Metal-Free Allylic C-H Nitrogenation, Oxygenation, and

Carbonation of Alkenes by Thianthrenation

Ming-Shang Liu[†], Hai-Wu Du[†], and Wei Shu^{†,*}

[†]Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong

*E-mail: <u>shuw@sustech.edu.cn</u>

General Information	S2
Optimization of Reaction Conditions	S3
Substrate Synthesis and Characterization	S6
General Procedure for the Allylic C-H Functionalizations	S10
Gram-Scale Synthesis	S11
Characterization of Allylic C-H Functionalization Products	S12
Mechanistic Study	S37
One-Pot Experiments	S37
Radical Trap Experiments	S38
Assignment of Reaction Intermediate	S39
Crystallographic Data	S41
References	S44
Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra of New Compounds	S45

General Information

Unless otherwise noted, all reactions of substrates preparation were conducted in flamedried glassware under a nitrogen atmosphere using anhydrous solvent were re-distilled according to *Purification of Laboratory Chemicals* (Fifth Edition). Commercially available reagents were used without further purification. Thin layer chromatography (TLC) was performed using Jiangyou TLC silica gel plates HSG F₂₅₄ and visualized using UV light, anisaldehyde or potassium permanganate. Flash column chromatography was performed over silica gel (300-400 mesh). ¹H and ¹³C NMR spectra were recorded in CDCl₃, unless otherwise noted, on a Bruker AVANCE 600 MHz or a Bruker AVANCE 400 MHz spectrometer. Chemical shifts in ¹H NMR spectra were reported in parts per million (ppm) on the δ scale from an internal standard of residual chloroform (7.26 ppm). Data for ¹H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant in Herts (Hz) and integration. Data for ¹³C NMR spectra were reported in terms of chemical shift in ppm from the central peak of CDCl₃ (77.16 ppm). MS experiments were performed on a Thermo Scientific Q Exactive.

Optimization of Reaction Conditions

- BF4	K ₂ CO ₃ (1.0 equiv) solvent (0.1 M) rt, 24 h	
2a		3a
solvent	conversion	yield of $3a^a$
DCM	>97%	92% (91%)
DCE	>95%	88%
CH ₃ CN	>95%	82%
DMSO	90%	34%
DMF	76%	27%
THF	93%	47%
acetone	>90%	69%
toluene	>95%	81%
	$ \begin{array}{c} $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $

Table S1. Investigation of solvent effect

^{*a*} The reaction was conducted using **1a** (14.7 mg, 0.12 mmol), **2a** (41.2 mg, 0.1 mmol), and K₂CO₃ (13.8 mg, 0.10 mmol) in indicated solvent (1.0 mL) at room temperature for 24 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard. Isolated yield after flash chromatography is shown in the parentheses.

Table S2	2. Inves	stigation	of bas	se effect
----------	----------	-----------	--------	-----------

CO ₂ H	+ <u></u> BF ₄	base (1.0 equiv) DCM (0.1 M) rt, 24 h	0
1a	2a		3a
entry	base	conversion	yield of $3a^a$
1	K ₂ CO ₃	>97%	92% (91%)
2	Cs ₂ CO ₃	>97%	85% (80%)
3	Na ₂ CO ₃	46%	10%
4	Li ₂ CO ₃	5%	N.D.
5	K ₃ PO ₄	>90%	72%

6	Na ₃ PO ₄	50%	25%
7	K ₂ HPO ₄	>90%	63%
8 ^b	PhCO ₂ K	73%	56%

^{*a*} The reaction was conducted using **1a** (14.7 mg, 0.12 mmol), **2a** (41.2 mg, 0.1 mmol), and base (0.10 mmol) in DCM (1.0 mL) at room temperature for 24 h. ^{*b*} The reaction was conducted using PhCO₂K (16.0 mg, 0.10 mmol), **2a** (41.2 mg, 0.1 mmol) and H₂O (0.1 mg, 0.006 mmol) in DCM (1.0 mL) at room temperature for 24 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard. Isolated yield after flash chromatography is shown in the parentheses. N.D. = not detected.

	CO ₂ H + Ph	PMDTA (1.0 e solvent (0.05 rt, 10 h	equiv) 6 M)	0 Ph
1a	2g			4g
entry	solvent	conversion	yield of $4g^a$	$Z/E \text{ of } 4g^a$
1	DCM	>97%	50%	6.7:1
2	DCE	>97%	63% (56%)	8.0:1
3	chlorobenzene	>97%	24%	8.4:1
4	CCl4	>97%	49%	6.5:1
5	PhCF ₃	>95%	36%	9.0:1
6	DCM/DCE = 1:1	>97%	45%	7.8:1
7	$CCl_4/DCE = 1:1$	>97%	19%	11.7:1
8	$PhCF_3/DCE = 1:1$	>97%	27%	8.0:1
9	DCM/DCE = 1:4	>97%	50%	7.6:1
10	DCM/DCE = 4:1	>97%	49%	6.5:1

Table S3. Investigation of solvent effect on Z/E selectivity

^{*a*} The reaction was conducted using **1a** (12.2 mg, 0.10 mmol), **2g** (20.6 mg, 0.05 mmol), and PMDTA (8.7 mg, 0.05 mmol) in indicated solvent (1.0 mL) at room temperature for 10 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard. Isolated yield after flash chromatography is shown in the parentheses.

Table S4. Investigation of base effect on Z/E selectivity

1a	CO_2H + Ph $\overline{BF_4}$ 2g	base (1.0 ec DCE (0.05 	quiv) C M)	4g
entry	base	conversion	yield of $4g^a$	$Z/E \text{ of } \mathbf{4g}^a$
1	a	>97%	39%	4.2:1
2	b	>97%	25%	7.3:1
3	с	>97%	38%	6.5:1
4	d	>95%	36%	8.1:1
5	e	>97%	43%	6.2:1
6	f	>97%	49%	5.1:1
7	g	>97%	82%	4.3:1
8	h	>97%	68%	4.0:1
9	i	>97%	89%	3.5:1
10	j	>97%	27%	8.0:1
11	k	>97%	45%	7.2:1
12	1	>97%	59%	6.8:1
13	m	>97%	50%	7.3:1
14	n	>97%	56%	5.5:1
15	0	>97%	19%	5.3:1
16	PMDTA	>97%	63% (56%)	8.0:1
17 ^b	PMDTA (75 mol%)	>97%	68%	6.7:1
18 ^b	PMDTA (1.25 equiv)	>97%	40%	10.4:1

^{*a*} The reaction was conducted using **1a** (12.2 mg, 0.10 mmol), **2g** (20.6 mg, 0.05 mmol), and base (0.05 mmol) in DCE (1.0 mL) at room temperature for 10 h. ^{*b*} The reaction was conducted using **1a** (12.2 mg, 0.10 mmol, 2.0 equiv), **2g** (20.6 mg, 0.05 mmol, 1.0 equiv) and PMDTA (x equiv) in DCE (1.0 mL) at room temperature for 10 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard. Isolated yield after flash chromatography is shown in the parentheses.

Substrate Synthesis and Characterization

Alkenyl thianthren-5-ium tetrafluoroborate were synthesized following reported procedure¹⁻².

Under nitrogen atmosphere, a 50 mL Schlenk vial equipped with a magnetic stir bar was charged with alkene (2.0 mmol, 1.00 equiv), thianthrene 5-oxide (464 mg, 2.0 mmol, 1.0 equiv), and MeCN (10 mL, c = 0.20 M). After cooling to 0°C, trifluoroacetic anhydride (1260 mg, 6.0 mmol, 3.0 equiv) was added dropwise within 2 minutes, followed by dropwise addition of TfOH (360 mg, 2.4 mmol, 1.2 equiv.) within 2 minutes. After stirring the lilac mixture at 0 °C for 1h followed by stirring for 1h at room temperature, the resulting mixture was concentrated under reduced pressure, and subsequently diluted with CH₂Cl₂ (30 mL). The saturated aqueous NaHCO₃ solution (stir 10 minute, 3x30 mL) pour into CH₂Cl₂ solution, and the layers were separated with separatory funnel. Then, aqueous NaBF₄ solution (5x30 mL, 5 % w/w, stir 10 minute) pour into CH₂Cl₂ layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with MeOH/DCM = 0-10% to afford the alkenyl thianthrenium salt.

(E)-5-(2-cyclohexylvinyl)-5H-thianthren-5-ium tetrafluoroborate (2a)

Under nitrogen atmosphere, vinylcyclohexane (220 mg, 2.0 mmol, 1.00 equiv), thianthrene 5-oxide (464 mg, 2.0 mmol, 1.0 equiv), trifluoroacetic anhydride (1260 mg, 6.0 mmol, 3.0 equiv), HOTf (360 mg, 2.4 mmol, 1.2 equiv.) and MeCN (10 mL, c = 0.20 M).

after chromatography on silica gel eluting with MeOH/DCM = 0-10% to afford the (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (535 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (dt, *J* = 7.8, 1.5 Hz, 2H), 7.81 (dd, *J* = 7.7, 1.5 Hz, 2H), 7.70 (dtd, *J* = 21.9, 7.6, 1.5 Hz, 4H), 7.20 (dd, *J* = 15.0, 6.9 Hz, 1H), 6.49 (dd, *J* = 14.9, 1.4 Hz, 1H), 2.27 – 2.15 (m, 1H), 1.75 – 1.66 (m, 4H), 1.62 (d, *J* = 4.4 Hz, 2H), 1.15 (dddd, *J* = 27.0, 23.8, 20.2, 12.0 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 161.36, 135.65, 134.46, 134.01, 130.47, 130.17, 120.87, 107.80, 42.15, 30.93, 25.56, 25.43; ¹⁹F NMR (376 MHz, CDCl₃) δ -150.62 (bs), -150.67 (bs). HRMS-ESI (m/z) [M+BF4]⁺ calc'd for C₂₀H₂₁S₂⁺, 325.1079, found 325.1080.

(E)-5-(2-(4'-propyl-[1,1'-bi(cyclohexan)]-4-yl)vinyl)-5H-thianthren-5-ium tetra-

fluoroborate (2e)

Under nitrogen atmosphere, 4-propyl-4'-vinyl-1,1'bi(cyclohexane) (469 mg, 2.0 mmol, 1.00 equiv), thianthrene 5-oxide (464 mg, 2.0 mmol, 1.0 equiv), trifluoroacetic anhydride (1260 mg, 6.0 mmol, 3.0 equiv), HOTf (360 mg, 2.4 mmol, 1.2 equiv.) and

MeCN (10 mL, c = 0.20 M). after chromatography on silica gel eluting with MeOH/DCM = 0-10% to afford the (*E*)-5-(2-(4'-propyl-[1,1'-bi(cyclohexan)]-4-yl)vinyl)-5*H*-thianthren-5-ium tetra-fluoroborate **2e** (497 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, *J* = 7.7, 1.6 Hz, 2H), 7.81 (dd, *J* = 7.7, 1.5 Hz, 2H), 7.69 (dtd, *J* = 20.8, 7.5, 1.5 Hz, 4H), 7.18 (ddd, *J* = 14.8, 6.9, 1.7 Hz, 1H), 6.48 (dd, *J* = 14.8, 1.3 Hz, 1H), 2.16 – 2.05 (m, 1H), 1.72 (t, *J* = 12.5 Hz, 8H), 1.66 – 1.59 (m, 2H), 1.33 – 1.21 (m, 2H), 1.10 (qt, *J* = 7.1, 3.9 Hz, 4H), 0.99 – 0.73 (m, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 161.57, 135.59, 134.35, 134.19, 130.51, 130.05, 121.03, 107.58, 43.22, 42.52, 42.46, 39.86, 37.65, 33.57, 31.19, 30.05, 29.13, 20.13, 14.52; ¹⁹F NMR (377 MHz, CDCl₃) δ -150.38 (bs), -150.44 (bs). HRMS-ESI (m/z) [M+BF4]⁺ calc'd for C₂₉H₃₇S₂⁺, 449.2331, found 449.2334.

(E)-5-(7-bromohept-1-en-1-yl)-5H-thianthren-5-ium tetrafluoroborate (2h)

Under nitrogen atmosphere, 7-bromo-1-heptene (354 mg, 2.0 mmol, 1.00 equiv), thianthrene 5-oxide (464 mg, 2.0 mmol, 1.0 equiv), trifluoroacetic anhydride (1260 mg, 6.0 mmol, 3.0 equiv), HOTf (360 mg, 2.4 mmol, 1.2 equiv.)

and MeCN (10 mL, c = 0.20 M). after chromatography on silica gel eluting with MeOH/DCM = 0-10% to afford the (*E*)-5-(7-bromohept-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2h** (454 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (dd, J = 7.8, 1.5 Hz, 2H), 7.83 (dd, J = 7.8, 1.4 Hz, 2H), 7.74 (td, J = 7.6, 1.2 Hz, 2H), 7.67 (td, J = 7.6, 1.4 Hz, 2H), 7.25 (q, J = 6.9 Hz, 1H), 6.57 (dt, J = 14.8, 1.5 Hz, 1H), 3.34 (t, J = 6.6 Hz, 2H), 2.38 – 2.22 (m, 2H), 1.82 – 1.72 (m, 2H), 1.51 – 1.42 (m, 2H), 1.37 (qd, J = 7.4, 7.0, 3.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.80, 135.63, 134.48, 134.04, 130.49, 130.15, 120.73, 109.66, 33.87, 33.21, 32.15, 27.39, 26.36; ¹⁹F NMR (377 MHz, CDCl₃) δ -150.54 (bs), -150.60 (bs). HRMS-ESI (m/z) [M+BF4]⁺ calc'd for C₁₉H₂₀BrS₂⁺, 391.0184, found 391.0184.

(E)-5-(5-(benzoyloxy)pent-1-en-1-yl)-5H-thianthren-5-ium tetrafluoroborate (2k)

Under nitrogen atmosphere, pent-4-en-1-yl benzoate (380 mg, 2.0 mmol, 1.00 equiv), thianthrene 5-oxide (464 mg, 2.0 mmol, 1.0 equiv), trifluoroacetic anhydride (1260 mg, 6.0 mmol, 3.0 equiv), HOTf (360 mg, 2.4 mmol, 1.2 equiv.)

and MeCN (10 mL, c = 0.20 M). after chromatography on silica gel eluting with MeOH/DCM = 0-10% to afford the (*E*)-5-(5-(benzoyloxy)pent-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2k** (509 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (dd, *J* = 7.9, 1.4 Hz, 2H), 8.00 – 7.93 (m, 2H), 7.80 (dd, *J* = 7.9, 1.4 Hz, 2H), 7.71 (td, *J* = 7.7, 1.4 Hz, 2H), 7.64 (td, *J* = 7.7, 1.5 Hz, 2H), 7.59 – 7.53 (m, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.38 (dd, *J* = 14.5, 7.2 Hz, 1H), 6.62 (dt, *J* = 14.7, 1.5 Hz, 1H), 4.24 (t, *J* = 6.2 Hz, 2H), 2.51 – 2.37 (m, 2H), 1.95 (dt, *J* = 8.1, 6.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.50, 156.05, 135.59, 134.43, 134.12, 133.28, 130.51, 130.08, 129.72, 128.62, 120.72, 110.17, 63.65, 30.29, 26.56; ¹⁹F NMR (377 MHz, CDCl₃) δ -150.40 (bs), -150.45 (bs). HRMS-ESI (m/z) [M+BF₄]⁺ calc'd for C₂₄H₂₁O₂S₂⁺, 405.0977, found 405.0978.

(*E*)-5-(4-((cyclohexanecarbonyl)oxy)but-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate (2l)

Under nitrogen atmosphere, but-3-en-1-yl cyclohexanecarboxylate (365 mg, 2.0 mmol, 1.00 equiv), thianthrene 5-oxide (464 mg, 2.0 mmol, 1.0 equiv), trifluoroacetic anhydride (1260 mg, 6.0 mmol, 3.0 equiv),

HOTf (360 mg, 2.4 mmol, 1.2 equiv.) and MeCN (10 mL, c = 0.20 M). after chromatography on silica gel eluting with MeOH/DCM = 0-10% to afford the (*E*)-5-(4-((cyclohexane-carbonyl)oxy)but-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **21** (539 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (dd, *J* = 7.9, 1.5 Hz, 2H), 7.83 (dd, *J* = 7.9, 1.5 Hz, 2H), 7.75 (td, *J* = 7.7, 1.4 Hz, 2H), 7.71 – 7.63 (m, 2H), 7.24 – 7.14 (m, 1H), 6.65 (dt, *J* = 14.8, 1.5 Hz, 1H), 4.12 (t, *J* = 6.1 Hz, 2H), 2.60 (pd, *J* = 5.8, 1.5 Hz, 2H), 2.11 (tdd, *J* = 10.3, 7.1, 4.1 Hz, 1H), 1.73 – 1.51 (m, 5H), 1.16 (tdd, *J* = 11.1, 8.0, 3.1 Hz, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 175.66, 152.33, 135.65, 134.61, 134.05, 130.48, 130.13, 120.21, 111.55, 60.68, 43.01, 32.56, 28.88, 25.70, 25.42; ¹⁹F

NMR (377 MHz, CDCl₃) δ -150.46 (bs), -150.52 (bs). HRMS-ESI (m/z) [M+BF4]⁺ calc'd for C₂₃H₂₅O₂S₂⁺, 397.1290, found 397.1292.

General Procedure for the Allylic C-H Functionalizations

Standard Procedure A:

Acid or amine (0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv), and thianthrene (0.20 mmol, 1.0 equiv) were placed in 10 mL Schlenk tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), 2.0 mL DCM was added, the vial was sealed and at room temperature with stirring until TLC indicated the complete consumption of thianthrene (typically 24 h). The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

Standard Procedure B:

Nucleophile (0.40 mmol, 2.0 equiv), H₂O (0.2 mg, 0.2 μ L, 0.011 mmol, 0.056 equiv) and thianthrene (0.20 mmol, 1.0 equiv) were placed in 10 mL Schlenk tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), 2.0 mL DCM was added, the vial was sealed and at room temperature with stirring until TLC indicated the complete consumption of thianthrene (typically 24 h). The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

Standard Procedure C:

Nucleophile (0.60 mmol, 3.0 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv), and thianthrene (0.20 mmol, 1.0 equiv) were placed in 10 mL Schlenk tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), 2.0 mL DCM was added, the vial was sealed and at room temperature with stirring until TLC indicated the complete consumption of thianthrene (typically 24 h). The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

Standard Procedure D:

Nucleophile (0.24 mmol, 1.2 equiv), KOH (11.2 mg, 0.20 mmol, 1.0 equiv) and thianthrene (0.20 mmol, 1.0 equiv) were placed in 10 mL Schlenk tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), 2.0 mL DCM was added, the vial was sealed and at room temperature with stirring until TLC indicated the complete consumption of thianthrene (typically 24 h). The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

Standard Procedure E:

Acid (0.20 mmol, 2.0 equiv), PMDTA (17.3 mg, 0.10 mmol, 1.0 equiv), and thianthrene (0.10 mmol, 1.0 equiv) were placed in 10 mL Schlenk tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), 2.0 mL DCE was added, the vial was sealed and at room temperature with stirring until TLC indicated the complete consumption of thianthrene (typically 10 h). The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

Standard Procedure F:

Amine (0.40 mmol, 2.0 equiv), H₂O (0.2 mg, 0.011 mmol, 0.056 equiv) and thianthrene (0.20 mmol, 1.0 equiv) were placed in 10 mL Schlenk tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), 2.0 mL DCM was added, the vial was sealed and at room temperature with stirring until TLC indicated the complete consumption of thianthrene (typically 24 h). The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

Gram-Scale Synthesis

Naproxen **1p** (1105 mg, 4.8 mmol, 1.2 equiv), K₂CO₃ (553.0 mg, 4.0 mmol, 1.0 equiv), and (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2g** (1737 mg, 4.0 mmol, 1.0 equiv) were placed in 200 mL Schlenk flask equipped with a magnetic stirring bar. After backfilled with nitrogen (this process was repeated three times), 40 mL DCM was added, the flask was sealed at room temperature with stirring for 24 h. The reaction mixture was filtrated and washed with DCM (3 x 20 mL). The organic phase was purified directly by column chromatography to afford the product **4m** (1.19 g, 83% yield, Z/E = 3.4:1).

Characterization of Allylic C-H Functionalization Products

2-cyclohexylideneethyl benzoate (3a)

Following the Standard Procedure A, the reaction of benzoic acid (29.3 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for

24 h afforded product after flash chromatography EA: PE =0-5% as colorless oil **3a** (41.9 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.09 – 8.01 (m, 2H), 7.59 – 7.50 (m, 1H), 7.43 (dd, *J* = 8.4, 7.0 Hz, 2H), 5.42 (tt, *J* = 7.2, 1.3 Hz, 1H), 4.84 (d, *J* = 7.2 Hz, 2H), 2.32 – 2.24 (m, 2H), 2.20 – 2.12 (m, 2H), 1.58 (p, *J* = 2.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.81, 147.21, 132.88, 130.73, 129.72, 128.41, 115.36, 61.28, 37.14, 29.27, 28.50, 27.93, 26.75; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₅H₁₉O₂⁺, 231.1380, found 231.1378.

2-cyclohexylideneethyl quinoline-2-carboxylate (3b)

Following the Standard Procedure A, the reaction of quinoline-2-carboxylic acid (41.6 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a**

(82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **3b** (44.3 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (ddd, *J* = 15.7, 8.5, 3.0 Hz, 2H), 8.17 (dd, *J* = 8.5, 2.6 Hz, 1H), 7.86 (dd, *J* = 8.4, 2.9 Hz, 1H), 7.82 – 7.74 (m, 1H), 7.63 (td, *J* = 8.2, 7.7, 2.7 Hz, 1H), 5.50 (t, *J* = 7.4 Hz,

1H), 5.01 (d, J = 7.2 Hz, 2H), 2.29 (d, J = 5.6 Hz, 2H), 2.14 (d, J = 5.5 Hz, 2H), 1.62 – 1.52 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.44, 148.41, 147.63, 147.41, 137.38, 130.84, 130.31, 129.39, 128.63, 127.60, 121.18, 115.14, 62.55, 37.17, 29.30, 28.40, 27.84, 26.72; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₈H₂₀NO₂⁺, 282.1489, found 282.1485.

2-cyclohexylideneethyl 2-bromothiophene-3-carboxylate (3c)

Following the Standard Procedure A, the reaction of 2bromothiophene-3-carboxylic acid (49.7 mg, 0.24 mmol, 1.2 ac equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **3c** (50.5 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 5.8 Hz, 1H), 7.20 (d, *J* = 5.8 Hz, 1H), 5.39 (tt, *J* = 7.2, 1.3 Hz, 1H), 4.79 (d, *J* = 7.2 Hz, 2H), 2.29 – 2.21 (m, 2H), 2.13 (d, *J* = 5.4 Hz, 2H), 1.57 (q, *J* = 2.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.11, 147.45, 131.44, 129.56, 125.82, 119.79, 115.10, 61.19, 37.12, 29.26, 28.47, 27.88, 26.73; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₃H₁₆BrO₂S⁺, 315.0049, found 315.0042.

2-cyclohexylideneethyl 1-methyl-1*H*-indole-2-carboxylate (3d)

Following the Standard Procedure A, the reaction of 1methyl-1*H*-indole-2-carboxylic acid (42.0 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium

tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **3d** (44.0 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (dq, *J* = 7.9, 1.1 Hz, 1H), 7.41 – 7.31 (m, 3H), 7.15 (ddt, *J* = 7.9, 6.6, 1.4 Hz, 1H), 5.44 (ddq, *J* = 8.4, 7.0, 1.3 Hz, 1H), 4.84 (dd, *J* = 7.2, 1.5 Hz, 2H), 4.09 (s, 3H), 2.33 – 2.27 (m, 2H), 2.17 (d, *J* = 5.4 Hz, 2H), 1.60 (dt, *J* = 4.3, 2.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.43, 147.30, 139.76, 128.23, 126.04, 124.99, 122.66, 120.59, 115.34, 110.34, 110.30, 60.81, 37.16, 31.75, 29.30, 28.51, 27.94, 26.76; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₈H₂₂NO₂⁺, 284.1646, found 284.1646.

2-cyclohexylideneethyl furan-3-carboxylate (3e)

Following the Standard Procedure A, the reaction of furan-3carboxylic acid (26.9 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-

thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **3e** (31.6 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 1.5 Hz, 1H), 7.43 – 7.39 (m, 1H), 6.74 (d, *J* = 1.8 Hz, 1H), 5.35 (t, *J* = 7.2 Hz, 1H), 4.76 (d, *J* = 7.2 Hz, 2H), 2.24 (d, *J* = 5.8 Hz, 2H), 2.13 (d, *J* = 5.4 Hz, 2H), 1.61 – 1.52 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.33, 147.76, 147.14, 143.72, 119.75, 115.28, 110.01, 60.80, 37.13, 29.24, 28.48, 27.90, 26.74; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₃H₁₇O₃⁺, 221.1173, found 221.1169.

2-cyclohexylideneethyl 1-methyl-1*H*-pyrrole-2-carboxylate (3f)

Following the Standard Procedure A, the reaction of 1-methyl-1*H*-pyrrole-2-carboxylic acid (30.0 mg, 0.24 mmol, 1.2 equiv), **3**f K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **3**f (38.6 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.95 (dd, *J* = 4.0, 1.8 Hz, 1H), 6.76 (t, *J* = 2.2 Hz, 1H), 6.10 (dd, *J* = 3.9, 2.5 Hz, 1H), 5.38 (ddq, *J* = 7.1, 5.9, 1.2 Hz, 1H), 4.73 (d, *J* = 7.1 Hz, 2H), 3.92 (s, 3H), 2.28 – 2.22 (m, 2H), 2.13 (d, *J* = 5.6 Hz, 2H), 1.56 (tt, *J* = 4.9, 2.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 161.52, 146.65, 129.42, 122.87, 117.87, 115.74, 107.86, 60.09, 37.11, 36.95, 29.24, 28.49, 27.90, 26.77; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₄H₂₀NO₂⁺, 234.1489, found 234.1485.

2-cyclohexylideneethyl 4-phenylbutanoate (3g)

Following the Standard Procedure A, the reaction of 4phenylbutanoic acid (39.4 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2-

cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0.5% as colorless oil **3g** (44.3 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, *J* = 8.6, 6.6 Hz,

2H), 7.20 (td, J = 6.6, 1.7 Hz, 3H), 5.30 (t, J = 7.3 Hz, 1H), 4.60 (d, J = 7.3 Hz, 2H), 2.66 (t, J = 7.6 Hz, 2H), 2.34 (t, J = 7.5 Hz, 2H), 2.21 (t, J = 5.5 Hz, 2H), 2.13 (d, J = 5.4 Hz, 2H), 1.97 (p, J = 7.5 Hz, 2H), 1.57 (dq, J = 7.3, 4.9, 3.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.61, 146.99, 141.57, 128.61, 128.47, 126.05, 115.33, 60.61, 37.10, 35.25, 33.82, 29.12, 28.43, 27.84, 26.70; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₈H₂₅O₂⁺, 273.1850, found 273.1852.

2-cyclohexylideneethyl acetate (3h)

Following the Standard Procedure A, the reaction of acetic acid (14.4 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **3h** (21.6 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.28 (tt, *J* = 7.3, 1.2 Hz, 1H), 4.58 (d, *J* = 7.3 Hz, 2H), 2.22 – 2.17 (m, 2H), 2.11 (d, *J* = 5.6 Hz, 2H), 2.05 (s, 3H), 1.56 (tt, *J* = 6.9, 4.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.29, 147.07, 115.26, 60.81, 37.14, 29.14, 28.46, 27.86, 26.74, 21.25; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₀H₁₇O₂⁺, 169.1224, found 169.1225.

2-cyclohexylideneethyl cyclohexanecarboxylate (3i)

Following the Standard Procedure A, the reaction of cyclohexanecarboxylic acid (30.8 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a**

(82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **3i** (41.7 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.26 (tt, *J* = 7.1, 1.3 Hz, 1H), 4.55 (d, *J* = 7.2 Hz, 2H), 2.27 (tt, *J* = 11.3, 3.6 Hz, 1H), 2.18 (t, *J* = 5.5 Hz, 2H), 2.11 (d, *J* = 5.5 Hz, 2H), 1.92 – 1.83 (m, 2H), 1.73 (dq, *J* = 9.9, 3.7 Hz, 3H), 1.54 (h, *J* = 4.5, 4.0 Hz, 6H), 1.47 – 1.37 (m, 2H), 1.31 – 1.21 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.28, 146.78, 115.51, 60.43, 43.39, 37.09, 29.17, 29.15, 28.47, 27.87, 26.73, 25.90, 25.59; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₅H₂₅O₂⁺, 237.1850, found 237.1847.

2-cyclohexylideneethyl pivalate (3j)

Following the Standard Procedure A, the reaction of pivalic acid (24.5 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium equiv) and 3j tetrafluoroborate 2a (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0.5% as colorless oil **3**j (27.4 mg, 65% yield). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 5.27 \text{ (tt}, J = 7.1, 1.2 \text{ Hz}, 1\text{H}), 4.55 \text{ (d}, J = 7.1 \text{ Hz}, 2\text{H}), 2.23 - 2.15$ (m, 2H), 2.10 (d, J = 5.2 Hz, 2H), 1.55 (q, J = 3.0, 2.6 Hz, 6H), 1.18 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 178.72, 146.62, 115.61, 60.69, 38.84, 37.07, 29.23, 28.55, 27.93, 27.35, 26.76; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₃H₂₃O₂⁺, 211.1693, found 211.1689.

2-cyclohexylideneethyl 2-methyl-2-phenylpropanoate (3k)

Following the Standard Procedure A, the reaction of 2-methyl-2-phenylpropanoic acid (39.4 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (E)-5-(2-cyclohexylvinyl)-

5H-thianthren-5-ium tetrafluoroborate 2a (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0.5% as colorless oil 3k (48.5 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 4H), 7.23 (ddt, J = 8.4, 6.0, 2.0 Hz, 1H), 5.22 (tt, J = 7.1, 1.3 Hz, 1H), 4.57 (d, J = 7.1 Hz, 2H), 2.16 - 2.10 (m, 2H), 2.08 (d, J = 5.4 Hz, 2H), 1.58 (s, 6H), 1.53 (p, J = 3.3, 2.9 Hz, 4H), 1.50 - 1.44 (m, 2H);¹³C NMR (101 MHz, CDCl₃) δ 176.81, 147.06, 145.02, 128.41, 126.66, 125.79, 115.27, 61.11, 46.69, 37.02, 29.18, 28.51, 27.85, 26.71; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₈H₂₅O₂⁺, 273.1850, found 273.1844.

2-cyclohexylideneethyl formate (31)

mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) 31 and (E)-5-(2-cyclohexylvinyl)-5H-thianthren-5-ium tetrafluoroborate 2a (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0.5% as colorless oil **31** (22.8 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 5.31 (tt, J = 7.4, 1.3 Hz, 1H), 4.68 (d, J = 7.4 Hz, 2H), 2.21 (t, J = 5.5 Hz, 2H), 2.16 – 2.09 (m, 2H), 1.56 (h, J = 4.2 Hz, 6H). ¹³C NMR (100

Following the Standard Procedure A, the reaction of formic acid (11.0

MHz, CDCl₃) δ 161.26, 147.99, 114.64, 60.17, 37.12, 29.15, 28.44, 27.84, 26.69; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₉H₁₅O₂⁺, 155.1067, found 155.1066.

2-cyclohexylideneethyl 2-oxo-2-phenylacetate (3m)

Following the Standard Procedure A, the reaction of 2-oxo-2phenylacetic acid (36.0 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a**

(82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **3m** (40.0 mg, 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.04 – 7.98 (m, 2H), 7.65 (td, *J* = 7.4, 1.4 Hz, 1H), 7.51 (td, *J* = 7.7, 1.3 Hz, 2H), 5.42 (tt, *J* = 7.5, 1.3 Hz, 1H), 4.90 (d, *J* = 7.5 Hz, 2H), 2.27 (d, *J* = 5.6 Hz, 2H), 2.16 (t, *J* = 5.4 Hz, 2H), 1.57 (h, *J* = 4.2, 3.2 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 186.63, 164.05, 149.17, 134.97, 132.71, 130.18, 128.99, 114.07, 62.40, 37.16, 29.28, 28.45, 27.87, 26.66; HRMS-ESI (m/z) [M+Na]⁺ calc'd for C₁₆H₁₈O₃Na⁺, 281.1149, found 281.1147.

2-cyclohexylideneethyl 3-phenylpropiolate (3n)

Following the Standard Procedure A, the reaction of 3-Ph phenylpropiolic acid (35.1 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ ö (27.6)0.20 mmol, 1.0 equiv) and (E)-5-(2mg, 3n cyclohexylvinyl)-5H-thianthren-5-ium tetrafluoroborate 2a (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0.5% as colorless oil **3n** (43.7 mg, 86% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2H), 7.44 (td, J = 7.3, 1.4 Hz, 1H), 7.36 (dd, J = 8.4, 7.1 Hz, 2H), 5.36 (t, J = 7.5 Hz, 1H), 4.75 (d, J = 7.4 Hz, 2H), 2.24 (d, J = 5.6 Hz, 2H), 2.15 (t, J = 5.5 Hz, 2H), 1.57 (dq, J = 7.1),3.9, 3.2 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 154.29, 148.35, 133.12, 130.69, 128.68, 119.86, 114.40, 86.22, 80.87, 62.30, 37.17, 29.21, 28.40, 27.83, 26.70; HRMS-ESI (m/z) $[M+H]^+$ calc'd for C₁₇H₁₉O₂⁺, 255.1380, found 255.1375.

2-cyclohexylideneethyl (2E,4E)-hexa-2,4-dienoate (30)

Following the Standard Procedure A, the reaction of sorbic acid (26.9 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg,

0.20 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **3o** (39.8 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, *J* = 15.3, 9.8 Hz, 1H), 6.26 – 6.05 (m, 2H), 5.77 (d, *J* = 15.4 Hz, 1H), 5.31 (tt, *J* = 7.3, 1.3 Hz, 1H), 4.64 (d, *J* = 7.2 Hz, 2H), 2.21 (d, *J* = 6.0 Hz, 2H), 2.11 (d, *J* = 5.5 Hz, 2H), 1.84 (d, *J* = 5.9 Hz, 3H), 1.55 (tt, *J* = 6.8, 4.7, 4.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.48, 146.82, 145.05, 139.30, 129.95, 119.18, 115.48, 60.57, 37.12, 29.16, 28.44, 27.84, 26.73, 18.75; HRMS-ESI (m/z) [M+Na]⁺ calc'd for C₁₄H₂₀O₂Na⁺, 243.1356, found 243.1354.

2-cyclohexylideneethyl naproxen ester (3p)

Following the Standard Procedure A, the reaction of naproxen (27.6 mg, 0.12 mmol, 1.2 equiv), K_2CO_3 (13.8 mg, 0.10 mmol, 1.0 equiv), (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoro-

borate **2a** (41.2 mg, 0.10 mmol, 1.0 equiv) and DCM 1.0 mL for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **3p** (28.5 mg, 84% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.72 – 7.68 (m, 2H), 7.66 (d, *J* = 1.8 Hz, 1H), 7.41 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.13 (dd, *J* = 8.8, 2.6 Hz, 1H), 7.11 (d, *J* = 2.5 Hz, 1H), 5.30 – 5.19 (m, 1H), 4.62 (dd, *J* = 12.3, 7.2 Hz, 1H), 4.55 (dd, *J* = 12.3, 7.2 Hz, 1H), 3.91 (t, *J* = 1.4 Hz, 3H), 3.85 (q, *J* = 7.2 Hz, 1H), 2.13 (t, *J* = 6.1 Hz, 2H), 2.06 (d, *J* = 5.5 Hz, 2H), 1.57 (d, *J* = 7.1 Hz, 3H), 1.51 (qd, *J* = 6.0, 3.9, 2.8 Hz, 4H), 1.47 – 1.42 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 174.82, 157.70, 147.14, 136.01, 133.78, 129.39, 129.07, 127.19, 126.44, 126.05, 119.01, 115.22, 105.71, 61.12, 55.44, 45.64, 37.05, 29.16, 28.45, 27.81, 26.70, 18.82; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₂₂H₂₇O₃⁺, 339.1955, found 339.1955.

2-cyclohexylideneethyl oxaprozin ester (3q)

Following the Standard Procedure A, the reaction of oxaprozin (35.2 mg, 0.12 mmol, 1.2 equiv), K_2CO_3 (13.8 mg, 0.10 mmol, 1.0 equiv), (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (41.2 mg, 0.10 mmol, 1.0 equiv) and DCM 1.0 mL for 24 h afforded

product after flash chromatography EA: PE = 0.5% as colorless oil **3q** (28.7 mg, 71%)

yield). ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.62 (m, 2H), 7.59 – 7.54 (m, 2H), 7.40 – 7.29 (m, 6H), 5.29 (tt, *J* = 7.2, 1.2 Hz, 1H), 4.65 (d, *J* = 7.3 Hz, 2H), 3.20 (dd, *J* = 8.2, 6.8 Hz, 2H), 2.91 (dd, *J* = 8.2, 6.8 Hz, 2H), 2.19 (t, *J* = 5.4 Hz, 2H), 2.09 (d, *J* = 5.3 Hz, 2H), 1.58 – 1.49 (m, *J* = 3.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.12, 162.01, 147.30, 145.53, 135.11, 132.45, 129.06, 128.76, 128.67, 128.59, 128.20, 128.03, 126.60, 115.10, 61.12, 37.08, 31.36, 29.16, 28.44, 27.85, 26.70, 23.71; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₂₆H₂₈NO₃⁺, 402.2064, found 402.2061.

2-cyclohexylideneethyl adapalene ester (3r)

Following the Standard Procedure A, the reaction of adapalene (49.5 mg, 0.12 mmol, 1.2 equiv), K_2CO_3 (13.8 mg, 0.10 mmol, 1.0 equiv), (*E*)-5-(2-cyclohexylvinyl)-5*H*-

thianthren-5-ium tetrafluoroborate **2a** (41.2 mg, 0.10 mmol, 1.0 equiv) and DCM 1.0 mL for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless solid **3r** (34.8 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 1.6 Hz, 1H), 8.09 (dd, *J* = 8.6, 1.7 Hz, 1H), 8.05 – 7.96 (m, 2H), 7.91 (d, *J* = 8.7 Hz, 1H), 7.79 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.61 (d, *J* = 2.4 Hz, 1H), 7.55 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.00 (d, *J* = 8.5 Hz, 1H), 5.53 – 5.45 (m, 1H), 4.92 (d, *J* = 7.2 Hz, 2H), 3.91 (s, 3H), 2.31 (d, *J* = 5.7 Hz, 2H), 2.20 (d, *J* = 2.9 Hz, 8H), 2.15 – 2.09 (m, 3H), 1.82 (d, *J* = 3.0 Hz, 6H), 1.65 – 1.58 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.02, 159.02, 147.15, 141.39, 139.10, 136.03, 132.72, 131.38, 130.88, 129.81, 128.25, 127.46, 126.52, 126.09, 125.84, 125.80, 124.84, 115.48, 112.23, 61.42, 55.29, 40.75, 37.34, 37.27, 37.19, 29.32, 29.25, 28.51, 27.95, 26.78; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₃₆H₄₁O₃⁺, 521.3050, found 521.3054.

2-cyclohexylideneethyl lithocholic ester (3s)

Following the Standard Procedure A, the reaction of lithocholic acid (45.2 mg, 0.12 mmol, 1.2 equiv), K_2CO_3 (13.8 mg, 0.10 mmol, 1.0 equiv), (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (41.2 mg, 0.10 mmol, 1.0 equiv) and DCM 1.0 mL for 24

h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **3s** (34.4 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.28 (t, *J* = 7.3 Hz, 1H), 4.57 (d, *J* = 7.3 Hz, 2H), 3.61 (tq, *J* = 9.7, 4.7 Hz, 1H), 2.34 (ddd, *J* = 15.2, 9.9, 5.2 Hz, 1H), 2.26 – 2.14 (m, 3H), 2.11 (d, *J* = 5.2 Hz, 2H), 1.95 (dt, *J* = 12.4, 3.0 Hz, 1H), 1.90 – 1.71 (m, 4H), 1.72 – 1.60 (m, 4H), 1.55 (tt, *J* = 8.4, 6.0, 5.0 Hz, 7H), 1.37 (dtd, *J* = 17.4, 10.6, 8.6, 3.7 Hz, 6H), 1.25 (dddd, *J* = 14.2, 10.1, 8.3, 3.9 Hz, 4H), 1.17 – 0.94 (m, 6H), 0.93 – 0.88 (m, 6H), 0.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.51, 146.92, 115.43, 72.01, 60.59, 56.64, 56.13, 42.88, 42.25, 40.58, 40.31, 37.13, 36.60, 35.99, 35.49, 34.72, 31.52, 31.17, 31.06, 30.69, 29.16, 28.47, 28.33, 27.87, 27.34, 26.75, 26.56, 24.35, 23.52, 20.97, 18.42; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₃₂H₅₃O₃⁺, 485.3990, found 485.4001.

2-cyclohexylideneethyl telmisartan ester (3t)

Following the Standard Procedure A, the reaction of telmisartan (61.8 mg, 0.12 mmol, 1.2 equiv), K_2CO_3 (13.8 mg, 0.10 mmol, 1.0 equiv), (*E*)-5-(2cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (41.2 mg, 0.10 mmol, 1.0 equiv) and DCM 1.0 mL for 24 h afforded product after flash chromatography MeOH: DCM =0-5% as

colorless solid **3t** (43.1 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (ddd, J = 9.4, 6.7, 2.0 Hz, 2H), 7.46 (d, J = 1.5 Hz, 1H), 7.40 (td, J = 7.6, 1.5 Hz, 1H), 7.37 (t, J = 1.2 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.25 – 7.16 (m, 5H), 7.03 (d, J = 8.1 Hz, 2H), 5.38 (d, J = 4.1 Hz, 2H), 4.98 (tt, J = 7.2, 1.2 Hz, 1H), 4.48 (d, J = 7.2 Hz, 2H), 3.72 (s, 3H), 2.92 – 2.84 (m, 2H), 2.70 (s, 3H), 2.01 (t, J = 6.0 Hz, 2H), 1.92 (d, J = 5.7 Hz, 2H), 1.87 – 1.76 (m, 2H), 1.46 – 1.33 (m, 6H), 0.99 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.31, 156.70, 154.52, 147.14, 143.28, 141.68, 141.27, 136.52, 135.12, 134.73, 131.28, 131.20, 130.80, 129.91, 129.65, 129.31, 127.46, 126.06, 123.99, 123.43, 122.87, 122.73, 119.44, 114.87, 109.72, 109.33, 61.21, 47.30, 37.06, 32.02, 29.94, 29.08, 28.43, 27.82, 26.64, 22.01, 17.05, 14.22; HRMS-ESI (m/z) [M+H]⁺ calc'd for C41H43N4O2⁺, 623.3381, found 623.3390.

2-cyclohexylideneethyl D-biotin ester (3u)

Following the Standard Procedure A, the reaction of *D*-biotin (29.3 mg, 0.12 mmol, 1.2 equiv), K₂CO₃ (13.8 mg, 0.10 mmol, 1.0 equiv), (*E*)-5-(2-

cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (41.2 mg, 0.10 mmol, 1.0 equiv) and DCM 1.0 mL for 24 h afforded product after flash chromatography MeOH: DCM =0-5% as colorless oil **3u** (26.9 mg, 76% yield). ¹H NMR (600 MHz, CDCl₃) δ 6.00 (bs, 2H), 5.26 (t, *J* = 7.4 Hz, 1H), 4.56 (d, *J* = 7.3 Hz, 2H), 4.50 (dd, *J* = 7.7, 5.1 Hz, 1H), 4.30 (dd, *J* = 7.9, 4.6 Hz, 1H), 3.14 (dt, *J* = 11.4, 5.7 Hz, 1H), 2.89 (dd, *J* = 12.9, 4.9 Hz, 1H), 2.74 (d, *J* = 12.8 Hz, 1H), 2.32 (t, *J* = 7.5 Hz, 2H), 2.18 (t, *J* = 5.6 Hz, 2H), 2.10 (d, *J* = 5.3 Hz, 2H), 1.68 (dhept, *J* = 27.8, 6.7 Hz, 4H), 1.54 (h, *J* = 6.3, 5.1 Hz, 6H), 1.43 (dp, *J* = 20.9, 6.8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 173.86, 163.85, 147.06, 115.26, 62.13, 60.70, 60.34, 55.58, 40.64, 37.10, 34.11, 29.14, 28.47, 28.44, 28.34, 27.84, 26.70, 24.93; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₈H₂₉N₂O₃S⁺, 353.1893, found 353.1902.

2-cyclohexylideneethyl probenecid ester (3v)

Following the Standard Procedure A, the reaction of probenecid (34.2 mg, 0.12 mmol, 1.2 equiv), K_2CO_3 (13.8 mg, 0.10 mmol, 1.0 equiv), (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate

2a (41.2 mg, 0.10 mmol, 1.0 equiv) and DCM 1.0 mL for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **3v** (37.6 mg, 95% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.17 – 8.13 (m, 2H), 7.85 (dd, *J* = 8.5, 1.7 Hz, 2H), 5.40 (t, *J* = 7.3 Hz, 1H), 4.85 (d, *J* = 7.3 Hz, 2H), 3.08 (dd, *J* = 8.8, 6.7 Hz, 4H), 2.26 (d, *J* = 4.9 Hz, 2H), 2.19 – 2.10 (m, 2H), 1.63 – 1.49 (m, 10H), 0.86 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 165.43, 147.89, 144.19, 134.02, 130.33, 127.06, 114.83, 61.87, 50.03, 37.14, 29.27, 28.46, 27.92, 26.69, 22.04, 11.27; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₂₁H₃₂NO₄S⁺, 394.2047, found 394.2057.

2-cyclohexylideneethyl neotame ester (3w)

Following the Standard Procedure B, the reaction of benzylpenicillin potassium (149.0 mg, 0.40 mmol, 2.0 equiv), H₂O (0.2 mg, 0.2 μ L, 0.0011 mmol, 0.056 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg,

0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography MeOH: DCM =0-5% as colorless oil **3w** (81.2 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 3H), 7.22 – 7.19 (m, 2H), 6.03 (dt, *J* = 6.8, 3.4 Hz, 1H), 5.57 (dd, *J* = 9.0, 4.2 Hz, 1H), 5.43 (d, *J* = 4.2 Hz, 1H), 5.25 – 5.17 (m, 1H), 4.58 (dd, *J* = 7.5, 2.3 Hz, 2H), 4.28 (s, 1H), 3.57 (s, 2H), 2.13 (t, *J* = 5.5 Hz, 3H), 2.05 (d, *J* = 5.7 Hz, 3H), 1.48 (q, *J*=4.0 Hz, 6H), 1.36 (d, *J*= 3.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.53, 170.48, 167.64, 148.73, 133.95, 129.71, 129.27, 127.78, 114.19, 70.45, 68.20, 64.71, 61.77, 58.90, 43.55, 37.10, 32.16, 29.18, 28.43, 27.84, 26.91, 26.64; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₂₄H₃₁N₂O₄S⁺, 443.1999, found 443.2011.

1-(tert-butyl) 2-(2-cyclohexylideneethyl) (S)-pyrrolidine-1,2-dicarboxylate (3x)

Following the Standard Procedure A, the reaction of (51.7 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetra-

fluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **3x** (55.6 mg, 86% yield).¹H NMR (400 MHz, CDCl₃) δ 5.26 (t, *J* = 7.3 Hz, 1H), 4.74 – 4.50 (m, 2H), 4.35 – 4.15 (m, 1H), 3.64 – 3.30 (m, 2H), 2.25 – 2.14 (m, 3H), 2.12 – 2.05 (m, 2H), 2.00 – 1.89 (m, 2H), 1.88 – 1.77 (m, 2H), 1.58 – 1.50 (m, 6H), 1.47 – 1.38 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.38, 154.00, 147.21, 115.13, 79.92, 61.15, 59.35, 46.44, 37.09, 31.02, 29.15, 28.56, 28.43, 27.82, 26.68, 23.74; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₈H₃₀NO₄⁺, 324.2169, found 324.2173.

2-cyclohexylideneethyl ((benzyloxy)carbonyl)glycylglycinate (3y)

Following the Standard Procedure A, the reaction of (69.3 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **3y** (59.4 mg, 79% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.29 (m, 5H), 6.59 (br, 1H), 5.52 (br, 1H), 5.27 (t, *J* = 7.4 Hz, 1H), 5.13 (d, *J* = 2.1 Hz, 2H), 4.66 (dd, *J* = 7.4, 2.0 Hz, 2H), 4.03 (t, *J* = 3.9 Hz, 2H), 3.92 (d, *J* = 5.4 Hz, 2H), 2.19 (t, *J* = 5.4 Hz, 2H), 2.11 (d, *J* = 5.2 Hz, 2H), 1.62 – 1.51 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 169.86, 169.37, 156.77, 148.06, 136.22, 128.67, 128.36, 128.22, 114.49, 67.35, 61.84, 44.49, 41.40, 37.08, 29.13, 28.37, 27.82, 26.63; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₂₀H₂₇N₂O₅⁺, 375.1914, found 375.1924.

2-cyclohexylideneethyl neotame ester (3z)

Following the Standard Procedure A, the reaction of neotame (90.8 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded

product after flash chromatography MeOH: DCM =0-10% as colorless oil **3z** (82.0 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.5 Hz, 1H), 7.35 – 7.21 (m, 3H), 7.18 – 7.11 (m, 2H), 5.27 (tt, *J* = 7.2, 1.3 Hz, 1H), 4.85 (dt, *J* = 8.6, 6.1 Hz, 1H), 4.65 – 4.50 (m, 2H), 3.71 (s, 3H), 3.43 (dd, *J* = 8.7, 3.8 Hz, 1H), 3.20 – 3.04 (m, 2H), 2.74 (dd, *J* = 16.5, 3.8 Hz, 1H), 2.53 (dddd, *J* = 17.0, 15.5, 12.5, 7.7 Hz, 3H), 2.23 – 2.15 (m, 3H), 2.13 (d, *J* = 5.5 Hz, 2H), 1.55 (hept, *J* = 4.5, 4.0 Hz, 6H), 1.37 – 1.29 (m, 2H), 0.86 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.60, 171.84, 171.70, 147.45, 136.08, 129.37, 128.65, 127.19, 114.91, 61.13, 59.40, 52.83, 52.33, 44.61, 44.13, 38.11, 37.08, 36.59, 29.87, 29.64, 29.14, 28.42, 27.84, 26.67; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₂₈H₄₃N₂Os⁺, 487.3166, found 487.3179.

cyclopent-2-en-1-yl benzoate (4a)

Following the Standard Procedure A, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and 5-(cyclopent-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoro-

borate **2aa** (74.0 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4a** (21.0 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 6.9 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.42 (dd, *J* =

8.4, 7.0 Hz, 2H), 6.16 (dt, J = 4.5, 2.2 Hz, 1H), 5.95 (dt, J = 4.6, 1.7 Hz, 2H), 2.68 – 2.53 (m, 1H), 2.46 – 2.30 (m, 2H), 2.06 – 1.92 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.72, 137.83, 132.88, 130.82, 129.70, 129.50, 128.40, 81.27, 31.31, 30.03; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₂H₁₃O₂⁺, 189.0910, found 189.0911.

cyclohex-2-en-1-yl benzoate (4b)

Following the Standard Procedure A, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and 5-(cyclohex-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2b** (76.8 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product

after flash chromatography EA: PE = 0-5% as colorless oil **4b** (28.1 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.02 (m, 2H), 7.58 – 7.51 (m, 1H), 7.43 (dd, J = 8.4, 7.0 Hz, 2H), 6.01 (dtd, J = 10.0, 3.7, 1.2 Hz, 1H), 5.84 (ddt, J = 10.1, 4.1, 2.2 Hz, 1H), 5.51 (tdq, J = 5.3, 3.4, 1.6 Hz, 1H), 2.19 – 2.04 (m, 2H), 1.98 (dddd, J = 13.3, 9.8, 5.1, 3.4 Hz, 1H), 1.94 – 1.79 (m, 2H), 1.71 (dddd, J = 13.8, 11.5, 5.9, 3.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.36, 132.98, 132.87, 130.93, 129.72, 128.39, 125.87, 68.73, 28.56, 25.10, 19.09; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₃H₁₅O₂⁺, 203.1067, found 203.1064.

(Z)-cyclooct-2-en-1-yl benzoate (4c)

Following the Standard Procedure A, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, **1.0** equiv) and (*E*)-5-(cyclooct-1-en-1-yl)-5*H*-thianthren-5-ium tetra-fluoroborate **2c** (82.5 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4c** (33.9 mg, 74% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, *J* = 7.6 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 5.91 (dt, *J* = 11.6, 5.8 Hz, 1H), 5.72 (tdd, *J* = 8.9, 7.0, 1.6 Hz, 1H), 5.62 (dd, *J* = 10.9, 6.9 Hz, 1H), 2.35 (tdd, *J* = 13.2, 9.1, 4.0 Hz, 1H), 2.22 – 2.13 (m, 1H), 2.06 (td, *J* = 8.4, 4.1 Hz, 1H), 1.77 – 1.54 (m, 7H), 1.44 (dddd, *J* = 13.1, 9.8, 6.7, 3.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 166.11, 132.88, 130.91, 130.81, 129.99, 129.69, 128.40, 73.12, 35.27, 28.96, 26.55, 26.03, 23.54; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₅H₁₉O₂⁺, 231.1380, found 231.1389.

(Z)-cyclododec-2-en-1-yl benzoate (4d)

Following the Standard Procedure A, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(cyclododec-1-en-1-yl)-5*H*-

thianthren-5-ium tetrafluoroborate **2d** (93.7 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4d** (33.0 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.01 (m, 2H), 7.57 – 7.50 (m, 1H), 7.43 (dd, *J* = 8.4, 7.0 Hz, 2H), 5.79 (ddd, *J* = 14.9, 9.4, 5.4 Hz, 1H), 5.58 – 5.41 (m, 2H), 2.24 (ddp, *J* = 10.5, 5.2, 1.7 Hz, 1H), 2.12 – 1.98 (m, 1H), 1.90 (tt, *J* = 9.1, 3.9 Hz, 1H), 1.72 (tdd, *J* = 9.4, 6.7, 4.8 Hz, 1H), 1.65 – 1.52 (m, 2H), 1.48 – 1.21 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 165.89, 135.13, 132.82, 131.06, 129.68, 129.35, 128.39, 76.56, 32.28, 31.78, 25.96, 25.65, 25.09, 24.98, 24.70, 24.45, 22.39; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₉H₂₇O₂⁺, 287.2006, found 287.2001.

2-(4'-propyl-[1,1'-bi(cyclohexan)]-4-ylidene)ethyl benzoate (4e)

Following the Standard Procedure A, the reaction of benzoic acid **1a** (14.6 mg, 0.12 mmol, 1.2 equiv), K₂CO₃ (13.8 mg, 0.10 mmol, 1.0 equiv) and (*E*)-5-(2-

(4'-propyl-[1,1'-bi(cyclohexan)]-4-yl)vinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2e** (53.6 mg, 0.10 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless solid **4e** (28.5 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.00 (m, 2H), 7.58 – 7.51 (m, 1H), 7.43 (dd, *J* = 8.4, 7.0 Hz, 2H), 5.46 – 5.38 (m, 1H), 4.83 (d, *J* = 7.2 Hz, 2H), 2.81 – 2.70 (m, 1H), 2.27 (dq, *J* = 13.4, 3.2, 2.7 Hz, 1H), 2.13 – 2.01 (m, 1H), 1.82 (td, *J* = 13.9, 12.7, 3.6 Hz, 3H), 1.77 – 1.66 (m, 4H), 1.29 (dtdd, *J* = 14.6, 11.2, 5.3, 2.2 Hz, 3H), 1.19 – 1.01 (m, 5H), 0.95 (td, *J* = 12.0, 11.4, 2.9 Hz, 2H), 0.87 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.83, 147.25, 132.88, 130.73, 129.73, 128.41, 115.13, 61.41, 43.44, 42.99, 39.93, 37.71, 36.77, 33.69, 31.60, 31.07, 30.31, 30.27, 28.84, 20.18, 14.57; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₂₄H₃₅O₂⁺, 355.2632, found 355.2628.

(Z)-oct-2-en-1-yl benzoate (4f)

Following the Standard Procedure A, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(oct-1-en-1-yl)-

5*H*-thianthren-5-ium tetrafluoroborate **2f** (82.9 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4f** (41.0 mg, 88% yield, Z/E = 2.5:1). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (dt, J = 8.5, 1.6 Hz, 2H), 7.59 – 7.52 (m, 1H), 7.43 (dd, J = 8.4, 7.1 Hz, 2H), 5.94 – 5.60 (m, 2H), 4.94 – 4.73 (m, 2H), 2.23 – 2.03 (m, 2H), 1.46 – 1.37 (m, 2H), 1.30 (td, J = 6.4, 5.7, 3.0 Hz, 4H), 0.89 (td, J = 6.9, 1.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.70, 135.88, 132.99, 130.49, 129.73, 128.44, 123.41, 61.01, 31.54, 29.26, 27.74, 22.66, 14.17; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₅H₂₁O₂⁺, 233.1536, found 233.1541.

(Z)-4-phenylbut-2-en-1-yl benzoate (4g)

Ph-O-Following the Standard Procedure A, the reaction of benzoic acid 1a (29.3 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(4-phenylbut-1-en-1-yl)-

5*H*-thianthren-5-ium tetrafluoroborate **2g** (86.8 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4g** (46.7 mg, 92% yield, Z/E = 3.1:1). ¹H NMR (600 MHz, CDCl₃) δ 8.09 – 8.05 (m, 2H), 7.59 – 7.55 (m, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.3 Hz, 2H), 7.23 – 7.21 (m, 3H), 5.93 – 5.87 (m, 1H), 5.85 – 5.79 (m, 1H), 5.00 (d, *J* = 6.8 Hz, 2H), 3.56 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 166.67, 139.96, 134.63, 133.83, 133.09, 129.78, 128.71, 128.55, 128.50, 126.34, 124.43, 60.82, 34.02; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₇H₁₇O₂⁺, 253.1223, found 253.1229.

Following the Standard Procedure E, the reaction of benzoic acid **1a** (24.4 mg, 0.20 mmol, 2.0 equiv), PMTDA (17.3 mg, 0.10 mmol, 1.0 equiv), (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2g** (43.4 mg, 0.10 mmol, 1.0 equiv) and DCE 2.0 mL for 10 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4g** (14.1 mg, 56% yield, Z/E = 8.0:1).

(Z)-7-bromohept-2-en-1-yl benzoate (4h)

Following the Standard Procedure A, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(7-bromohept-1-en-1-yl)-5*H*-

thianthren-5-ium tetrafluoroborate **2h** (95.8 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4h** (56.4 mg, 95% yield, Z/E = 2.7:1). ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.99 (m, 2H), 7.60 – 7.51 (m,

1H), 7.44 (dd, J = 8.3, 7.0 Hz, 2H), 5.75 – 5.64 (m, 2H), 4.87 (d, J = 5.7 Hz, 2H), 3.42 (t, J = 6.7 Hz, 2H), 2.27 – 2.19 (m, 2H), 1.90 (dt, J = 15.1, 6.7 Hz, 2H), 1.63 – 1.52 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 166.67, 134.81, 133.08, 130.40, 129.75, 128.49, 124.27, 60.82, 33.68, 32.34, 28.05, 26.88; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₄H₁₈BrO₂⁺, 297.0485, found 297.0482.

Following the Standard Procedure E, the reaction of benzoic acid **1a** (24.4 mg, 0.20 mmol, 2.0 equiv), PMTDA (17.3 mg, 0.10 mmol, 1.0 equiv), (*E*)-5-(7-bromohept-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2h** (47.9 mg, 0.10 mmol, 1.0 equiv) and DCE 2.0 mL for 10 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4h** (14.4 mg, 48% yield, Z/E = 5.6:1).

(Z)-octa-2,7-dien-1-yl benzoate (4i)

Following the Standard Procedure A, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ **4i** (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(octa-1,7-dien-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2i** (82.5 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4i** (33.7 mg, 73% yield, Z/E = 2.4:1). ¹H NMR (600 MHz, CDCl₃) δ 8.05 (dt, J = 8.4, 1.9 Hz, 2H), 7.57 – 7.53 (m, 1H), 7.44 (t, J = 7.7 Hz, 2H), 5.89 – 5.65 (m, 3H), 5.02 (ddq, J = 17.1, 3.8, 1.8 Hz, 1H), 4.96 (dp, J = 10.3, 1.7 Hz, 1H), 4.90 – 4.75 (m, 2H), 2.23 – 2.04 (m, 4H), 1.55 – 1.47 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 166.69, 138.55, 135.29, 133.01, 132.99, 129.74, 128.46, 123.85, 114.95, 61.01, 33.33, 28.74, 27.16; HRMS-

ESI (m/z) $[M+H]^+$ calc'd for C₁₅H₁₉O₂⁺, 231.1380, found 231.1382.

(Z)-10-hydroxydec-2-en-1-yl benzoate (4j)

Following the Standard Procedure A, the reaction of benzoic acid 1a (29.3 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(10-hydroxydec-1-en-1-yl)-

5*H*-thianthren-5-ium tetrafluoroborate **2j** (91.7 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4j** (39.2 mg, 71% yield, Z/E = 2.6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 8.2, 1.5 Hz, 2H), 7.57 – 7.52 (m, 1H), 7.43 (t, J = 7.6 Hz, 2H), 5.92 – 5.60 (m, 2H), 4.89-4.73 (m, 2H), 3.63 (td, J = 6.6, 2.5 Hz, 2H), 2.22-2.02 (m, 2H), 1.55 (qd, J = 8.1, 6.6, 2.3 Hz,

2H), 1.45 - 1.28 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 166.72, 135.74, 133.02, 130.44, 129.73, 128.45, 123.49, 63.12, 61.00, 32.84, 29.44, 29.33, 29.23, 27.70, 25.78; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₇H₂₅O₃⁺, 277.1798, found 277.1803.

(Z)-pent-2-ene-1,5-diyl dibenzoate (4k)

Following the Standard Procedure A, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(5-(benzoyloxy)pent-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2k** (98.5 mg,

0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4k** (50.9 mg, 82% yield, Z/E = 2.0:1). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dq, J = 7.0, 1.6 Hz, 4H), 7.59 – 7.50 (m, 2H), 7.46 – 7.37 (m, 4H), 5.88 – 5.75 (m, 2H), 4.93 (d, J = 6.0 Hz, 2H), 4.40 (t, J = 6.6 Hz, 2H), 2.69 (q, J = 6.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.69, 166.60, 133.09, 133.08, 130.46, 130.29, 129.75, 129.70, 128.49, 126.50, 63.99, 60.76, 27.48; HRMS-ESI (m/z) [M+Na]⁺ calc'd for C₁₉H₁₈NaO₄⁺, 333.1097, found 333.1094.

Following the Standard Procedure E, the reaction of benzoic acid **1a** (24.4 mg, 0.20 mmol, 2.0 equiv), PMTDA (17.3 mg, 0.10 mmol, 1.0 equiv), (*E*)-5-(5-(benzoyloxy)pent-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2k** (49.2 mg, 0.10 mmol, 1.0 equiv) and DCE 2.0 mL for 10 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4k** (14.7 mg, 47% yield, Z/E = 5.0:1).

(Z)-4-((cyclohexanecarbonyl)oxy)but-2-en-1-yl benzoate (4l)

Following the Standard Procedure A, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(4-

((cyclohexanecarbonyl)oxy)but-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **21** (96.9 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **41** (44.9 mg, 74% yield, Z/E = 2.4:1). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (tt, J = 6.5, 1.4 Hz, 2H), 7.61 – 7.52 (m, 1H), 7.43 (td, J = 7.8, 3.0 Hz, 2H), 5.93 – 5.76 (m, 2H), 4.88 (dd, J = 40.4, 5.3 Hz, 2H), 4.78 – 4.55 (m, 2H), 2.31 (tdt, J = 11.5, 7.6, 3.7 Hz, 1H), 1.97 – 1.85 (m, 2H), 1.80 – 1.69 (m, 3H), 1.44 (qd, J = 11.5, 3.8 Hz, 2H), 1.34 – 1.19 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.89, 166.40, 133.16, 130.13, 129.75, 128.67, 128.49, 128.14, 64.51, 60.67, 43.24, 29.10, 25.85,

25.55, 25.54; HRMS-ESI (m/z) $[M+Na]^+$ calc'd for C₁₈H₂₂NaO₄⁺, 325.1410, found 325.1416.

(E)-3-(4-(trifluoromethyl)phenyl)allyl benzoate (4m)

Following the Standard Procedure A, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(3-(4-(trifluoro-methyl)phenyl)prop-1-en-1-yl)-5*H*-thianthren-5-ium tetra-fluoroborate **2m** (97.7 mg, 0.20 mmol, 1.0 equiv) for 24 h

afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4m** (43.5 mg, 71% yield, Z/E = 1:7.9). ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.04 (m, 2H), 7.68 – 7.55 (m, 3H), 7.53 – 7.39 (m, 4H), 6.81 – 6.73 (m, 1H), 6.50 (dt, *J* = 16.0, 6.1 Hz, 1H), 5.10 – 4.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.42, 139.83, 133.27, 132.51, 130.13, 129.81, 129.09, 128.57, 126.92, 126.24, 125.71 (q, *J* = 3.8 Hz), 124.24 (q, *J* = 273.0 Hz), 65.15; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.54 (s, 3F); HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₇H₁₄F₃O₂⁺, 307.0940, found 307.0943.

(Z)-4-phenylbut-2-en-1-yl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (4n)

Following the Standard Procedure A, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(4-phenylbut-1en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2g** (86.8 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **4n**

(60.9 mg, 84% yield, Z/E = 3.8:1). ¹H NMR (600 MHz, CDCl₃) δ 7.73 – 7.67 (m, 3H), 7.42 (dd, J = 8.4, 1.9 Hz, 1H), 7.24 (ddd, J = 7.9, 6.5, 1.5 Hz, 2H), 7.19 (d, J = 7.5 Hz, 1H), 7.15 (dd, J = 8.9, 2.5 Hz, 1H), 7.13 – 7.09 (m, 3H), 5.77 (dtt, J = 10.4, 7.6, 1.3 Hz, 1H), 5.66 – 5.59 (m, 1H), 4.81 – 4.69 (m, 2H), 3.92 (s, 3H), 3.88 (q, J = 7.2 Hz, 1H), 3.41 (d, J = 7.6 Hz, 2H), 1.60 (d, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.70, 157.78, 139.94, 135.81, 133.84, 133.74, 129.43, 129.08, 128.63, 128.49, 127.30, 126.37, 126.26, 126.11, 124.28, 119.11, 105.74, 60.66, 55.46, 45.60, 33.90, 18.73; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₂₄H₂₅O₃⁺, 361.1799, found 361.1796. Following the Standard Procedure E, the reaction of benzoic acid **1p** (24.4 mg, 0.20 mmol, 2.0 equiv), PMTDA (17.3 mg, 0.10 mmol, 1.0 equiv), (*E*)-5-(4-phenylbut-1-en-

1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2g** (43.4 mg, 0.10 mmol, 1.0 equiv) and DCE 2.0 mL for 10 h afforded product after flash chromatography EA: PE = 0.5% as colorless oil **4n** (17.1 mg, 47% yield, Z/E = 9.0:1).

(2-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)ethylidene)cyclohexane (5a)

Following the Standard Procedure C, the reaction of 1,1,1,3,3,3-hexafluoro-2-propanol (100.8 mg, 0.60 mmol, 3.0 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-

5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 48 h afforded product after flash chromatography hexane as colorless oil **5a** (24.7 mg, 45% yield). ¹H NMR (600 MHz, CDCl₃) δ 5.28 (t, *J* = 7.6 Hz, 1H), 4.36 (d, *J* = 7.5 Hz, 2H), 4.10 (p, *J* = 6.3 Hz, 1H), 2.18 (q, *J* = 6.3, 5.8 Hz, 4H), 1.59 (p, *J* = 3.0, 2.5 Hz, 4H), 1.57 – 1.52 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 150.13, 121.85 (m), 114.64, 73.36 (hept, *J* = 32.1 Hz), 69.21, 37.33, 29.05, 28.58, 28.01, 26.67; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₁H₁₅F₆O⁺, 277.1002, found 277.1004.

4-(2-cyclohexylideneethoxy)benzonitrile (5b)

Following the Standard Procedure A, the reaction of 4cvanophenol (28.6 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (E)-5-(2-cyclohexylvinyl)-5H-

thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography hexane as colorless oil **5b** (30.2 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.9 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 5.42 – 5.35 (m, 1H), 4.58 (d, *J* = 6.8 Hz, 2H), 2.24 (d, *J* = 5.9 Hz, 2H), 2.16 (d, *J* = 5.3 Hz, 2H), 1.58 (q, *J* = 3.1, 2.6 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 162.33, 147.18, 134.02, 119.43, 115.58, 115.29, 103.82, 64.59, 37.11, 29.37, 28.40, 27.78, 26.64; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₅H₁₈NO⁺, 228.1383, found 228.1389.

S-(2-cyclohexylideneethyl) ethanethioate (5c)

Following the Standard Procedure B, the reaction of potassium thioacetate (45.7 mg, 0.40 mmol, 2.0 equiv), H₂O (0.2 mg, 0.011 mmol, 0.0056 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product

after flash chromatography EA: PE = 0.5% as colorless oil 5c (35.8 mg, 97% yield). ¹H

NMR (400 MHz, CDCl₃) δ 5.09 (tt, J = 8.1, 1.3 Hz, 1H), 3.47 (d, J = 7.9 Hz, 2H), 2.25 (s, 3H), 2.10 (t, J = 5.3 Hz, 2H), 2.00 (t, J = 5.2 Hz, 2H), 1.51 – 1.42 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.17, 144.73, 115.24, 37.05, 30.56, 28.90, 28.53, 27.84, 26.82, 26.74; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₀H₁₇OS⁺, 185.0995, found 185.1001.

2-(2-cyclohexylideneethyl)-1,3,5-trimethoxybenzene (5d)

Following the Standard Procedure C, the reaction of 1,3,5trimethoxybenzene (100.9 mg, 0.60 mmol, 3.0 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol,

1.0 equiv) for 48 h afforded product after flash chromatography hexane as colorless oil **5d** (34.4 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.13 (s, 2H), 5.10 (tt, *J* = 7.2, 1.2 Hz, 1H), 3.80 (d, *J* = 1.3 Hz, 9H), 3.27 (d, *J* = 7.3 Hz, 2H), 2.33 (t, *J* = 5.2 Hz, 2H), 2.02 (t, *J* = 5.8 Hz, 2H), 1.54 (dq, *J* = 6.2, 3.5 Hz, 4H), 1.51 – 1.44 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.30, 158.76, 138.71, 120.05, 111.21, 90.86, 55.87, 55.46, 37.32, 28.85, 28.71, 28.00, 27.22, 21.03; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₇H₂₅O₃⁺, 277.1798, found 277.1796.

N-(2-cyclohexylideneethyl)-2,4-dimethylaniline (6a)

Following the Standard Procedure A, the reaction of 2,4dimethyl aniline (29.1 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.2 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-50% as colorless oil **6a** (25.1 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.94 (d, *J* = 8.0 Hz, 1H), 6.90 (s, 1H), 6.56 (d, *J* = 8.0 Hz, 1H), 5.34 (t, *J* = 6.8 Hz, 1H), 3.72 (d, *J* = 6.8 Hz, 2H), 2.24 (s, 3H), 2.21 (d, *J* = 5.1 Hz, 2H), 2.16 – 2.10 (m, 5H), 1.58 (d, *J* = 5.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 144.11, 143.91, 131.03, 127.42, 126.29, 122.41, 118.58, 110.45, 41.66, 37.13, 29.15, 28.62, 28.02, 26.88, 20.48, 17.61; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₆H₂₄N⁺, 230.1904, found 230.1904.

N-(2-cyclohexylideneethyl)cycloheptanamine (6b)

Following the Standard Procedure A, the reaction of cycloheptylamine (27.2 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.2 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-50% (0.5 mL Et₃N per 100 mL eluent) as colorless oil **6b** (24.4 mg, 55% yield). ¹H NMR (600 MHz, CDCl₃) δ 5.19 (t, *J* = 7.0 Hz, 1H), 3.19 (d, *J* = 7.0 Hz, 2H), 2.65 (dp, *J* = 8.0, 4.1 Hz, 1H), 2.14 (t, *J* = 5.9 Hz, 2H), 2.08 (t, *J* = 5.6 Hz, 2H), 1.85–1.79 (m, 2H), 1.68–1.62 (m, 2H), 1.58–1.48 (m, 10H), 1.44 – 1.35 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 142.38, 119.86, 58.55, 43.98, 37.25, 34.93, 29.03, 28.64, 28.44, 28.02, 26.96, 24.62; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₅H₂₈N⁺, 222.2217, found 222.2216.

N-(2-cyclohexylideneethyl)-2-methylpropan-2-amine (6c)

Following the Standard Procedure A, the reaction of *tert*-butylamine (17.6 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.2 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-50% (0.5 mL Et₃N per 100 mL eluent) as colorless oil **6c** (21.6 mg, 60% yield). ¹H NMR (600 MHz, CDCl₃) δ 5.30 – 5.18 (m, 1H), 3.16 (d, *J* = 6.9 Hz, 2H), 2.14 (t, *J* = 5.8 Hz, 2H), 2.07 (t, *J* = 5.6 Hz, 2H), 1.52 (pd, *J* = 7.0, 6.3, 3.0 Hz, 6H), 1.12 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 142.07, 120.22, 50.72, 39.43, 37.22, 29.09, 28.95, 28.53, 27.97, 26.96; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₂H₂₄N⁺, 182.1903, found 182.1902.

N-(2-cyclohexylideneethyl)-*N*-methylaniline (6d)

Following the Standard Procedure A, the reaction of *N*-methylaniline (25.7 mg, 0.24 mmol,1.2 equiv), K₂CO₃ (27.6 mg, 0.2 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-50% as colorless oil **6d** (30.3 mg, 70% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.24 (t, *J* = 7.8 Hz, 2H), 6.84 – 6.75 (m, 2H), 6.72 (t, *J* = 7.2 Hz, 1H), 5.17 (t, *J* = 6.9 Hz, 1H), 3.91 (d, *J* = 6.7 Hz, 2H), 2.90 (s, 3H), 2.23 (t, *J* = 5.6 Hz, 2H), 2.09 (t, *J* = 5.8 Hz, 2H), 1.59 – 1.52 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 149.83, 143.11, 129.23, 117.14, 116.72, 113.28, 49.80, 38.01, 37.21, 29.03, 28.69, 27.93, 26.91; HRMS-ESI (m/z) $[M+H]^+$ calc'd for C₁₅H₂₂N⁺, 216.1747, found 216.1752.

N,*N*-dibenzyl-2-cyclohexylideneethan-1-amine (6e)

^{Bn} Following the Standard Procedure A, the reaction of dibenzylamine (47.3 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.2 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-50% (0.5 mL Et₃N per 100 mL eluent) as colorless oil **6e** (43.4 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 7.5 Hz, 4H), 7.31 (t, *J* = 7.4 Hz, 4H), 7.23 (t, *J* = 7.2 Hz, 2H), 5.27 (t, *J* = 7.0 Hz, 1H), 3.57 (s, 4H), 3.03 (d, *J* = 6.9 Hz, 2H), 2.10 (dt, *J* = 12.0, 5.5 Hz, 4H), 1.61 – 1.44 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.29, 140.18, 128.97, 128.25, 126.84, 118.63, 57.97, 50.22, 37.46, 29.11, 28.81, 27.87, 26.97; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₂₂H₂₈N⁺, 306.2216, found 306.2222.

N-butyl-*N*-(2-cyclohexylideneethyl)butan-1-amine (6f)

Following the Standard Procedure A, the reaction of dibutylamine (31.0 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.2 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0

equiv) for 24 h afforded product after flash chromatography EA: PE = 0-50% (0.5 mL Et₃N per 100 mL eluent) as colorless oil **6f** (26.2 mg, 55% yield). ¹H NMR (600 MHz, CDCl₃) δ 5.17 (t, *J* = 7.1 Hz, 1H), 3.04 (d, *J* = 7.1 Hz, 2H), 2.43 – 2.35 (m, 4H), 2.14 (t, *J* = 6.1 Hz, 2H), 2.09 (t, *J* = 5.6 Hz, 2H), 1.56 – 1.46 (m, 6H), 1.42 (tt, *J* = 8.0, 6.2 Hz, 4H), 1.28 (h, *J* = 7.4 Hz, 4H), 0.90 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 142.55, 118.49, 53.59, 50.61, 37.50, 29.25, 29.05, 28.78, 27.87, 27.01, 20.99, 14.27; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₆H₃₂N⁺, 238.2530, found 238.2530.

2-cyclohexylidene-*N*-methyl-*N*-(naphthalen-1-ylmethyl)ethan-1-amine (6g)

Following the Standard Procedure A, the reaction of 1-methylaminomethyl naphthalene (41.1 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.2 mmol, 1.0 equiv) and (*E*)-5-(2cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-50% (0.5 mL Et₃N per 100 mL eluent) as colorless oil **6g** (35.8mg, 64% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.30 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.51 (ddd, J = 8.4, 6.7, 1.4 Hz, 1H), 7.47 (td, J = 7.4, 6.7, 1.3 Hz, 1H), 7.41 (dt, J = 14.8, 7.0 Hz, 2H), 5.36 (t, J = 7.2 Hz, 1H), 3.88 (s, 2H), 3.09 (d, J = 7.2 Hz, 2H), 2.22 – 2.18 (m, 5H), 2.17 – 2.13 (m, 2H), 1.58 – 1.54 (m, 4H), 1.54 – 1.49 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 143.81, 135.28, 134.01, 132.68, 128.52, 127.96, 127.62, 125.98, 125.65, 125.21, 124.84, 118.37, 59.94, 54.78, 42.51, 37.51, 29.10, 28.79, 27.85, 26.99; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₂₀H₂₆N⁺, 280.2060, found 280.2059.

(Z)-N-(4-phenylbut-2-en-1-yl)cyclohexanamine (6h)

Ph Following the Standard Procedure A, the reaction of cyclohexylamine (23.8 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2g** (86.8 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **6h** (21.7 mg, 47% yield, Z/E = 4.9:1). ¹H NMR (600 MHz, CDCl₃) δ 7.29 (td, J = 7.6, 1.8 Hz, 2H), 7.22 – 7.16 (m, 3H), 5.74 – 5.69 (m, 1H), 5.68 – 5.62 (m, 1H), 3.47 – 3.42 (m, 4H), 2.54 (tt, J = 10.5, 3.6 Hz, 1H), 1.96 – 1.88 (m, 2H), 1.74 (dt, J = 12.9, 3.7 Hz, 2H), 1.65 – 1.59 (m, 1H), 1.25 (qt, J = 12.3, 2.9 Hz, 2H), 1.15 (tdd, J = 15.2, 12.1, 6.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 140.62, 130.74, 128.64, 128.56, 128.43, 126.18, 56.44, 43.23, 33.80, 33.20, 26.13, 25.13; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₆H₂₄N⁺, 230.1904, found 230.1901.

(Z)-N-methyl-N-(4-phenylbut-2-en-1-yl)aniline (6i)

^{Ph} Following the Standard Procedure A, the reaction of *N*-methylaniline (25.7 mg, 0.24 mmol, 1.2 equiv), K₂CO₃ (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2g** (86.8 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **6i** (35.7mg, 75% yield, Z/E = 3.0 :1).¹H NMR (600 MHz, CDCl₃) δ 7.33 (t, *J* = 7.6 Hz, 2H), 7.25 – 7.21 (m, 5H), 6.78 (d, *J* = 8.3 Hz, 2H), 6.76 – 6.73 (m, 1H), 5.78 (dddd, *J* = 12.5, 7.6, Hz, 1H), 5.59 (dddd, *J* = 12.4, 6.4, Hz, 1H), 4.07 (d, *J* = 6.4 Hz, 2H), 3.52 (d, *J* = 7.6 Hz, 2H), 2.94 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.72, 140.50, 130.85, 129.27, 128.68, 128.46, 127.22, 126.24, 116.93, 113.25, 49.87, 38.26, 33.79; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₇H₂₀N⁺, 238.1591, found 238.1590.

(Z)-N-methyl-N-(octa-2,7-dien-1-yl)aniline (6j)

h_N 6j

 BF_4

6k

Following the Standard Procedure A, the reaction of *N*-methylaniline (25.7 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(octa-1,7-dien-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2i** (82.4 mg, 0.20 mmol, 1.0

equiv) for 24 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **6j** (32.2 mg, 75% yield, Z/E = 1.9 :1). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 2H), 6.80 – 6.68 (m, 3H), 5.91 – 5.74 (m, 1H), 5.58 (dtq, J = 12.3, 7.3, 1.6 Hz, 1H), 5.46 (dddt, J = 14.2, 9.4, 6.2, 3.2, 1.4 Hz, 1H), 5.09 – 4.92 (m, 2H), 3.95 (d, J = 6.3 Hz, 2H), 2.91 (s, 3H), 2.24 – 2.00 (m, 4H), 1.49 (dpd, J = 22.4, 7.5, 1.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.64, 138.58, 132.36, 129.13, 126.18, 116.78, 114.77, 113.17, 49.81, 38.07, 33.33, 28.80, 26.94; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₅H₂₂N⁺, 216.1747, found 216.1747.

2-cyclohexylidene-*N*,*N*,*N*-triethylethan-1-aminium tetrafluoroborate (6k)

Following the Standard Procedure E, the reaction of triethylamine (40.5 mg, 0.40 mmol, 2.0 equiv), H₂O (0.2 mg, 0.011 mmol, 0.056 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate

2a (82.4 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography MeOH: DCM =0-10% as colorless oil **6k** (45.4 mg, 76% yield). ¹H NMR (600 MHz, CDCl₃) δ 5.14 (t, *J* = 7.8 Hz, 1H), 3.78 (d, *J* = 7.8 Hz, 2H), 3.26 (q, *J* = 7.2 Hz, 6H), 2.23 (dd, *J* = 12.9, 7.2 Hz, 4H), 1.58 (ddt, *J* = 10.4, 7.2, 3.2 Hz, 6H), 1.33 (t, *J* = 7.3 Hz, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 155.31, 106.43, 54.58, 52.54, 37.88, 29.65, 28.38, 27.82, 26.36, 7.70; ¹⁹F NMR (377 MHz, CDCl₃) δ -152.43 (bs), -152.49 (bs); HRMS-ESI (m/z) [M-BF4]⁺ calc'd for C₁₄H₂₈N⁺, 210.2217, found 210.2216.

(Z)-N,N,N-triethyl-4-phenylbut-2-en-1-aminium tetrafluoroborate (6l)

Following the Standard Procedure E, the reaction of triethylamine (40.5 mg, 0.40 mmol, 2.0 equiv), H₂O (0.2 mg, 0.011 mmol, 0.056 _ BF₄ Ph equiv) and (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium 61 tetrafluoroborate 2g (86.8 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography MeOH: DCM =0-10% as colorless solid 61 (46.2 mg, 72% yield, Z/E = 4.4:1). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (dd, J = 8.2, 6.6 Hz, 2H), 7.24 – 7.20 (m, 1H), 7.19 - 7.13 (m, 2H), 6.25 (dtd, J = 9.2, 7.7, 1.3 Hz, 1H), 5.64 - 5.54 (m, 1H), 3.96 (d, J = 7.5 Hz, 2H), 3.54 (d, J = 7.6, 2H), 3.31 (q, J = 7.3 Hz, 6H), 1.33 (t, J = 7.4Hz, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 141.18, 138.58, 128.93, 128.47, 126.75, 115.16, 54.19, 53.05, 33.86, 7.67; ¹⁹F NMR (377 MHz, CDCl₃) δ -152.43 (bs), -152.44 (bs), -152.48 (bs), -152.49 (bs). HRMS-ESI (m/z) [M-BF₄]⁺ calc'd for C₁₆H₂₆N⁺, 232.2060, found 232.2058.

(Z)-1-(4-phenylbut-2-en-1-yl)quinuclidin-1-ium tetrafluoroborate (6m)

Following the Standard Procedure E, the reaction of quinuclidine (44.5 mg, 0.40 mmol, 2.0 equiv), H₂O (0.2 mg, 0.011 mmol, 0.056 equiv) and (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2g** (86.8 mg, 0.20 mmol, 1.0 equiv) for 24 h afforded product

after flash chromatography MeOH: DCM =0-10% as colorless solid **6m** (46.4 mg, 70% yield, Z/E = 4.4:1).¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.25 (m, 2H), 7.18 (t, J = 5.7 Hz, 3H), 6.21 (dt, J = 14.6, 7.6 Hz, 1H), 5.63– 5.55 (m, 1H), 3.90 (t, J = 7.6 Hz, 2H), 3.51 (d, J = 7.3 Hz, 2H), 3.43 (dd, J = 9.7, 6.1 Hz, 6H), 2.11 (dd, J = 7.2, 3.7 Hz, 1H), 1.95 (dt, J = 10.4, 4.9 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 142.07, 138.85, 128.85, 128.55, 126.59, 115.50, 60.21, 54.35, 33.59, 23.91, 19.63; ¹⁹F NMR (377 MHz, CDCl₃) δ -151.05 (bs), -151.10 (bs). HRMS-ESI (m/z) [M-BF₄]⁺ calc'd for C₁₇H₂₄N⁺, 242.1904, found 242.1901.

N-(2-cyclohexylideneethyl)-*N*,4-dimethylbenzenesulfonamide (6n)

Following the Standard Procedure D, the reaction of *N*-methyl*p*-toluenesulfonamide (44.5 mg, 0.24 mmol, 1.2 equiv), KOH (11.2 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol,

1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-10% as
colorless oil **6n** (42.9 mg, 73% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.04 (t, J = 7.5 Hz, 1H), 3.60 (d, J = 7.5 Hz, 2H), 2.63 (s, 3H), 2.43 (s, 3H), 2.07 (q, J = 6.5, 6.0 Hz, 4H), 1.57 – 1.49 (m, 4H), 1.46 (t, J = 5.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 145.96, 143.31, 134.67, 134.64, 129.72, 127.69, 115.15, 46.88, 37.23, 34.00, 28.75, 28.56, 27.80, 26.73, 21.64; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₆H₂₄NO₂S⁺, 294.1523, found 294.1523.

(Z)-N,4-dimethyl-N-(4-phenylbut-2-en-1-yl)benzenesulfonamide (60)

Following the Standard Procedure D, the reaction of *N*-methyl*p*-toluenesulfonamide (44.5 mg, 0.24 mmol, 1.2 equiv), KOH (11.2 mg, 0.20 mmol, 1.0 equiv) and (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2g** (86.8 mg, 0.20

mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-10% as colorless solid **60** (47.2 mg, 75% yield, Z/E =3.1:1). ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.28 (t, J = 7.6 Hz, 2H), 7.19 (t, J = 7.4 Hz, 1H), 7.12 (d, J = 7.1 Hz, 2H), 5.83 – 5.77 (m, 1H), 5.51 – 5.44 (m, 1H), 3.77 (d, J = 5.5 Hz, 2H), 3.37 (d, J = 5.9 Hz, 2H), 2.69 (s, 3H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.54, 139.91, 134.47, 133.34, 129.83, 128.69, 128.36, 127.67, 126.34, 124.65, 46.89, 34.41, 33.48, 21.65; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₈H₂₂NO₂S⁺, 316.1366, found 316.1368.

Mechanistic Study

One-Pot Experiments

Under the nitrogen atmosphere, thianthrene 5-oxide 7 (69.7 mg, 0.3 mmol, 1.5 equiv), 4-Phenyl-1-butene **8** (26.4 mg, 0.2 mmol, 1.0 equiv) and CH₃CN (1.0 mL), 0 °C add Trifluoroacetic anhydride (63.0 mg, 0.6 mmol, 3.0 equiv) and trifluoromethanesulfonic

(36.0 mg, 0.24 mmol, 1.2 equiv), stir 1h under 0 °C, then r.t. stir 1h. After evaporated the solvent, add K₂CO₃ (82.8 mg, 0.6 mmol, 3.0 equiv), N-Methylaniline (25.7 mg, 0.24 mmol, 1.2 equiv) and DCM (2.0 mL), stir 24 h under room temperature. Afforded product after flash chromatography EA: PE = 0-10% as colorless oil **6i** (30.1 mg, 63% yield, Z/E = 2.0 :1).

Radical Trap Experiments

Following the Standard Procedure, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv), (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) and TEMPO (61.0 mg, 0.40 mmol, 2.0 equiv) in DCM (2.0 mL) for 24 h. The conversion of **2a** >97%, and the yield of **3a** 76% yield. Yield was determined by ¹H NMR of the crude mixture using mesitylene (12.0 mg, 0.10 mmol, 0.5 equiv) as internal standard.

Following the Standard Procedure, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv), (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) and 2,6-Di-tert-butyl-4-methylphenol (88.1 mg, 0.40 mmol, 2.0 equiv) in DCM (2.0 mL) for 24 h. The conversion of **2a** >97%, and the yield of **3a** 88% yield. Yield was determined by ¹H NMR of the crude mixture using mesitylene (12.0 mg, 0.10 mmol, 0.5 equiv) as internal standard.

Following the Standard Procedure, the reaction of benzoic acid **1a** (29.3 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (27.6 mg, 0.20 mmol, 1.0 equiv), (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (82.4 mg, 0.20 mmol, 1.0 equiv) and 9,10-dihydroanthracene (72.1 mg, 0.40 mmol, 2.0 equiv) in DCM (2.0 mL) for 24 h. The conversion of **2a** >97%, and the yield of **3a** 86% yield. Yield was determined by ¹H NMR of the crude mixture using mesitylene (12.0 mg, 0.10 mmol, 0.5 equiv) as internal standard.

Assignment of Reaction Intermediate

Under the nitrogen atmosphere, 11-phenethyl-5,10-ethanothianthrene-5,10-diium ditrifluoromethanesulfonate (64.7 mg, 0.1 mmol, 1.0 equiv), K₂CO₃ (27.6 mg, 0.2 mmol, 2.0 equiv) and benzoic acid (14.7 mg, 0.12 mmol, 1.2 equiv), add DCM (2.0 mL) rt stir 24 h. The reaction mixture was purified directly by column chromatography to afford the product **4g** (18.2 mg, 72% yield, Z/E = 3.6:1).

Under the nitrogen atmosphere, 11-phenethyl-5,10-ethanothianthrene-5,10-diium ditrifluoromethanesulfonate (64.7 mg, 0.1 mmol, 1.0 equiv), K₂CO₃ (27.6 mg, 0.2 mmol, 2.0 equiv) and *N*-methylaniline (12.9 mg, 0.12 mmol, 1.2 equiv), add DCM (2.0 mL) rt stir 24 h. The reaction mixture was purified directly by column chromatography to afford the product **6i** (16.9 mg, 71% yield, Z/E = 3.2:1).

N-(4-phenylbut-2-en-1-yl)cyclohexanamine **6h** (Z/E = 4.9:1, 22.9 mg, 0.10 mmol, 1.0 equiv) was placed in 10 mL Schlenk tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), 1.0 mL DCM and HBF₄·Et₂O (16.2 mg, 0.10 mmol, 1.0 equiv) was added, the vial was sealed and at room temperature with stirring 1h. The reaction mixture was washed with Et₂O (5x5 mL) to afford the product (27.2 mg, 86% yield, *Z/E* = 5.4:1). ¹H NMR (600 MHz, CDCl₃) 1 H NMR (600 MHz, CDCl₃) 5 7.29 (t, *J* = 7.5 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.16 – 7.13 (m, 2H), 6.75 (s, 2H), 6.11 – 5.99 (m, 1H), 5.75 – 5.63 (m, 1H), 3.84 (q, *J* = 6.1 Hz, 2H), 3.46 (d, *J* = 8.2 Hz, 2H), 3.05 (tt, *J* = 12.2, 4.2 Hz, 1H), 2.06 (dd, *J* = 13.0, 3.9 Hz, 2H), 1.83 (dd, *J* = 13.3, 3.3 Hz, 2H), 1.64 (dd, *J* = 10.7, 4.1 Hz, 1H), 1.44 (qd, *J* = 12.1, 3.7 Hz, 2H), 1.27 – 1.15 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) 5 138.97, 137.74, 128.89, 128.39, 126.66, 119.09, 57.00, 42.00, 33.63, 29.15, 24.71, 24.42.; ¹⁹F NMR (376 MHz, CDCl₃) 5 -147.83 (bs), -147.89 (bs). HRMS-ESI (m/z) [M-BF4]⁺ calc'd for C₁₆H₂₄N⁺, 230.1903, found 230.1900.

Crystallographic Data

X-ray diffraction of 4n (CCDC 2110292)

Table S5. Crystal data and structure refinement for cxy3383_0m_4 (4n).

Identification code	cxy3383_0m_4
Empirical formula	C24H24O3
Formula weight	360.43
Temperature/K	150.0
Crystal system	monoclinic
Space group	P21
a/Å	6.0869(3)
b/Å	17.6346(9)
c/Å	17.8806(9)
$\alpha/^{\circ}$	90
β/°	92.230(3)
$\gamma^{\prime \circ}$	90
Volume/Å ³	1917.85(17)
Z	4
$\rho_{cale}g/cm^3$	1.248
µ/mm ⁻¹	0.643
F(000)	768.0
Crystal size/mm ³	$0.32 \times 0.26 \times 0.25$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	4.946 to 136.664
Index ranges	$? \le h \le ?, ? \le k \le ?, ? \le l \le ?$
Reflections collected	7046
Independent reflections	7046 [$R_{int} = 0.0868, R_{sigma} = 0.0677$]
Data/restraints/parameters	7046/39/530

Goodness-of-fit on F ²	1.103
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0680, wR_2 = 0.1896$
Final R indexes [all data]	$R_1=0.0778,wR_2=0.2070$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.28
Flack parameter	-0.11(16)

X-ray diffraction of the HBF4 salt of 6k (CCDC 2107074)

Table S6. Crystal data and structure refinement for cxy3292 (HBF₄ salt of 6k).

Identification code	cxy3292
Empirical formula	C ₁₆ H ₂₄ BF ₄ N
Formula weight	317.17
Temperature/K	100
Crystal system	orthorhombic
Space group	Iba2
a/Å	26.2135(15)
b/Å	48.489(3)
c/Å	7.7284(5)
$\alpha/^{\circ}$	90
β/°	90
$\gamma^{/\circ}$	90
Volume/Å ³	9823.3(10)
Z	24
$\rho_{cale}g/cm^3$	1.287
μ/mm^{-1}	0.894
F(000)	4032.0
Crystal size/mm ³	$0.24\times0.22\times0.15$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	6.424 to 138.388
Index ranges	$-31 \le h \le 26, -58 \le k \le 58, -9 \le l \le 9$
Reflections collected	42810

Independent reflections	$8964 \ [R_{int} = 0.0749, R_{sigma} = 0.0566]$
Data/restraints/parameters	8964/208/615
Goodness-of-fit on F ²	1.036
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0580, wR_2 = 0.1544$
Final R indexes [all data]	$R_1 = 0.0622, wR_2 = 0.1580$
Largest diff. peak/hole / e Å ⁻³	0.46/-0.23
Flack parameter	0.59(15)

X-ray diffraction of the HBF₄ salt of 7 (CCDC 2110458)

Table S7. Crystal data and structure refinement for cxy3323_0)m (7))
---	------	----	---

Identification code	cxy3323_0m
Empirical formula	$C_{24}H_{20}O_6F_6S_4$
Formula weight	646.64
Temperature/K	100.0
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	9.1824(10)
b/Å	17.1893(15)
c/Å	16.2826(15)
$\alpha/^{\circ}$	90
β/°	99.542(4)
$\gamma/^{o}$	90
Volume/Å ³	2534.5(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.695
μ/mm^{-1}	4.240
F(000)	1320.0

Crystal size/mm ³	$0.25\times0.22\times0.18$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	7.534 to 136.892
Index ranges	$-11 \le h \le 9, -18 \le k \le 20, -19 \le l \le 19$
Reflections collected	23136
Independent reflections	$4623 \ [R_{int} = 0.0543, R_{sigma} = 0.0342]$
Data/restraints/parameters	4623/0/361
Goodness-of-fit on F ²	1.047
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0356, wR_2 = 0.0933$
Final R indexes [all data]	$R_1 = 0.0373, wR_2 = 0.0947$
Largest diff. peak/hole / e Å ⁻³	0.91/-0.34

References

1. Qian, D. Q.; Shine, H. J.; Guzman-Jimenez, I. Y.; Thurston, J. H.; Whitmire, K. H., Mono- and Bisadducts from the Addition of Thianthrene Cation Radical Salts to Cycloalkenes and Alkenes. *J. Org. Chem.* **2002**, *67*, 4030-4039.

2. Chen, J.; Li, J.; Plutschack, M. B.; Berger, F.; Ritter, T., Regio- and Stereoselective Thianthrenation of Olefins To Access Versatile Alkenyl Electrophiles. *Angew. Chem. Int. Ed.* **2020**, *59*, 5616-5620.

Copies of ¹H, ¹³C and ¹⁹F NMR Spectra of New Compounds

S49

S95

