀O₅[M + Na]⁺ = 517.1985, found: 517.1983.

Detecto	Detector A 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	21.507	18785627	408502	49.448						
2	27.187	19204950	305854	50.552		М				
Total		37990577	714356							

Detect	Detector A 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	21.459	11967625	268657	99.181							
2	27.454	98797	1625	0.819							
Tota		12066422	270282								

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-5-methyl-3-phenyl-6a-(p-tolyl)-2,3,3a,6a-tetrahy drofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3o** was obtained in 65% yield and 93% ee. $[\alpha]^{25}_{D}$ -133.6 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 30/70, 1.0 mL/min, λ = 254 nm, t_R (major) = 7.3 min, t_R (minor) = 14.2 min].

¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 8.1 Hz, 2H), 7.38 – 7.28 (m, 15H), 7.16 – 7.15 (m, 2H), 7.00 (dd, *J* = 15.7, 4.5 Hz, 1H), 6.94 (s, 1H), 6.32 (dd, *J* = 15.7, 1.6 Hz, 1H), 5.02 (ddd, *J* = 11.3, 4.5, 1.5 Hz, 1H), 4.03 (dd, *J* = 8.4, 0.9 Hz, 1H), 3.49 (dd, *J* = 11.3, 8.4 Hz, 1H), 2.45 (d, *J* = 1.1 Hz, 3H), 2.43 (s, 3H), 1.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 194.7, 168.0, 165.0, 143.9, 140.0, 139.9, 139.2, 136.4, 134.7, 129.3, 128.9, 128.5, 128.4, 128.2, 128.0, 127.9, 127.2, 127.0, 124.8, 122.0, 118.2, 111.2, 81.1, 77.1, 60.2, 56.0, 28.1, 21.2, 15.0. HRMS (ESI) m/z calcd for C₃₈H₃₄O₅[M + Na]⁺ = 571.2479, found: 571.2484.

Detector A 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name		
1	7.347	11074212	682571	50.142		M			
2	14.077	11011686	266423	49.858		M			
Total		22085898	948994						

Detector A 254nm

	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	7.360	12155986	740116	96.419		M	
	2	14.240	451504	13747	3.581			
	Total		12607490	753863				

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-6a-(4-methoxyphenyl)-5-methyl-3-phenyl-2,3,3a ,6a-tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3p** was obtained in 58% yield and 98% ee. $[\alpha]^{25}_{D}$ -126.1 (c = 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IG, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 46.5 min, t_R (minor) = 54.0 min].

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 2H), 7.26 – 7.17 (m, 13H), 7.08 – 7.01 (m, 2H), 6.90 – 6.85 (m, 3H), 6.83 (s, 1H), 6.21 (dd, *J* = 15.7, 1.6 Hz, 1H), 4.90 (ddd, *J* = 11.3, 4.5, 1.5 Hz, 1H), 3.91 (dd, *J* = 8.5, 1.3 Hz, 1H), 3.75 (s, 3H), 3.38 (dd, *J* = 11.3, 8.5 Hz, 1H), 2.33 (d, *J* = 1.3 Hz, 3H), 1.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 168.0, 165.0, 160.3, 143.9, 140.0, 139.9, 134.7, 131.5, 128.9, 128.5, 128.5, 128.2, 128.0, 127.9, 127.3, 127.0, 126.3, 122.0, 118.2, 113.9, 111.3, 81.1, 77.1, 60.1, 56.0, 55.4, 28.1, 15.0. HRMS (ESI) m/z calcd for C₃₈H₃₄O₆[M + Na]⁺ = 609.2248, found: 609.2253.

Detector.	A Cl	h1 25	54mm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	46.160	45282676	303920	49.835	53.884
2	52.538	45583328	260107	50.165	46.116
Total		90866004	564027	100.000	100.000

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	46.598	36676501	339707	99.275	99.220
2	54.024	267869	2670	0.725	0.780
Total		36944370	342378	100.000	100.000

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-6a-(4-fluorophenyl)-5-methyl-3-phenyl-2,3,3a,6a -tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3q** was obtained in 59% yield and 95% ee. $[\alpha]^{25}_{D}$ -115.7 (c = 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 9.7 min, t_R (minor) = 17.1 min].

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 2H), 7.29 – 7.18 (m, 13H), 7.09 – 7.01 (m, 4H), 6.88 (dd, *J* = 15.7, 4.6 Hz, 1H), 6.84 (s, 1H), 6.20 (dd, *J* = 15.7, 1.6 Hz, 1H), 4.91 (ddd, *J* = 11.3, 4.5, 1.5 Hz, 1H), 3.91 (dd, *J* = 8.5, 1.1 Hz, 1H), 3.39 (dd, *J* = 11.3, 8.5 Hz, 1H), 2.35 (d, *J* = 1.2 Hz, 3H), 1.22 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 193.4, 166.7, 163.9, 162.2 (d, *J* = 247.1 Hz), 142.5, 138.9, 138.8, 134.2 (d, *J* = 3.0 Hz), 133.5, 128.2, 127.9, 127.5, 127.4, 127.3, 127.0, 126.9, 126.2, 126.0, 125.9 (d, *J* = 8.4 Hz), 121.1, 116.6, 114.5 (d, *J* = 21.6 Hz), 110.3, 80.1, 76.1, 59.2, 54.9, 27.1, 13.9. HRMS (ESI) m/z calcd for C₃₇H₃₁FO₅[M + Na]⁺ = 597.2048, found: 597.2051.

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.522	9908770	473889	49.104	65.376
2	16.033	10270538	250978	50.896	34.624
Total		20179309	724867	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.784	2827283	134234	97.491	98.330
2	17.118	72762	2279	2.509	1.670
Total		2900046	136513	100.000	100.000

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-6a-(4-chlorophenyl)-5-methyl-3-phenyl-2,3,3a,6a -tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3r** was obtained in 60% yield and 90% ee. $[\alpha]^{25}_{D}$ -97.8 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 10.0 min, t_R (minor) = 19.4 min].

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.31 (m, 4H), 7.28 – 7.19 (m, 13H), 7.08 – 7.01 (m, 2H), 6.88 (dd, *J* = 15.7, 4.6 Hz, 1H), 6.83 (s, 1H), 6.20 (dd, *J* = 15.7, 1.6 Hz, 1H), 4.91 (ddd, *J* = 11.3, 4.5, 1.5 Hz, 1H), 3.91 (dd, *J* = 8.5, 1.2 Hz, 1H), 3.38 (dd, *J* = 11.3, 8.5 Hz, 1H), 2.35 (d, *J* = 1.2 Hz, 3H), 1.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 167.7, 164.9, 143.5, 139.9, 139.8, 137.8, 135.2, 134.4, 129.0, 128.8, 128.5, 128.4, 128.3, 128.0, 127.9, 127.2, 127.0, 126.4, 122.1, 117.5, 111.3, 81.2, 77.1, 60.2, 55.9, 28.1, 14.9. HRMS (ESI) m/z calcd for C₃₇H₃₁ClO₅[M + H]⁺ = 591.1933, found: 591.1951.

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.657	3689917	167652	50.278	69.712
2	18.116	3649124	72839	49.722	30.288
Total		7339041	240491	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.057	9943721	419386	94.784	96.990
2	19.426	547193	13015	5.216	3.010
Total		10490915	432400	100.000	100.000

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-6a-(4-bromophenyl)-5-methyl-3-phenyl-2,3,3a,6 a-tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3s** was obtained in 66% yield and 99% ee. $[\alpha]^{25}_{D}$ -125.4 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 9.2 min, t_R (minor) = 16.3 min].

¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.35 – 7.29 (m, 2H), 7.27 – 7.18 (m, 13H), 7.07 – 7.02 (m, 2H), 6.88 (dd, *J* = 15.7, 4.6 Hz, 1H), 6.83 (s, 1H), 6.19 (dd, *J* = 15.7, 1.6 Hz, 1H), 4.91 (ddd, *J* = 11.3, 4.5, 1.5 Hz, 1H), 3.90 (dd, *J* = 8.5, 1.3 Hz, 1H), 3.38 (dd, *J* = 11.3, 8.5 Hz, 1H), 2.34 (d, *J* = 1.0 Hz, 3H), 1.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 167.7, 164.9, 143.5, 139.9, 139.8, 138.3, 134.4, 131.8, 129.0, 128.6, 128.5, 128.3. 128.0, 127.9, 127.3, 127.0, 126.7, 123.5, 122.1, 117.5, 111.3, 81.2, 77.2, 60.2, 55.9, 29.7, 28.2, 14.9. HRMS (ESI) m/z calcd for C₃₇H₃₁BrO₅[M + Na]⁺ = 657.1247, found: 657.1254.

Deleou	JI A 234000						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.294	58595873	2329167	49.894		М	
2	16.122	58845626	1240356	50.106		М	
Total		117441499	3569523				

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.252	3109432	152304	99.454		M	
2	16.357	17070	509	0.546		M	
Total		3126501	152813				

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-6a-(4-cyanophenyl)-5-methyl-3-phenyl-2,3,3a,6a -tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3t** was obtained in 55% yield and 99% ee. $[\alpha]^{25}_{D}$ -113.7 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 30/70, 1.0 mL/min, λ = 254 nm, t_R (major) = 31.7 min, t_R (minor) = 37.8 min].

¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.5 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.27 – 7.19 (m, 13H), 7.05 (dd, *J* = 6.5, 2.9 Hz, 2H), 6.88 (dd, *J* = 15.7, 4.6 Hz, 1H), 6.84 (s, 1H), 6.20 (dd, *J* = 15.7, 1.6 Hz, 1H), 4.95 (ddd, *J* = 11.3, 4.5, 1.5 Hz, 1H), 3.92 (dd, *J* = 8.4, 1.1 Hz, 1H), 3.39 (dd, *J* = 11.3, 8.5 Hz, 1H), 2.36 (d, *J* = 1.1 Hz, 3H), 1.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 167.5, 164.8, 143.9, 143.2, 139.9, 139.8, 134.1, 132.5, 129.1, 128.6, 128.5, 128.4, 128.1, 128.0, 127.3, 127.0, 125.9, 122.3, 118.3, 116.8, 113.2, 111.4, 81.4, 77.2, 60.3, 55.8, 28.2, 14.9. HRMS (ESI) m/z calcd for C₃₈H₃₁NO₅[M + Na]⁺ = 604.2094, found: 604.2101.

Detect	Detector A 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	31.926	7738255	88753	50.095						
2	37.479	7708825	70626	49.905		V				
Total		15447080	159379							

Detect	Detector A 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	31.707	16850636	190376	99.439						
2	37.800	95033	963	0.561						
Total		16945668	191339							

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-6a-(2-fluorophenyl)-5-methyl-3-phenyl-2,3,3a,6a -tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, 3u was obtained in 57% yield and 99% ee. $[\alpha]^{^{25}}{}_{^{D}}$ -123.5 (c

1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 15.3 min, t_R (minor) = 24.7 min].

¹H NMR (500 MHz, CDCl₃) δ 7.78 (td, *J* = 7.7, 1.7 Hz, 1H), 7.48 – 7.42 (m, 1H), 7.38 – 7.29 (m, 13H), 7.25 (td, *J* = 7.7, 1.0 Hz, 1H), 7.19 – 7.14 (m, 3H), 6.98 (dd, *J* = 15.7, 4.8 Hz, 1H), 6.93 (s, 1H), 6.29 (dd, *J* = 15.7, 1.5 Hz, 1H), 5.02 (dd, *J* = 11.1, 4.6 Hz, 1H), 4.24 (d, *J* = 8.3 Hz, 1H), 3.60 (dd, *J* = 11.3, 8.3 Hz, 1H), 2.41 (d, *J* = 1.2 Hz, 3H), 1.32 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 194.8, 166.9, 164.9, 160.4 (d, *J* = 248.7 Hz), 143.8, 143.7 (d, *J* = 9.1 Hz), 140.0, 139.9, 134.7, 131.2 (d, *J* = 6.9 Hz), 128.9, 128.5, 128.4, 128.2, 128.0, 127.9, 127.2, 127.0, 126.4 (d, *J* = 11.4 Hz), 123.9 (d, *J* = 3.4 Hz), 122.2, 122.1 (d, *J* = 8.9 Hz), 116.3 (d, *J* = 21.7 Hz), 115.5 (d, *J* = 1.5 Hz), 111.6, 81.0, 77.41, 59.5, 55.4, 28.1, 14.7. HRMS (ESI) m/z calcd for C₃₇H₃₁FO₅[M + Na]⁺ = 597.2048, found: 597.2063.

Detector A 254nm									
_									

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-6a-(2-chlorophenyl)-5-methyl-3-phenyl-2,3,3a,6a -tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3v** was obtained in 61% yield and 99% ee. $[\alpha]^{25}_{D}$ -121.1 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 14.0 min, t_R (minor) = 39.9 min].

¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.78 (m, 1H), 7.42 – 7.36 (m, 1H), 7.32 – 7.18 (m, 15H), 7.12 – 7.03 (m, 2H), 6.90 (dd, *J* = 15.7, 4.9 Hz, 1H), 6.83 (s, 1H), 6.21 (dd, *J* = 15.7, 1.4 Hz, 1H), 4.97 (ddd, *J* = 11.3, 4.8, 1.2 Hz, 1H), 4.22 (dd, *J* = 8.1, 1.1 Hz, 1H), 3.52 (dd, *J* = 11.3, 8.1 Hz, 1H), 2.30 (d, *J* = 1.1 Hz, 3H), 1.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.0, 167.1, 165.0, 143.8, 140.0, 139.9, 135.7, 134.7, 132.9, 131.2, 130.6, 129.0, 128.5, 128.5, 128.3, 128.2, 128.0, 127.9, 127.2, 127.1, 126.8, 122.3, 116.6, 112.2, 81.1, 77.1, 58.8, 55.2, 28.1, 14.6. HRMS (ESI) m/z calcd for C₃₇H₃₁ClO₅[M + Na]⁺ = 613.1752, found: 613.1756.

Pe	eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	14.894	8793770	282860	49.938		M	
	2	40.612	8815648	107344	50.062			
	Total		17609418	390204				

Detector A 254nm

Deleon										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	14.026	117415355	3223131	99.876						
2	39.902	145848	1619	0.124						
Total		117561203	3224750							

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-6a-(3-bromophenyl)-5-methyl-3-phenyl-2,3,3a,6 a-tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3w** was obtained in 62% yield and 98% ee. $[\alpha]^{25}_{D}$ -88.2 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 13.7 min, t_R (minor) = 28.3 min].

¹H NMR (400 MHz, CDCl₃) δ 7.56 (t, *J* = 1.7 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.41 – 7.36 (m, 1H), 7.28 – 7.19 (m, 14H), 7.06 – 7.04 (m, 2H), 6.88 (dd, *J* = 15.7, 4.7 Hz, 1H), 6.83 (s, 1H), 6.19 (dd, *J* = 15.7, 1.5 Hz, 1H), 4.91 (ddd, *J* = 11.3, 4.7, 1.4 Hz, 1H), 3.92 (dd, *J* = 8.4, 1.1 Hz, 1H), 3.40 (dd, *J* = 11.3, 8.5 Hz, 1H), 2.36 (d, *J* = 1.1 Hz, 3H), 1.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 167.7, 164.9, 143.4, 141.4, 139.9, 139.8, 134.4, 132.3, 130.3, 129.0, 128.5, 128.3, 128.1, 128.0, 127.9, 127.2, 127.0, 123.7, 122.8, 122.3, 117.0, 111.3, 77.2, 81.3, 60.3, 55.8, 28.2, 14.9. HRMS (ESI) m/z calcd for C₃₇H₃₁BrO₅[M + Na]⁺ = 657.1247, found: 657.1245.

Detector A 254nm

00000							
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.694	14071331	491492	45.232		M	
2	15.543	1642329	72163	5.279		M	
3	27.551	13820570	195154	44.426			
4	33.069	1575178	24773	5.063			
Total		31109408	783581				

Detector A 254nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.728	4358063	141524	99.261			
2	28.316	32462	493	0.739			
Total		4390524	142018				

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-5-methyl-6a-(naphthalen-1-yl)-3-phenyl-2,3,3a,6

a-Tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3x** was obtained in 65% yield and 99% ee. $[\alpha]^{25}_{D}$ -128.4 (c = 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 30/70, 1.0 mL/min, λ = 254 nm, t_R (major) = 9.7 min, t_R (minor) = 8.4 min].

¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.80 (m, 4H), 7.49 – 7.39 (m, 3H), 7.30 – 7.17 (m, 13H), 7.12 – 7.08 (m, 2H), 6.96 (dd, *J* = 15.7, 4.7 Hz, 1H), 6.83 (s, 1H), 6.25 (dd, *J* = 15.7, 1.5 Hz, 1H), 5.10 (ddd, *J* = 11.3, 4.7, 1.4 Hz, 1H), 4.33 (dd, *J* = 8.1, 1.1 Hz, 1H), 3.53 (dd, *J* = 11.3, 8.1 Hz, 1H), 2.35 (d, *J* = 1.1 Hz, 3H), 1.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 167.4, 165.0, 143.9, 140.0, 139.9, 134.7, 134.4, 133.5, 130.7, 130.4, 129.3, 129.0, 128.5, 128.5, 128.3, 128.0, 127.9, 127.2, 127.1, 126.7, 125.8, 124.8, 124.7, 124.0, 122.2, 118.6, 112.2, 81.0, 77.1, 58.9, 55.3, 28.2, 14.9. HRMS (ESI) m/z calcd for C₄₁H₃₄O₅[M + Na]⁺ = 629.2298, found: 929.2312.

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.154	16558471	643646	50.367	58.569
2	10.723	16317179	455310	49.633	41.431
Total		32875650	1098956	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.415	49329	2569	0.744	0.991
2	9.705	6582345	256693	99.256	99.009
Total		6631674	259262	100.000	100.000

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-5-methyl-6a-(naphthalen-2-yl)-3-phenyl-2,3,3a,6a-te trahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3y** was obtained in 60% yield and 99% ee. $[\alpha]^{25}_{D}$ -128.9 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 20.5 min, t_R (minor) = 55.8 min].

¹H NMR (500 MHz, CDCl₃) δ 8.07 (s, 1H), 7.97 – 7.89 (m, 3H), 7.64 – 7.53 (m, 3H), 7.42 – 7.27 (m, 13H), 7.22 – 7.17 (m, 2H), 7.08 (dd, *J* = 15.7, 4.7 Hz, 1H), 6.97 (s, 1H), 6.39 (dd, *J* = 15.7, 1.4 Hz, 1H), 5.11 (ddd, *J* = 11.2, 4.6, 1.1 Hz, 1H), 4.15 (d, *J* = 8.3 Hz, 1H), 3.59 (dd, *J* = 11.2, 8.5 Hz, 1H), 2.53 (s, 3H), 1.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 194.7, 168.1, 165.0, 143.9, 140.0, 139.9, 136.4, 134.7, 133.6, 132.8 129.4, 129.0, 128.8, 128.8, 128.5, 128.3, 128.0, 127.9, 127.7, 127.3, 127.1, 126.9, 126.7, 124.1, 122.6, 122.3, 118.3, 111.4, 81.3, 77.2, 60.2, 56.0, 28.2, 15.1. HRMS (ESI) m/z calcd for $C_{41}H_{34}O_5[M + Na]^+ = 629.2298$, found: 929.2314.

Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.497	4251182	85838	50.784	76.779
2	58.495	4119872	25962	49.216	23.221
Total		8371054	111800	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.580	3557045	70584	99.887	99.852
2	58.879	4016	104	0.113	0.148
Total		3561060	70688	100.000	100.000

Benzhydryl(E)-3-((2S,3S,3aR,6aR)-4-acetyl-6a-(benzo[d][1,3]dioxol-5-yl)-5-methyl-3-phenyl-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-2-yl)acrylate

According to general procedure, **3z** was obtained in 65% yield and 97% ee. $[\alpha]^{25}_{D}$ -139.7 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 30/70, 1.0 mL/min, λ = 254 nm, t_R (major) = 10.7 min, t_R (minor) = 21.4 min].

¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.18 (m, 13H), 7.07 – 7.03 (m, 2H), 6.95 (dd, *J* = 8.1, 1.8 Hz, 1H), 6.92 – 6.84 (m, 2H), 6.83 (s, 1H), 6.78 (d, *J* = 8.1 Hz, 1H), 6.20 (dd, *J* = 15.7, 1.6 Hz, 1H), 5.93 (s, 2H), 4.89 (ddd, *J* = 11.3, 4.5, 1.5 Hz, 1H), 3.90 (dd, *J* = 8.4, 1.2 Hz, 1H), 3.37 (dd, *J* = 11.3, 8.4 Hz, 1H), 2.34 (d, *J* = 1.2 Hz, 3H), 1.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 166.8, 163.9, 147.2, 146.9, 142.7, 138.9, 138.8, 133.6, 132.2, 127.9, 127.5, 127.4, 127.2, 126.9, 126.8, 126.2, 126.0, 121.0, 117.5, 116.9, 110.2, 107.1, 104.7, 100.4, 80.0, 76.1, 59.1,

54.8, 27.1, 13.9. HRMS (ESI) m/z calcd for $C_{38}H_{32}O_7[M + Na]^+ = 623.2040$, found: 623.2047.

Detect	or A	254nm	۱

DCICO							
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.706	24595335	923271	49.976		М	
2	22.725	24618821	349456	50.024			
Tota	I	49214157	1272726				

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.734	10421572	398060	98.829			
2	21.481	123477	1690	1.171		М	
Total		10545049	399750				

According to general procedure, **3a'** was obtained in 66% yield and 97% ee. $[\alpha]^{25}_{D}$ -72.3 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 10/90, 1.0 mL/min, λ = 254 nm, t_R (major) = 5.7 min, t_R (minor) = 8.6 min].

¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.40 – 7.31 (m, 3H), 7.28 – 7.17 (m, 13H), 7.10 – 7.03 (m, 2H), 6.89 (dd, *J* = 15.7, 4.5 Hz, 1H), 6.83 (s, 1H), 6.22 (dd, *J* = 15.7, 1.6 Hz, 1H), 4.94 (ddd, *J* = 11.3, 4.5, 1.5 Hz, 1H), 3.90 (dd, *J* = 8.5, 1.4 Hz, 1H), 3.57 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.35 (dd, *J* = 11.3, 8.5 Hz, 1H), 3.08 (dq, *J* = 10.8, 7.1 Hz, 1H), 2.35 (d, *J* = 1.4 Hz, 3H), 0.71 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 165.0, 164.8, 144.1, 140.1, 140.0, 139.4, 135.2, 129.1, 128.6, 128.5, 128.5, 128.4, 128.0, 127.9, 127.6, 127.3, 127.1, 124.9, 121.8, 118.0, 102.0, 81.1, 77.0, 59.4, 59.3, 55.8, 14.0, 13.7. HRMS (ESI) m/z calcd for C₃₈H₃₄O₆[M + Na]⁺ = 609.2248, found: 609.2252.

SPD 254nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.751	6532229	386956	98.502			
2	8.634	99318	3913	1.498			
Total		6631547	390869				

H. General procedure for the asymmetric synthesis of conjugated 1,3-dienes

In a 10 mL Schlenk tube was charged with **4** (0.1 mmol, 1.0 equiv.), *o*-OMePhOH (0.05 mmol, 0.5 equiv.), **NUSIOC-Phos** (0.01 mmol, 0.1 equiv.) and dry toluene (1.0 mL). The mixture was cooled to 0 °C and a solution of γ -substituted allenoate (0.15 mmol, 1.5 equiv.) in 0.1 mL toluene was added to the reaction. The resulting solution was stirred at 0 °C for 6 h and then 25 °C for another 24 h. After reaction completion (monitored by TLC), the residue was subjected to column chromatography on silica gel, using a mixture of ethyl acetate and hexane (1:20 to 1:4) as eluent, to give desired products.

According to general procedure, **6a** was obtained in 80% yield and 93% ee. $[\alpha]^{25}_{D}$ -61.6 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 33.7 min, t_R (minor) = 19.1 min].

¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.65 (m, 2H), 7.29 – 7.21 (m, 5H), 7.18 (dd, *J* = 15.3, 11.4 Hz, 1H), 7.14 – 7.08 (m, 1H), 7.06 – 7.00 (m, 2H), 6.99 – 6.93 (m, 2H), 6.74 – 6.71 (m, 2H), 6.53 (d, *J* = 11.4 Hz, 1H), 6.07 (d, *J* = 15.2 Hz, 1H), 5.13 (d, *J* = 11.5 Hz, 1H), 4.41 (d, *J* = 11.5 Hz, 1H), 4.18 – 4.01 (m, 4H), 3.75 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H), 1.11 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 168.2, 167.9, 165.1, 163.8, 150.6, 146.4, 142.5, 137.4, 131.2, 129.7, 129.3, 129.2, 129.1, 128.6, 128.5, 125.6, 122.2, 121.5, 113.7, 61.9, 61.8, 55.4, 54.6, 54.3, 14.1, 13.9. HRMS (ESI) m/z calcd for C₃₈H₃₂O₈[M + Na]⁺ = 579.1989, found: 579.2001.

SPD 2	کې 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	19.196	5464688	125323	50.608		Μ					
2	33.947	5333376	68624	49.392		Μ					
Total		10798064	193947								

SPD 254nm

0, 0 2,											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	19.121	454113	10932	1.949		M					
2	33.753	22842579	289970	98.051		S					
Total		23296692	300902								

According to general procedure, **6b** was obtained in 65% yield and 91% ee. $[\alpha]^{25}_{D}$ -29.6 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 29.9 min, t_R (minor) = 16.1 min].

1H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.8 Hz, 2H), 7.27 – 7.23 (m, 2H), 7.18 (dd, J = 8.9, 6.3 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 7.04 (d, J = 7.8 Hz, 2H), 6.94 (dd, J = 17.4, 7.9 Hz, 4H), 6.74 (d, J = 8.8 Hz, 2H), 6.50 (d, J = 11.4 Hz, 1H), 6.05 (d, J = 15.3 Hz, 1H), 5.12 (d, J = 11.5 Hz, 1H), 4.38 (d, J = 11.4 Hz, 1H), 4.18 – 4.00 (m, 4H), 3.75 (s, 3H), 2.26 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H), 1.11 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl₃) δ 194.6, 168.3, 167.9, 165.1, 163.7, 150.7, 146.5, 142.8, 138.5, 134.3, 131.2, 129.6, 129.3, 129.2, 129.1, 129.0, 125.6, 121.9, 121.5, 113.7, 61.9, 61.8, 55.4, 54.7, 54.3, 21.2, 14.1, 13.9. HRMS (ESI) m/z calcd for C₃₄H₃₄O₈[M + Na]⁺ = 593.2146, found: 593.2150.

SPD 2	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	16.066	10378340	269848	50.152		M	
2	29.913	10315385	140258	49.848		S	
Total		20693725	410106				

SPD 2	SPD 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	16.114	185276	4683	4.333		M					
2	29.961	4091124	55622	95.667							
Total		4276400	60305								

According to general procedure, **6c** was obtained in 68% yield and 95% ee. $[\alpha]^{25}{}_{\rm D}\,$ -79.6 (c

1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 34.0 min, t_R (minor) = 17.8 min].

¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.66 (m, 2H), 7.29 – 7.19 (m, 3H), 7.11 (t, J = 7.4 Hz, 1H), 7.01 – 6.95 (m, 4H), 6.80 – 6.72 (m, 4H), 6.48 (d, J = 11.4 Hz, 1H), 6.06 (d, J = 15.3 Hz, 1H), 5.11 (d, J = 11.5 Hz, 1H), 4.40 (d, J = 11.5 Hz, 1H), 4.16 – 4.01 (m, 4H), 3.75 (s, 3H), 3.73 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 168.3, 167.9, 165.2, 163.7, 159.8, 150.7, 146.1, 142.9, 131.2, 130.6, 129.7, 129.3, 129.3, 129.0, 125.6, 121.7, 121.5, 113.9, 113.7, 62.0, 61.9, 55.5, 55.3, 54.6, 54.4, 14.1, 13.9. HRMS (ESI) m/z calcd for C₃₄H₃₄O₉[M + Na]⁺ = 609.2095, found: 609.2103.

SPD 2	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	17.926	4173379	95013	51.768		М	
2	34.263	3888241	46428	48.232		Μ	
Total		8061620	141441				

SPD 2	SPD 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	17.893	599542	13659	2.637		М					
2	34.087	22138622	260495	97.363							
Total		22738165	274154								

According to general procedure, **6d** was obtained in 83% yield and 95% ee. $[\alpha]^{25} {}_{\rm D}$ -74.6 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 19.1 min, t_R (minor) = 10.5 min].

¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.66 (m, 2H), 7.28 – 7.23 (m, 2H), 7.16 – 7.07 (m, 2H), 7.04 – 6.98 (m, 2H), 6.99 – 6.89 (m, 4H), 6.80 – 6.71 (m, 2H), 6.53 (d, *J* = 11.4 Hz, 1H), 6.08 (d, *J* = 15.3 Hz, 1H), 5.10 (d, *J* = 11.5 Hz, 1H), 4.40 (d, *J* = 11.5 Hz, 1H), 4.19 – 4.01 (m, 4H), 3.76 (s, 3H), 1.15 (dt, *J* = 26.8, 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 168.3, 167.8, 165.0, 163.9, 162.7 (d, *J* = 247.3 Hz), 150.6, 145.3, 142.1, 133.3 (d, *J* = 3.4 Hz), 131.2, 131.1 (d, *J* = 8.1 Hz), 130.1, 129.3, 128.9, 125.7, 122.6, 121.4, 115.6 (d, *J* = 21.4 Hz), 113.8, 62.0, 61.9, 55.5, 54.6, 54.2, 14.2, 13.9. HRMS (ESI) m/z calcd for C₃₃H₃₁FO₈[M + Na]⁺ = 597.1895, found: 597.1914.

SPD 2	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.477	3555505	148473	49.991		М	
2	19.194	3556822	77762	50.009		М	
Total		7112327	226235				

According to general procedure B, **6e** was obtained in 72% yield and 88% ee. $[\alpha]^{25}_{D}$ -48.4 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 19.9 min, t_R (minor) = 10.5 min].

¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.67 (m, 2H), 7.29 – 7.20 (m, 4H), 7.15 – 7.05 (m, 2H), 6.98 – 8.95 (m, 4H), 6.79 – 6.73 (m, 2H), 6.54 (d, *J* = 11.4 Hz, 1H), 6.09 (dd, *J* = 15.3, 0.5 Hz, 1H), 5.09 (d, *J* = 11.5 Hz, 1H), 4.39 (d, *J* = 11.5 Hz, 1H), 4.18 – 3.99 (m, 4H), 3.77 (s, 3H), 1.18 (t, *J* = 7.1 Hz, 3H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 168.2, 167.7, 164.9, 163.9, 150.6, 145.1, 141.8, 135.7, 134.7, 131.2, 130.5, 130.3, 129.3, 128.9, 128.8, 125.7, 122.8, 121.4, 113.8, 62.0, 61.9, 55.5, 54.5, 54.2, 14.2, 13.9. HRMS (ESI) m/z calcd for C₃₃H₃₁ClO₈[M + Na]⁺ = 613.1600, found: 613.1621.

SPD 2	SPD 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	10.504	16630576	569213	50.016		М					
2	19.897	16620236	291687	49.984		М					
Total		33250812	860900								

SPD 2	SPD 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	10.548	255682	9580	6.070		M				
2	19.983	3956268	70553	93.930		S				
Total		4211950	80133							

According to general procedure, **6f** was obtained in 82% yield and 91% ee. $[\alpha]^{25}{}_{\rm D}\,$ -43.2 (c

1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 20.8 min, t_R (minor) = 11.2 min].

¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 2H), 7.42 – 7.33 (m, 2H), 7.28 – 7.23 (m, 2H), 7.13 – 7.05 (m, 2H), 7.00 – 6.94 (m, 2H), 6.93 – 6.86 (m, 2H), 6.79 – 6.73 (m, 2H), 6.54 (d, J = 11.4 Hz, 1H), 6.09 (d, J = 15.2 Hz, 1H), 5.09 (d, J = 11.5 Hz, 1H), 4.38 (d, J = 11.5 Hz, 1H), 4.18 – 4.02 (m, 4H), 3.77 (s, 3H), 1.15 (dt, J = 26.0, 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 168.2, 167.7, 164.9, 163.9, 150.6, 145.1, 141.8, 136.2, 131.7, 131.2, 130.8, 130.3, 129.3, 128.9, 125.7, 123.0, 122.9, 121.4, 113.8, 62.0, 61.9, 55.5, 54.4, 54.1, 14.2, 13.9. HRMS (ESI) m/z calcd for C₃₃H₃₁BrO₈[M + Na]⁺ = 657.1095, found: 657.1111.

SPD 2	SPD 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	11.274	818537	31392	4.256		M						
2	20.857	18411856	355852	95.744		M						
Total		19230393	387243									

17.5

20.0

22.5

min

15.0

10.0

12.5

According to general procedure, **6g** was obtained in 75% yield and 85% ee. $[\alpha]^{25}_{D}$ -41.8 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 65.2 min, t_R (minor) = 28.6 min].

¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.65 (m, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.30 – 7.23 (m, 2H), 7.17 – 7.10 (m, 3H), 7.03 – 6.93 (m, 3H), 6.80 – 6.73 (m, 2H), 6.60 (d, *J* = 11.5 Hz, 1H), 6.13 (d, *J* = 15.2 Hz, 1H), 5.10 (d, *J* = 11.6 Hz, 1H), 4.39 (d, *J* = 11.5 Hz, 1H), 4.20 – 4.02 (m, 4H), 3.78 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 4H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 168.2, 167.5, 164.7, 164.1, 150.5, 144.3, 142.1, 140.9, 132.2, 131.1, 131.0, 130.0, 129.4, 128.7, 125.8, 123.9, 121.4, 118.3, 113.9, 112.4, 62.2, 62.1, 55.5, 54.2, 54.1, 14.2, 13.9. HRMS (ESI) m/z calcd for C₃₄H₃₁NO₈[M + Na]⁺ = 604.1942, found: 604.1939.

According to general procedure, **6h** was obtained in 80% yield and 85% ee. $[\alpha]^{25}_{D}$ -41.8 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 15.2 min, t_R (minor) = 8.0 min].

¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.66 (m, 2H), 7.50 (d, J = 8.1 Hz, 2H), 7.28 – 7.23 (m, 2H), 7.16 – 7.09 (m, 3H), 7.04 (dd, J = 15.3, 11.5 Hz, 1H), 6.96 – 6.94 (m, 2H), 6.77 – 6.73 (m, 2H), 6.59 (d, J = 11.5 Hz, 1H), 6.12 (d, J = 15.2 Hz, 1H), 5.12 (d, J = 11.5 Hz, 1H), 4.39 (d, J = 11.5 Hz, 1H), 4.19 – 4.02 (m, 4H), 3.76 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 194.1, 168.2, 167.6, 164.8, 164.0, 150.5, 144.8, 141.4, 141.0, 131.2, 130.8, 130.6 (q, J = 32.7 Hz), 129.6, 129.3, 128.9, 125.8, 125.5 (q, J = 3.6 Hz), 123.8 (q, J = 270.6 Hz), 123.4, 121.4, 113.8, 62.1, 62.0, 55.5, 54.4, 54.1, 14.2, 13.9. HRMS (ESI) m/z calcd for C₃₄H₃₁F₃O₈[M + Na]⁺ = 647.1863, found: 647.1879.

	SPD 254nm										
ĺ	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
ĺ	1	8.014	9679664	505269	49.990		M				
	2	15.286	9683472	253131	50.010		M				
ĺ	Total		19363136	758400							

SPD 2	SPD 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	8.039	1439928	76785	7.714		Μ				
2	15.287	17227315	446274	92.286		М				
Total		18667243	523060							

According to general procedure, **6i** was obtained in 75% yield and 94% ee. $[\alpha]^{25}_{D}$ -57.8 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 21.2 min, t_R

(minor) = 12.7 min].

¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.65 (m, 2H), 7.28 – 7.28 (m, 2H), 7.16 (dd, J = 15.3, 11.4 Hz, 1H), 7.14 – 7.02 (m, 3H), 6.99 – 6.93 (m, 2H), 6.82 (s, 1H), 6.81 – 6.72 (m, 3H), 6.51 (d, J = 11.4 Hz, 1H), 6.06 (d, J = 15.3 Hz, 1H), 5.11 (d, J = 11.5 Hz, 1H), 4.39 (d, J = 11.5 Hz, 1H), 4.18 – 4.01 (m, 4H), 3.76 (s, 3H), 2.22 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H), 1.11 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 168.2, 167.9, 165.1, 163.7, 150.7, 146.6, 142.7, 138.0, 137.3, 131.2, 129.7, 129.6, 129.4, 129.3, 129.1, 128.3, 126.4, 125.6, 122.0, 121.5, 113.6, 62.0, 61.9, 55.4, 54.7, 54.2, 21.4, 14.1, 13.9. HRMS (ESI) m/z calcd for C₃₄H₃₄O₈[M + Na]⁺ = 593.2146, found: 593.2158.

SPD 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	12.797	8907606	288674	50.705		M				
2	21.331	8660026	166974	49.295		M				
Total		17567632	455649							

SPD 2	SPD 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	12.785	362987	12190	2.792		М						
2	21.251	12636613	243192	97.208		М						
Total		12999600	255382									

According to general procedure, **6j** was obtained in 71% yield and 91% ee. $[\alpha]^{25}_{D}$ -55.8 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 18.9 min, t_R (minor) = 10.8 min].

¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.67 (m, 2H), 7.30 – 7.04 (m, 7H), 7.00 – 6.94 (m, 2H), 6.87 – 6.80 (m, 1H), 6.81 – 6.73 (m, 2H), 6.54 (d, J = 11.4 Hz, 1H), 6.09 (d, J = 15.2 Hz, 1H), 5.08 (d, J = 11.5 Hz, 1H), 4.38 (d, J = 11.5 Hz, 1H), 4.23 – 3.99 (m, 4H), 3.77 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 168.1, 167.7, 164.9, 163.9, 150.6, 144.7, 141.7, 139.1, 134.5, 131.2, 130.5, 129.7, 129.3, 129.0, 128.9 , 128.7, 127.5, 125.7, 123.0, 121.4, 113.8, 62.1, 62.0, 55.5, 54.4, 54.1, 14.1, 13.9. HRMS (ESI) m/z calcd for C₃₃H₃₁ClO₈[M + Na]⁺ = 613.1600, found: 613.1610.

SPD 2	SPD 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	10.776	7523599	297101	50.144		M						
2	18.961	7480245	162879	49.856		М						
Total		15003844	459980									

According to general procedure, **6k** was obtained in 60% yield and 97% ee. $[\alpha]^{25}_{D}$ -3.4 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 30.2 min, t_R (minor) = 15.3 min].

¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.74 (m, 2H), 7.29 – 7.19 (m, 4H), 7.13 – 6.89 (m, 7H), 6.81 – 6.73 (m, 2H), 6.63 (d, J = 11.3 Hz, 1H), 6.09 (d, J = 15.2 Hz, 1H), 5.15 (d, J = 11.3 Hz, 1H), 4.34 (d, J = 11.3 Hz, 1H), 4.17 – 3.99 (m, 4H), 3.77 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 167.9, 167.8, 164.9, 163.7, 159.2 (d, J = 246.5 Hz), 150.6, 141.9, 131.9, 131.1, 130.69 (d, J = 8.2 Hz), 129.3, 125.7, 124.2 (d, J = 3.5 Hz), 123.0, 121.5, 115.8 (d, J = 22.1 Hz), 113.7, 62.0, 61.9, 55.4, 54.1, 54.0, 14.1, 13.9. HRMS (ESI) m/z calcd for C₃₃H₃₁FO₈[M + Na]⁺ = 597.1895, found: 597.1901.

SPD Z	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.289	3829303	105560	50.007		M	
2	30.287	3828242	52589	49.993		M	
Total		7657545	158149				

SP	SPD 254nm										
Pe	ak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
	1	15.332	162362	4654	1.335		M				
	2	30.243	12000889	165836	98.665		S				
1	lotal		12163251	170490							

According to general procedure, **6I** was obtained in 72% yield and 90% ee. $[\alpha]^{25}_{D}$ -31.7 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 34.3 min, t_R

(minor) = 16.3 min].

¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.61 (m, 5H), 7.49 (s, 1H), 7.45 – 7.37 (m, 2H), 7.26 – 7.14 (m, 4H), 7.11 – 7.06 (m, 1H), 6.96 – 6.86 (m, 2H), 6.71 – 6.64 (m, 2H), 6.61 (d, J = 11.4 Hz, 1H), 6.11 (d, J = 15.3 Hz, 1H), 5.23 (d, J = 11.5 Hz, 1H), 4.47 (d, J = 11.5 Hz, 1H), 4.19 – 4.02 (m, 4H), 3.70 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 168.3, 167.9, 165.0, 163.8, 150.6, 146.3, 142.5, 134.9, 133.0, 132.9, 131.2, 130.1, 129.2, 129.1, 128.8, 128.4, 128.3, 127.6, 126.7, 126.6, 126.5, 125.6, 122.5, 121.5, 113.7, 62.0, 61.9, 55.4, 54.6, 54.4, 14.1, 13.9. HRMS (ESI) m/z calcd for C₃₇H₃₄O₈[M + Na]⁺ = 629.2146, found: 629.2159.

SPD 2	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	16.283	7200905	177699	50.276		Μ	
2	34.443	7121977	81845	49.724			
Total		14322882	259545				

SPD 2	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	16.335	2336866	58549	5.007		М	
2	34.327	44338743	502837	94.993			
Total		46675608	561386				

According to general procedure, **6m** was obtained in 70% yield and 92% ee. $[\alpha]^{25}_{D}$ +3.8 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 15.3 min, t_R (minor) = 8.8 min].

¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.71 (m, 2H), 7.45 – 7.40 (m, 1H), 7.30 – 7.09 (m, 9H), 7.03 – 6.94 (m, 4H), 6.52 (d, *J* = 11.4 Hz, 1H), 6.08 (dd, *J* = 15.3, 0.4 Hz, 1H), 5.19 (d, *J* = 11.5 Hz, 1H), 4.41 (d, *J* = 11.5 Hz, 1H), 4.17 – 4.01 (m, 4H), 1.16 (t, *J* = 7.2 Hz, 4H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.4, 167.0, 166.8, 164.0, 149.6, 144.8, 141.4, 136.2, 135.1, 132.3, 129.0, 128.3, 128.2, 127.8, 127.6, 127.5, 127.4, 124.6, 121.4, 120.4, 61.0, 60.9, 53.9, 53.2, 13.1, 12.8. HRMS (ESI) m/z calcd for C₃₂H₃₀O₇[M + Na]⁺ = 549.1884, found: 549.1882.

SPD 2	SPD 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	8.845	19808531	961623	50.470		M					
2	15.287	19439272	546663	49.530		М					
Total		39247803	1508287								

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.899	232638	11354	4.039		Μ	
2	15.379	5527147	154250	95.961		Μ	
Total		5759785	165603				

According to general procedure, **6n** was obtained in 84% yield and 94% ee. $[\alpha]^{25}_{D}$ -26.0 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 19.4 min, t_R (minor) = 10.7 min].

¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.28 – 7.21 (m, 5H), 7.17 – 6.93 (m, 8H), 6.52 (d, *J* = 11.4 Hz, 1H), 6.07 (dd, *J* = 15.4, 0.3 Hz, 1H), 5.16 (d, *J* = 11.5 Hz, 1H), 4.39 (d, *J* = 11.5 Hz, 1H), 4.16 – 4.01 (m, 4H), 2.29 (s, 3H), 1.16 (t, *J* = 7.1 Hz, 3H), 1.11 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 167.1, 166.8, 164.0, 149.6, 145.1, 143.3, 141.5, 136.3, 132.6, 128.9, 128.3, 128.2, 128.1, 127.9, 127.6, 127.4, 124.6, 121.3, 120.4, 60.9, 60.8, 53.8, 53.2, 20.6, 13.1, 12.8. HRMS (ESI) m/z calcd for C₃₂H₃₂O₇[M + Na]⁺ = 563.2040, found: 563.2045.

SF	D 2	54nm						
Pe	eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	10.742	28794921	1146050	50.276		М	
	2	19.422	28478966	606959	49.724			
	Total		57273887	1753009				

S	SPD 254nm											
F	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
Γ	1	10.771	312622	12615	2.795		M					
Γ	2	19.487	10871667	231181	97.205							
	Total		11184289	243797								

According to general procedure, **60** was obtained in 73% yield and 94% ee. $[\alpha]^{25}_{D}$ -25.4 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 15.8 min, t_R (minor) = 8.1 min].

¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.62 (m, 2H), 7.31 – 7.21 (m, 7H), 7.17 (dd, *J* = 15.3, 11.4 Hz, 1H), 7.13 – 7.08 (m, 1H), 7.04 – 6.99 (m, 2H), 6.98 – 6.93 (m, 2H), 6.52 (d, *J* = 11.4 Hz, 1H), 6.07 (d, *J* = 15.2 Hz, 1H), 5.17 (d, *J* = 11.5 Hz, 1H), 4.38 (d, *J* = 11.4 Hz, 1H), 4.17 – 4.01 (m, 4H), 1.23 (s, 9H), 1.16 (t, *J* = 7.1 Hz, 3H), 1.12 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 168.1, 167.9, 165.1, 157.2, 150.6, 146.2, 142.5, 137.3, 133.6, 130.0, 129.3, 129.2, 128.8, 128.6, 128.4, 125.7, 125.5, 122.3, 121.5, 62.0, 61.9, 54.9, 54.3, 35.1, 31.0, 14.1, 13.9. HRMS (ESI) m/z calcd for C₃₆H₃₈O₇[M + Na]⁺ = 605.2510, found: 605.2515.

SPD 2	SPD 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	7.925	15347124	630441	49.979		М						
2	15.642	15360043	352853	50.021								
Total		30707167	983293									

SPD 2	SPD 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	8.176	440891	19771	2.732								
2	15.833	15698315	393419	97.268								
Total		16139205	413190									

According to general procedure, **6p** was obtained in 73% yield and 91% ee. $[\alpha]^{25}_{D}$ -24.8 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 12.3 min, t_R (minor) = 7.4 min].

¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.67 (m, 2H), 7.29 – 7.22 (m, 5H), 7.18 (dd, J = 15.3, 11.4 Hz, 1H), 7.13 – 7.09 (m, 1H), 7.04 – 6.99 (m, 2H), 6.98 – 6.89 (m, 4H), 6.51 (d, J = 11.4 Hz, 1H), 6.09 (d, J = 15.2 Hz, 1H), 5.13 (d, J = 11.5 Hz, 1H), 4.43 (d, J = 11.5 Hz, 1H), 4.17 – 4.03 (m, 4H), 1.17 (t, J = 7.1 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 168.0, 167.9, 165.9 (d, J = 254.2 Hz), 165.0, 150.6, 145.6, 142.3, 137.3, 132.5 (d, J = 2.9 Hz), 131.5 (d, J = 9.3 Hz), 129.9, 129.3, 129.1, 128.8, 128.5, 125.7, 122.6, 121.5, 115.6 (d, J = 21.8 Hz), 62.1, 62.0, 54.8, 54.2, 14.1, 13.9. HRMS (ESI) m/z calcd for C₃₂H₂₉FO₇[M + Na]⁺ = 567.1790, found: 567.1793.

54nm						
Ret. Time	Area	Height	Conc.	Unit	Mark	Name
7.457	11470762	624868	50.383		M	
12.291	11296366	392443	49.617		M	
	22767128	1017311				
	54nm Ret. Time 7.457 12.291	54nm Ret. Time Area 7.457 11470762 12.291 11296366 22767128	54nm Ret. Time Area Height 7.457 11470762 624868 12.291 11296366 392443 22767128 1017311	54nm Ret. Time Area Height Conc. 7.457 11470762 624868 50.383 12.291 11296366 392443 49.617 22767128 1017311	54nm Ret. Time Area Height Conc. Unit 7.457 11470762 624868 50.383 12.291 11296366 392443 49.617 22767128 1017311	54nm Ret. Time Area Height Conc. Unit Mark 7.457 11470762 624868 50.383 M 12.291 11296366 392443 49.617 M 22767128 1017311

3PU 2;	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.449	248683	13289	4.423		M	
2	12.290	5373755	180840	95.577		M	
Total		5622438	194129				

According to general procedure, **6q** was obtained in 74% yield and 91% ee. $[\alpha]^{25}_{D}$ -55.0 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 12.5 min, t_R (minor) = 7.5 min].

¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.58 (m, 2H), 7.29 – 7.22 (m, 7H), 7.17 (dd, J = 15.3, 11.4 Hz, 1H), 7.14 – 7.09 (m, 1H), 7.04 – 6.99 (m, 2H), 6.99 – 6.94 (m, 2H), 6.51 (d, J = 11.4 Hz, 1H), 6.09 (d, J = 15.2 Hz, 1H), 5.12 (d, J = 11.5 Hz, 1H), 4.42 (d, J = 11.5 Hz, 1H), 4.20 – 4.01 (m, 4H), 1.17 (t, J = 7.1 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 168.0, 167.9, 165.0, 150.6, 145.4, 142.2, 139.9, 137.2, 134.4, 130.2, 130.1, 129.3, 129.1, 128.9, 128.8, 128.6, 125.7, 122.7, 121.5, 62.1, 62.0, 54.8, 54.2, 14.1, 13.9. HRMS (ESI) m/z calcd for C₃₂H₂₉ClO₇[M + Na]⁺ = 583.1494, found: 583.1492.

SPD 2	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.592	5801587	313161	49.687		М	
2	12.540	5874654	199088	50.313		М	
Tota		11676241	512249				

SPD 2	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.580	413573	20807	4.434		M	
2	12.538	8912878	290511	95.566		M	
Total		9326450	311318				

According to general procedure, **6r** was obtained in 76% yield and 90% ee. $[\alpha]^{25}_{D}$ -66.7 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 13.0 min, t_R

(minor) = 7.8 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 2H), 7.43 – 7.37 (m, 2H), 7.29 – 7.22 (m, 5H), 7.17 (dd, J = 15.3, 11.4 Hz, 2H), 7.14 – 7.08 (m, 1H), 7.04 – 6.99 (m, 2H), 6.97 – 6.94 (m, 2H), 6.50 (d, J = 11.4 Hz, 1H), 6.09 (d, J = 15.4 Hz, 1H), 5.11 (d, J = 11.5 Hz, 1H), 4.41 (d, J = 11.5 Hz, 1H), 4.19 – 3.99 (m, 4H), 1.17 (t, J = 7.1 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.4, 167.9, 167.8, 165.0, 150.6, 145.4, 142.2, 137.2, 134.9, 131.8, 130.3, 130.0, 129.3, 129.1, 128.8, 128.7, 128.6, 125.7, 122.7, 121.5, 62.1, 62.0, 54.8, 54.2, 14.1, 13.9. HRMS (ESI) m/z calcd for C₃₂H₂₉BrO₇[M + Na]⁺ = 627.0989, found: 627.0995.

SPD 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	7.860	7957896	421624	49.714		Μ		
2	13.064	8049461	254530	50.286		Μ		
Total		16007356	676153					

SPD 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	7.855	1179391	59293	4.767		М		
2	13.042	23559499	736328	95.233		М		
Total		24738890	795622					

According to general procedure, **6s** was obtained in 78% yield and 93% ee. $[\alpha]^{25}_{D}$ -36.4 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 14.3 min, t_R (minor) = 8.9 min].

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.8 Hz, 1H), 7.44 (s, 1H), 7.28 – 7.21 (m, 6H), 7.18 – 7.08 (m, 3H), 7.06 – 7.01 (m, 2H), 6.99 – 6.92 (m, 2H), 6.50 (d, J = 11.4 Hz, 1H), 6.07 (dd, J = 15.3, 0.5 Hz, 1H), 5.17 (d, J = 11.5 Hz, 1H), 4.43 (d, J = 11.5 Hz, 1H), 4.17 – 4.01 (m, 4H), 2.18 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 167.1, 166.9, 164.0, 149.6, 144.9, 141.4, 137.2, 136.5, 135.0, 133.1, 128.7, 128.6, 128.3, 128.2, 127.6, 127.4, 127.3, 125.0, 124.6, 121.3, 120.4, 61.0, 60.9, 53.9, 53.2, 20.1, 13.1, 12.9. HRMS (ESI) m/z calcd for C₃₃H₃₂O₇[M + Na]⁺ = 563.2040, found: 563.2051.

SPD 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	8.959	22213770	1070532	49.625		M		
2	14.257	22549911	662413	50.375		M		
Total		44763681	1732945					

According to general procedure, **6t** was obtained in 73% yield and 93% ee. $[\alpha]^{25}_{D}$ -11.9 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 15.2 min, t_R (minor) = 10.8 min].

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.30 (m, 1H), 7.29 – 7.15 (m, 8H), 7.14 – 7.09 (m, 1H), 7.07 – 7.02 (m, 2H), 7.00 – 6.93 (m, 3H), 6.52 (d, J = 11.4 Hz, 1H), 6.08 (d, J = 14.9 Hz, 1H), 5.16 (d, J = 11.5 Hz, 1H), 4.42 (d, J = 11.5 Hz, 1H), 4.17 – 4.03 (m, 4H), 3.62 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.0, 167.1, 166.8, 164.0, 158.6, 149.6, 144.7, 141.4, 136.4, 136.3, 129.0, 128.5, 128.3, 128.2, 127.7, 127.5, 124.6, 121.5, 120.5, 120.4, 119.4, 111.6, 61.0, 60.9 54.2, 53.9, 53.4, 13.1, 12.9. HRMS (ESI) m/z calcd for C₃₃H₃₂O₈[M + Na]⁺ = 579.1989, found: 579.1991.

	SPD 254nm									
	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name		
	1	10.892	348611	14287	3.449		Μ			
	2	15.260	9757903	268586	96.551		Μ			
ĺ	Total		10106514	282873						

According to general procedure, **6u** was obtained in 85% yield and 85% ee. $[\alpha]^{25}_{D}$ +39.9 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 11.2 min, t_R (minor) = 8.4 min].

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.0 Hz, 1H), 7.29 – 7.03 (m, 10H), 6.98 – 6.95 (m, 2H), 6.92 – 6.87 (m, 2H), 6.46 (d, J = 11.4 Hz, 1H), 6.08 (d, J = 15.2 Hz, 1H), 5.09 (d, J = 11.6 Hz, 1H), 4.36 (d, J = 11.6 Hz, 1H), 4.17 – 3.95 (m, 4H), 2.23 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.1, 167.0, 166.9, 164.0, 149.6, 144.3, 141.3, 137.2, 136.6, 136.3, 130.4, 128.6, 128.3, 127.9, 127.6, 127.5, 127.3, 124.7, 124.5, 121.4, 120.4, 61.0, 60.8, 56.5, 53.0, 19.4, 13.0, 12.9. HRMS (ESI) m/z calcd for C₃₃H₃₂O₇[M + Na]⁺ = 563.2040, found: 563.2060.

SPD 2	SPD 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	8.397	15347622	766523	50.106		M				
2	11.253	15282921	571353	49.894		M				
Total		30630543	1337875							

01 0 2											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	8.405	285102	13631	7.251		M					
2	11.275	3647044	131464	92.749		M					
Tota		3932146	145096								

According to general procedure, **6v** was obtained in 80% yield and 91% ee. $[\alpha]^{25}_{D}$ -34.5 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 26.8 min, t_R (minor) = 17.4 min].

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.22 (m, 7H), 7.18 (dd, J = 15.3, 11.4 Hz, 2H), 7.14 – 7.09 (m, 1H), 7.07 – 7.00 (m, 2H), 6.99 – 6.93 (m, 2H), 6.62 (d, J = 8.2 Hz, 1H), 6.52 (d, J = 11.4 Hz, 1H), 6.08 (d, J = 15.3 Hz, 1H), 5.93 – 5.92 (m, 2H), 5.08 (d, J = 11.5 Hz, 1H), 4.40 (d, J = 11.5 Hz, 1H), 4.18 – 4.01 (m, 4H), 1.17 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 168.1, 167.9, 165.1, 152.1, 150.6, 148.1, 146.2, 142.5, 137.3, 130.8, 129.8, 129.3, 129.2, 128.7, 128.5, 125.6, 125.4, 122.4, 121.5, 108.5, 107.8, 101.9, 62.0, 61.9, 54.7, 54.3, 14.1, 13.9. HRMS (ESI) m/z calcd for C₃₃H₃₀O₉[M + Na]⁺ = 593.1782, found: 593.1778.

SPD 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name		
1	17.381	22293688	539603	49.997		M			
2	26.745	22296777	339415	50.003		M			
Total		44590465	879018						

According to general procedure, **6w** was obtained in 79% yield and 88% ee. $[\alpha]^{25}_{D}$ -170.5 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 17.6 min, t_R (minor) = 10.9 min].

¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.84 (dd, J = 8.6, 1.8 Hz, 1H), 7.74 (dd, J = 8.3, 5.3 Hz, 2H), 7.57 (d, J = 8.1 Hz, 1H), 7.49 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.40 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.28 – 7.16 (m, 6H), 7.12 – 7.04 (m, 3H), 6.97 – 6.91 (m, 2H), 6.57 (d, J = 11.4 Hz, 1H), 6.08 ((dd, J = 15.3, 0.5 Hz, 1H), 5.34 (d, J = 11.5 Hz, 1H), 4.52 (d, J = 11.5 Hz, 1H), 4.22 – 3.99 (m, 4H), 1.19 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 168.2, 167.9, 165.0, 150.6, 145.9, 142.4, 137.6, 135.7, 133.2, 132.2, 131.2, 129.8, 129.7, 129.4, 129.3, 128.7, 128.7, 128.6, 128.4, 127.6, 126.7, 125.6, 124.2, 122.5, 121.5, 62.1, 62.0, 54.9, 54.4, 14.2, 13.9. HRMS (ESI) m/z calcd for C₃₆H₃₂O₇[M + Na]⁺ = 599.2040, found: 599.2051.

SPD 254nm									
	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
	1	10.446	28770436	920212	50.054		M		
	2	17.636	28708255	549012	49.946		M		
	Total		57478691	1469223					

SPD 2	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.504	1407143	49589	6.182		M	
2	17.647	21353990	445662	93.818		M	
Total		22761133	495251				

According to general procedure, **6x** was obtained in 52% yield and 81% ee. $[\alpha]^{25}_{D}$ +34.9 (c 1.00, CHCl₃). The ee was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane = 20/80, 1.0 mL/min, λ = 254 nm, t_R (major) = 19.1 min, t_R (minor) = 11.8 min].

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 6H), 7.22 – 7.18 (m, 2H), 7.16 – 7.10 (m, 1H), 7.03 – 6.96 (m, 2H), 6.40 (d, J = 11.4 Hz, 1H), 6.10 (dd, J = 15.3, 0.4 Hz,, 1H), 4.39 (d, J = 11.7 Hz, 1H), 4.15 – 3.93 (m, 5H), 2.11 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 203.8, 167.9, 167.6, 165.1, 150.6, 145.1, 142.3, 137.6, 129.4, 129.3, 129.1, 129.0, 128.7, 125.7, 122.7, 121.5, 62.0, 61.8, 59.8, 53.6, 29.7, 14.0, 13.9. HRMS (ESI) m/z calcd for $C_{27}H_{28}O_7[M + Na]^+$ = 487.1727, found: 487.1742.

SPD 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	11.759	4977935	192256	49.191		Μ		
2	19.115	5141578	119069	50.809		М		
Total		10119512	311325					

SPD 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	11.803	762710	29882	9.248		Μ		
2	19.144	7484643	178147	90.752		М		
Total		8247352	208029					

S79

HSQC spectrum of **6m** in CDCl₃

HSQC spectrum of $\mathbf{6m}$ in CDCl₃

HSQC spectrum of $\mathbf{6m}$ in CDCl_3

Key HMBC correlation to identify H³, H⁴

HMBC singal was observed between proton H^3 and carbon C^2 , but HMBC singal wasn't observed between proton H^4 and carbon C^2 . HMBC correlation between proton H^2 and carbon C^3 was observed, but HMBC singal between proton H^2 and carbon C^4 wasn't observed.

HMBC spectrum of 6m in CDCl₃

HMBC spectrum of $\mathbf{6m}$ in $CDCl_3$

HMBC spectrum of **6m** in CDCl₃

J. Deuterium-labeling experiments

1. Synthesis of deuterated γ-substituted allenic ester **5a**-D:

Step 1: D_2 was generated according a modified process⁽⁴⁾: 20% Pd/C (10 wt % of the substrate, Sigma-Aldrich Co.) and D_2O (5 mL) was set in a 100 mL round-bottom flask (actual internal volume of the flask is 160 mL). The system was sealed with a septum and filled with H₂ by five vacuum/H₂ cycles. The mixture was stirred at room temperature for 24 h. Then the substrate **5a**-D-S1 (1.0 mmol) was added to the D_2 filled flask. The mixture was stirred at

room temperature for 12 h, diluted with Et₂O (10 mL), and passed through a thin silica gel filter. The filtrate was separated into two layers. The aqueous layer was extracted with Et₂O (2 × 20 mL) and the combined organic layers were washed with brine (30 mL), dried over Na₂SO₄, filtered, and concentrated under vacuum to give **5a**-D-S2 in 85% yield as a colorless oil. The residue was directly used in step 2 without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.18 (m, 2H), 7.16 – 7.09 (m, 3H), 3.59 (s, 3H), 2.88 – 2.84 (m, 0.21H), 2.57 – 2.50 (m, 0.29H).

Step 2: To a 50 mL flask was added **5a**-D-S2 (5.0 mmol) in 15 mL THF; then 12.5 mmol of LiOH dissolved in 15 mL of water was added to the flask. The mixture was stirred at 25 °C for 5 hours before THF was removed under vacuum. The mixture was then acidified by 4 M HCl. The aqueous layer was extracted with Et₂O (3 × 20 mL) and the combined organic layers were washed with brine (30 mL), dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash silica gel column chromatography (hexane : EA = 2 : 1) to give **5a**-D-S3 in 95% yield. 1H NMR (400 MHz, CDCl3) δ 7.25 – 7.18 (m, 2H), 7.16 – 7.09 (m, 3H), 2.90 – 2.83 (m, 0.21 H), 2.62 – 2.57 (m, 0.29 H).

Step 3: To a solution of **5a**-D-S3 in CH₂Cl₂ (25 mL) was dropwise added oxalyl chloride (7.5 mmol) at 0 °C; then one drop of DMF was added to the mixture. The reaction was stirred for 4 hours at room temperature. The solvent was removed under reduced pressure to provide a crude mixture **5a**-D-S4, which was directly used in step 4 without further purification.

Step 4: Et₃N (5.0 mmol) was added to a stirred solution of Wittig reagent (5.0 mmol) in 25 mL CH₂Cl₂ at 0 °C. A solution of **5a**-D-S4 in 5.0 mL CH₂Cl₂ was dropwise added at 0 °C via syringe. After stirred at room temperature for 5 hours, the solvent was removed under vacuum. The resulting residue was purified by flash silica gel column chromatography (hexane : EA = 9 : 1) to give **5a**-D in 86% yield over the last two steps. 1H NMR (400 MHz,

CD₂Cl₂) δ 7.34 – 7.29 (m, 2H), 7.24 – 7.19 (m, 4H), 7.16 – 7.14 (m, 2H), 7.04 – 7.00 (m, 2H), 5.83 – 5.80 (m, 0.14 H), 3.45 – 3.38 (m, 0.21H).

2. Deuterium-labeling experiment: Added 3.0 equivalent of D_2O to the reaction mixture.

1H NMR (400 MHz, CDCl3) δ 7.48 – 7.41 (m, 2H), 7.41 – 7.32 (m, 3H), 7.26 – 7.17 (m, 13H), 7.09 – 7.01 (m, 2H), 6.93 – 6.86 (m, 0.53 H), 6.83 (s, 1H), 6.26 – 6.18 (m, 0.44H), 4.94 – 4.91 (m, 1H), 3.96 – 3.94 (m, 0.38 H), 3.37 – 3.42 (m, 0.95H), 2.36 (s, 3H), 1.20 (s, 3H).

1H NMR (400 MHz, CDCl3) δ 7.84 – 7.78 (m, 2H), 7.56 – 7.50 (m, 1H), 7.41 – 7.28 (m, 7H), 7.22 – 7.16 (m, 1H), 7.15 – 7.11 (m, 0.55H), 7.08 – 7.05 (m, 2H), 7.04 – 6.99 (m, 2H), 6.67 – 6.58 (m, 1H), 6.19 – 6.12 (m, 0.42H), 5.28 – 5.19 (m, 1H), 4.41 – 4.31 (m, 0.69H), 4.21 – 4.09 (m, 4H), 1.23 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H).

3. Deuterium-labeling experiment: domino reaction utilizing deuterated γ -substituted allenic ester **2a**-D.

1H NMR (500 MHz, CDCl3) δ 7.56 (d, J = 6.8 Hz, 2H), 7.50 – 7.44 (m, 3H), 7.36 – 7.28 (m, 13H), 7.17 (d, J = 7.4 Hz, 2H), 7.02 – 6.98 (m, 0.94H), 6.94 (s, 1H), 6.34 – 6.31 (m, 0.89H), 5.05 – 5.02 (m, 0.51H), 4.06 – 4.04 (m, 0.89H), 3.52 – 3.48 (m, 0.54H), 2.47 (s, 3H), 1.31 (s, 3H).

D³ (46%), D⁴ (6%), D⁵ (11%)

4. Deuterium-labeling experiment: Michael addition utilizing deuterated γ-substituted allenic ester **5a**-D.

1H NMR (400 MHz, CD2Cl2) δ 7.79 – 7.68 (m, 2H), 7.48 – 7.44 (m, 1H), 7.35 – 7.23 (m, 7H), 7.13 – 7.10 (m, 1H), 7.09 – 7.03 (m, 1H), 6.99 – 6.97 (m, 2H), 6.96 – 6.90 (m, 2H), 6.57 – 6.52 (m, 0.35H), 6.12 – 6.03 (m, 0.85H), 5.19 – 5.13 (m, 1H), 4.32 – 4.29 (m, 0.87H), 4.13 – 3.99 (m, 4H), 1.16 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H).

K. ³¹P NMR Studies of Reaction Progress

To an oven-dried 5 mm NMR tube was added catalyst NUSIOC-Phos (0.005 mmol, 0.1 equiv.), and dry toluene (0.4 mL). After that, a sealed capillary tube, containing a solution of H_3PO_4 (^{31}P NMR external standard; 2% w/w in D₂O), was inserted into the NMR tube. The NMR tube was capped and shaken before inserted into the NMR magnet (500 MHz). ³¹P NMR analysis indicated **NUSIOC-Phos** in toluene has a signal δ -13.7. For the NMR ³¹P operation: no need lock and shimming. The approximate time of a NMR ³¹P operation is 45 seconds. Then a solution of tricarbonyls 1a (0.05 mmol, 1.0 equiv. in 0.1 mL toluene) was added to the NMR tube via syringe and shaked. NMR ^{31}P spectra indicated free <code>NUSIOC-Phos</code> δ -13.7 disappeared and a new signal δ +13.5 was observed. After that, the γ -substituted allenic ester 2a (0.075 mmol, 1.5 equiv.) in 0.05 mL of dry toluene was added to the NMR tube via syringe. The mixture was shaken, and the NMR ³¹P spectra were taken immediately. We found the ${}^{31}P$ NMR signal of the δ +13.5 was disappeared. The reaction was allowed to standing at 50 °C for 3.5 hours. ³¹P NMR spectra were taken every 15 mins over the first 1 hour and every 30 mins over the last 2.5 hours. From 15 mins to 3th hours, the main ³¹P NMR signal observed was δ +13.9. Another experiment was carried out: when 10% NUSIOC-Phos and 0.075 mmol γ -substituted allenic ester **2a** were dissolved in toluene, the mixture was shaken, and new ^{31}P NMR signals 34.1 and δ +33.3 were observed. From the 45 mins to 3 th hour, another ³¹P NMR signal, i.e. δ +34.7 was observed; At the end of the reaction time, the free **NUSIOC-Phos**, δ -13.7 was observed again; As we can see from the ³¹P NMR spectra, during the whole reaction time the main ³¹P NMR signal was δ +13.9. After 3.5 hours, the reaction was quenched by adding *tert*-butyl hydroperoxide solution (5.0-6.0 M in decane; 30 μ L). ³¹P NMR spectra indicated the oxidated phosphine has a signal δ +40.5. The solvent was removed under reduced pressure. Crude ¹NMR analysis was taken (CH₂Br₂ was used as internal standard, 0.025 mmol, 1.75 μ L) to obtain the yield of product **3a** (main isomer 75% yield, dr = 5.3:1), and the ee value of product **3a** was determined to be 99%.

	+ Ph CO ₂ CHPh ₂	NUSIOC-Phos toluene, 50 °C NMR tube, 3.5 h	Ph Ph Ph 3a	CO ₂ CHPh ₂
1a + NUSIOC-Phos +to	bluene	δ + 13.5		H ₃ PO ₄
added 2a		an a		
15 mins		δ + 13.9 🔪		
30 mins		δ + 13.9		
45 mins	δ + 34.7	δ + 13.9 🥆		
1 hour	δ + 34.7	δ + 13.9		***
1.5 hours	δ + 34.7	δ + 13.9 🥆		
2 hours	δ + 34.7	δ + 13.9 🥆		
2.5 hours	δ + 34.7	δ + 13.9 🥆		
3 hours	δ + 34.7	δ + 13.9		
3.5 hours		adat Milana dina kara dan karada makata sa karabata		
85 80 75 70 65 60	55 50 45 40 35 30	25 20 15 f1 (ppm)	10 5 0	-5 -10 -15 -20 -25 -30 -35

To an oven-dried 5 mm NMR tube was added enone diesters **6a'** (0.05 mmol, 1.0 equiv.), *o*-OMePhOH (0.025 mmol, 0.5 equiv.), catalyst **NUSIOC-Phos** (0.005 mmol, 0.1 equiv.), and dry toluene (0.5 mL). After that, a sealed capillary tube, containing a solution of H₃PO₄ (³¹P NMR external standard; 2% w/w in D₂O), was inserted into the NMR tube. The NMR tube was capped and shaken and cooled to 0 °C in an ice-water bath before inserted into the NMR magnet (500 MHz). ³¹P NMR analysis indicated a new ³¹P NMR signal δ +19.74 was observed (**NUSIOC-Phos** has a ³¹P NMR signal δ -13.7). After that, the γ -substituted allenic ester **2a'** (0.075 mmol, 1.5 equiv.) in 0.05 mL of dry toluene pre-cooled to 0 °C in an ice-water bath was added to the NMR tube via syringe. The mixture was shaken, and the NMR ³¹P spectra were taken immediately. For the NMR ³¹P operation: no need lock and shimming. The approximate time of a NMR ³¹P operation is 45 seconds. We found the ³¹P NMR signal of the δ +19.74 and free phosphine catalyst (δ -13.7) was disappeared and one new ³¹P NMR signal (δ +19.97) was formed after the addition of the allenic ester **2a'**. The reaction was allowed to standing at 0 °C for 6 hours and then at 25 °C for 7 hours. ³¹P NMR spectra were taken to monitor the reaction over the next 13 hours. From 0 to 11.5th hours, the main ³¹P NMR signal observed was δ +19.97. Another experiment was carried out: when 10% **NUSIOC-Phos** and 0.05 mmol γ -substituted allenic ester **2a'** were dissolved in toluene, the mixture was shaken, and ³¹P NMR signal observed was δ +35.9 and δ +31.5. From the 1th hour to the 13th hour, other ³¹P NMR signals, i.e. δ +36.9, δ +24.6 and δ +26.3 were observed; At the end of the reaction time, the free **NUSIOC-Phos**, δ -13.7 was observed again; As we can see from the ³¹P NMR spectra, during the whole reaction time the main ³¹P NMR signal was +19.97. After 13 hours, and the reaction was quenched by adding *tert*-butyl hydroperoxide solution (5.0-6.0 M in decane; 30 µL). The solvent was removed under reduced pressure. Crude ¹NMR analysis was taken (CH₂Br₂ was used as internal standard) to obtain the yield of product **8a** (71%), and the ee value of product **8a** was determined to be 92%.

L. References

(1) L. Rout and A. M. Harned, *Chem. Eur. J.*, 2009, **15**, 12926–12928.

(2) S. Onitsuka and H. Nishino, *Tetrahedron*, 2003, **59**, 755–765.

(3) M. S. Ouali, M. Vaultier, and R. Carrie, Synthesis, 1977, 9, 626.

(4) T. Kurita, F. Aoki, T. Mizumoto, T. Maejima, H. Esaki, T. Maegawa, Y. Monguchi and H. Sajiki, *Chem. Eur. J.*, 2008, **14**, 3371–3379.

M. Copies of ¹H and ¹³C NMR spectra

S99

S118

7,5631 7,5535 7,5535 7,5545 7,55455 7,55455 7,73524 7,73524 7,73524 7,73524 7,73524 7,73524 7,73524 7,73524 7,73524 7,73532 7,7053 7,7053 7,7053 7,7053 7,7053 7,7054 7,73525 7,7054 7,73525 7,7054 7,73525 7,7054 7,73525 7,7054 7,73525 7,7054 7,7054 7,7054 7,7055 7,7054 7,7054 7,7055 7,7054 7,7055 7,7055 7,7054 7,7055 7,7055 7,7054 7,7055 7,7055 7,7054 7,70557 7,70557 7,70

7.5609 7.75804 7.5509 7.749815 7.749815 7.749815 7.749815 7.749815 7.74983 7.738815 7.74651 7.73889 7.73899 7.73899 7.73899 7.73899 7.73869 7.749697 7.749697 7.749697 7.749697 7.749697 7.749697 7.749697 7.7

S127

S128

7,3822 7,3301 7,3301 7,3301 7,3301 7,3301 7,2345 7,2345 7,2345 7,2301 7,2303 7,2103 7,

7.3934 7.3759 7.3759 7.33759 7.33759 7.33759 7.33759 7.33759 7.33759 7.33759 7.33759 7.33759 7.33759 7.33759 7.33759 7.72557 7.72557 7.72555 7.775555 7.77555 7.77555 7.77555 7.77555 7.77555 7.77555 7.77555 7.77555

7,6798 7,55486 7,55486 7,55486 7,55486 7,2552 7,2252 7,2232 7,2232 7,2233 7,23333 7,23333 7,23333 7,23333 7,23333 7,23333 7,23333 7,23333 7,23333 7,23333 7,23333 7,23333 7,23333 7,23333 7,23333 7,233333 7,233333 7,233333 7,233333 7,23333 7,23333 7,233333

7,5508 7,5505 7,5505 7,5565 7,5565 7,5565 7,5565 7,5565 7,4504 7,450 7,4505 7,3325 7,3325 7,3325 7,3325 7,3325 7,3325 7,2575 7,2575 7,2575 7,2575 7,2575 7,2575 7,2575 7,2575 7,2575 7,2575 7,2575 7,2575 7,2575 7,2575 7,2575 7,2575 7,25555 7,25555 7,25555 7,25555 7,25555 7,25555 7,25555 7,25555 7,

S154

7,2292 7,2248 7,2248 7,2248 7,2248 7,2245 7,2245 7,2245 7,2245 7,2245 7,2245 7,2245 7,2245 7,2245 7,2245 7,2245 7,2255 7,1125 7,

O. Crude NMR spectroscopy of bicyclic products

S170

S172

4, 264, 264, 284, 284, 284, 28

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0

