Supplementary Information for:

Phenanthroline-Imine Ligands for Iron-Catalyzed Alkene

Hydrosilylation

Wei Sun,^a Ming-Peng Li,^a Lu-Jie Li,^a Qiang Huang,^a Meng-Yang Hu,^a Shou-Fei Zhu^{*,a,b} ^a Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China. ^b Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300070, China. Email: sfzhu@nankai.edu.cn

Table of Contents

1. Materials and Methods	S2
2. Synthesis of New Ligands and Catalysts	S3
3. Additional Optimization of Reaction Conditions	S17
4. Typical Procedures for Conjugated Dienes and Alkenes Hydrosilylation	S20
5. Analytical Data of the Hydrosilylation Products	S21
6. Gram-scale Experiment and Product Transformations	
7. Mechanistic Studies	S48
8. NMR Spectras of All the Products	S56
9. References	S129

1. Materials and methods

All manipulations were carried out using standard Schlenk, high-vacuum, and glovebox techniques. THF, Et₂O, 1,4-dioxane, and toluene were distilled from sodium benzophenone ketyl prior to use. Iron(II) chloride (99.99%) was purchased from Sigma-Aldrich and used as received. The conjugated dienes **1a**, **1c**, **1d**, **1e**, **1g**, **1h**, **1k**, **1n**, **1p**, **1w**, **1y**, **1z** and **1aa** used for hydrosilylation were synthesized according to reported procedures.¹ The conjugated dienes **1b**, **1f**, **1i**, **1j** and **1q** were synthesized according to reported procedures.^{1.2} The conjugated dienes **1l**, ³ **1m**, ⁴ **1o**, ^{1.5} **1t**, ⁶ **1u**, ⁷ and **1x**⁸ were synthesized according to corresponding literatures. The silanes **2a**, **2j**, **2k** conjugated diene **1r**, **1s**, and alkenes **7a**-**7h**, **7k**-**7o** were purchased from Sigma-Aldrich, Alfa Aesar, Acros, TCI and other reagent companies. Alkenes **7i** and **7j** were synthesized according to reported procedures.¹⁰ Conjugated dienes, alkenes, and silanes were dried over LiAlH₄ or CaH₂ and distilled prior to use. 2,9-dichloro-1,10-phenanthroline was prepared according to reported procedures.¹¹

Melting points were measured on a RY-I apparatus and uncorrected. Infrared spectra were recorded on a Bruker Fourier transform spectrometric (FT-IR) and reported in wave number. High resolution mass spectrometric (HRMS) were determined on an IonSpec FT-ICR mass spectrometer or a Waters GCT Premier mass spectrometer. The molar masses and their distribution for the polymer samples were determined by GPC on a Waters system equipped with a set of three Ultrastyragel columns HT2 30 cm x 7.8 mm; 10 µm particles; exclusion limits: 100-10000 g/mol, respectively), THF was used as the mobile phase (1 mL/min), and polystyrene samples as the standards in the calibration of the molar masses. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded with a Bruker AV 400 spectrometer at 400 MHz (¹H NMR), 101 MHz (¹³C NMR) and 376 MHz (¹⁹F NMR), respectively in CDCl₃. ²H NMR spectra was recorded with a Bruker AV 600 spectrometer at 92 MHz in DCM. Chemical shifts were reported in ppm down field from internal Me4Si (¹H NMR) and CDCl₃ (¹³C NMR).

2. Synthesis of new ligands and catalysts

2.1. Synthesis of 2-chloro-9-aryl-1,10-phenanthrolines

To a 100 mL three-necked round-bottom flask fitted with a reflux condenser tube, 2,9dichloro-1,10-phenanthroline (1.24 g, 5 mmol), 2,4,6-trimethylphenylboronic acid (0.9 g, 5.5 mmol, 1.1 equiv), Pd(PPh₃)₄ (577 mg, 0.5 mmol, 10 mol%), K₃PO₄•3H₂O (6.65 g, 25 mmol, 5 equiv), DME (50 mL), and water (5 mL) were introduced. The resulted reaction mixture was degassed three times through freeze degassing, replaced with an argon atmosphere, and placed in an oil bath, and heated to 95 °C until the reaction was finished. After cooling to room temperature, the reaction mixture was neutralized with saturated NH₄Cl (aq., 50 mL) and extracted with CH₂Cl₂ (100 mL × 3). The combined organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography with petroleum ether/ethyl acetate (PE/EA) = 10:1 (v/v) as eluent to give 2-chloro-9-(2,4,6- trimethylphenyl)-1,10-phenanthroline (**2a**) as a white solid (1.1 g, 66% yield), melting point: 231.2 – 233.0 °C.

- <u>¹H NMR</u> (400 MHz, CDCl₃) δ 8.28 (d, J = 8.2 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.89 7.84 (m, 1H), 7.82 7.77 (m, 1H), 7.63 7.55 (m, 2H), 6.97 (s, 2H), 2.35 (s, 3H), 2.14 (s, 6H).
- ¹³C NMR (101 MHz, CDCl₃) δ 160.7 (1C), 151.2 (1C), 146.3 (1C), 145.0 (1C), 138.6 (2C),
 137.9 (1C), 137.5 (1C), 136.1 (1C), 135.8 (1C), 128.4 (2C), 127.5 (1C), 127.3 (1C),
 126.8 (1C), 125.4 (2C), 124.1 (1C), 21.1 (1C), 20.6 (2C).

<u>HRMS (ESI)</u> calcd for [M+H, C₂₁H₁₈ClN₂]⁺: 333.1153, found: 333.1156.

2-chloro-9-(2,4,6-triisopropylphenyl)-1,10-phenanthroline (2b)

White solid, 83% yield, melting point: 248.0 - 250.0 °C.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDC1}_{3}) \delta 8.26 (d, J = 8.1 \text{ Hz}, 1\text{H}), 8.17 (d, J = 8.4 \text{ Hz}, 1\text{H}), 7.86 (d, J = 8.7 \text{ Hz}, 1\text{H}), 7.65 (d, J = 8.2 \text{ Hz}, 1\text{H}), 7.58 (d, J = 8.4 \text{ Hz}, 1\text{H}), 7.12 (s, 2\text{H}), 2.96 (hept, J = 6.9 \text{ Hz}, 1\text{H}), 2.59 (hept, J = 6.9 \text{ Hz}, 2\text{H}), 1.32 (d, J = 6.9 \text{ Hz}, 6\text{H}), 1.19 (d, J = 6.8 \text{ Hz}, 6\text{H}), 1.12 (d, J = 6.9 \text{ Hz}, 6\text{H}).$

¹³C NMR (101 MHz, CDCl₃) δ 161.1 (1C), 151.2 (1C), 148.9 (1C), 146.5 (1C), 146.4 (2C), 144.9 (1C), 138.4 (1C), 137.0 (1C), 135.2 (1C), 127.6 (1C), 127.4 (1C), 126.8 (1C), 125.6 (1C), 125.4 (1C), 124.2 (1C), 120.8 (2C), 34.5 (1C), 30.5 (2C), 24.2 (6C).
 <u>HRMS (ESI)</u> calcd for [M+H, C₂₇H₃₀ClN₂]⁺: 417.2092, found 417.2093.

2-chloro-9-(3,5-di-*tert*-butylphenyl)-1,10-phenanthroline (2c)

White solid, 95% yield, melting point: 285.5 – 287.9 °C.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 8.33 (d, J = 8.4 \text{ Hz}, 1\text{H}), 8.20 (d, J = 8.4 \text{ Hz}, 1\text{H}), 8.15 - 8.06 (m, 3\text{H}), 7.86 (d, J = 8.7 \text{ Hz}, 1\text{H}), 7.77 (d, J = 8.7 \text{ Hz}, 1\text{H}), 7.63 (d, J = 8.3 \text{ Hz}, 1\text{H}), 7.58 (t, J = 1.8 \text{ Hz}, 1\text{H}), 1.45 (s, 18\text{H}).$

¹³C NMR (101 MHz, CDCl₃) δ 159.3 (1C), 151.4 (1C), 151.2 (2C), 146.3 (1C), 144.9 (1C),
 139.2 (1C), 138.6 (1C), 136.6 (1C), 127.7 (1C), 127.6 (1C), 126.7 (1C), 125.1 (1C),

124.1 (1C), 123.8 (1C), 122.4 (2C), 121.6 (1C), 35.1 (2C), 31.6 (6C). <u>HRMS (ESI)</u> calcd for [M+H, C₂₆H₂₈ClN₂]⁺: 403.1936, found 403.1938.

2.2. Synthesis of 2-acetyl-9-aryl-1,10-phenanthrolines

Compound 2a (0.8 g, 2.4 mmol) and Pd(PPh₃)₄ (277 mg, 0.24 mmol, 10 mol%) were introduced into a 100 mL three-necked round-bottom flask fitted with a reflux condenser tube. The reaction system was replaced with an argon atmosphere, followed by the addition of 1ethoxyvinyltri-n-butylstannane (1.04 g, 2.88 mmol, 1.2 equiv) and anhydrous DMF (30 ml) using a syringe, respectively, and then stirred at 100 °C for 24 h until the reaction was finished. After cooling to room temperature, the reaction mixture was quenched with saturated KF (aq., 50 mL) and extracted with Et₂O (100 mL \times 3). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was dissolved in acetone (30 mL), and was added dropwise concentrated hydrochloric acid (6 mL) with stirring overnight. Complete consumption of the reactants was determined by TLC. The reaction mixture was neutralized with aqueous NaHCO3 solution, the acetone was removed under reduced pressure, extracted with DCM, dried with anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography with PE/EA = 10:1 (v/v) as eluent to give the target product 1-(9-mesityl-1,10-phenanthrolin-2yl)ethan-1-one (**3a**) as a white solid (628 mg, 76% yield), melting point: 237.5 - 238.2 °C. 1 <u>H NMR</u> (400 MHz, CDCl₃) δ 8.41 – 8.26 (m, 3H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.84 (d, *J* = 8.8

Hz, 1H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.02 (s, 2H), 2.97 (s, 3H), 2.37 (s, 3H), 2.27 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 201.2 (1C), 160.3 (1C), 153.0 (1C), 145.9 (1C), 145.4 (1C), 137.7 (1C), 137.6 (1C), 136.8 (1C), 136.4 (1C), 135.6 (1C), 130.6 (1C), 128.8 (3C), 128.6 (1C), 127.0 (1C), 125.8 (1C), 125.6 (1C), 120.0 (1C), 25.9 (1C), 21.1 (1C), 20.9 (2C).

<u>HRMS (ESI)</u> calcd for [M+H, C₂₃H₂₁N₂O]⁺: 341.1648, found 341.1652.

1-(9-(2,4,6-triisopropylphenyl)-1,10-phenanthrolin-2-yl)ethan-1-one (3b)

White solid, 98% yield, melting point: 185.7 – 186.1 °C.

- ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 8.34 (q, J = 8.3 Hz, 2H), 8.28 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.18 (s, 2H), 3.07 2.96 (m, 1H), 2.94 (s, 3H), 2.69 (hept, J = 6.0 Hz, 2H), 1.36 (d, J = 6.8 Hz, 6H), 1.26 (d, J = 6.7 Hz, 6H), 1.19 (d, J = 6.8 Hz, 6H).
- ¹³C NMR (101 MHz, CDCl₃) δ 201.5 (1C), 160.6 (1C), 153.0 (1C), 148.8 (1C), 146.7 (2C), 145.9 (1C), 145.6 (1C), 136.7 (1C), 136.6 (1C), 135.2 (1C), 130.7 (1C), 128.6 (1C), 127.1 (1C), 125.8 (1C), 125.5 (1C), 120.9 (2C), 119.9 (1C), 34.4 (1C), 30.7 (2C), 26.2 (1C), 24.9 (2C), 24.1 (4C).

<u>HRMS (ESI)</u> calcd for [M+H, C₂₉H₃₃N₂O]⁺: 425.2587, found 425.2589.

1-(9-(3,5-di-*tert*-butylphenyl)-1,10-phenanthrolin-2-yl)ethan-1-one (3c)

White solid, 67% yield, melting point: 160.2 - 162.1 °C.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 8.40 – 8.31 (m, 5H), 8.22 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.61 – 7.58 (m, 1H), 3.14 (s, 3H), 1.47 (s, 18H). ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 200.9 (1C), 158.2 (1C), 152.7 (1C), 151.3 (2C), 145.9 (1C), 145.4 (1C), 138.4 (1C), 136.9 (1C), 136.8 (1C), 130.9 (1C), 128.6 (1C), 127.6 (1C), 125.5 (1C), 124.1 (1C), 122.0 (2C), 120.3 (1C), 120.0 (1C), 35.1 (2C), 31.5 (6C), 25.4 (1C).

<u>HRMS (ESI)</u> calcd for $[M+H, C_{28}H_{31}N_2O]^+$: 411.2431, found 411.2433.

2.3 Synthesis of 2-imino-9-aryl-1,10-phenanthrolines ligands

To a 100 mL three-necked round-bottom flask fitted with a reflux condenser tube, was added the compound **3a** (342 mg, 1.0 mmol) and the catalyst TsOH (17.2 mg, 0.1 mmol, 10 mol%). The resulted mixture was replaced with an argon atmosphere, added 2,6-dimethylaniline (242 mg, 2.0 mmol, 2.0 equiv) and anhydrous ethanol (10 mL), and stirred in an oil bath at 85 °C for 48 h until the reaction was finished. The reaction mixture was

concentrated under reduced pressure, and the residue was purified by silica-gel column chromatography with PE/EA/Et₃N= 50:10:1 (v/v/v) as eluent to give the target product (*E*)-N-(2,6-dimethylphenyl)-1-(9-mesityl-1,10-phenanthrolin-2-yl)ethan-1-imine (**L1a**) as a yellow solid (330 mg, 74% yield), melting point: 236.0 - 237.0 °C.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 8.76 (d, *J* = 8.4 Hz, 1H), 8.31 (d, *J* = 8.4 Hz, 1H), 8.26 (d, *J* = 8.2 Hz, 1H), 7.88-7.80 (m, 2H), 7.61 (d, *J* = 8.2 Hz, 1H), 7.07 (d, *J* = 7.5 Hz, 2H), 6.99 (s, 2H), 6.97-6.90 (m, 1H), 2.44 (s, 3H), 2.34 (s, 3H), 2.27 (s, 6H), 2.04 (s, 6H). ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 168.3 (1C), 159.9 (1C), 155.9 (1C), 149.0 (1C), 146.0 (1C), 145.4 (1C), 137.7 (1C), 137.6 (1C), 136.5 (2C), 136.3 (1C), 135.7 (1C), 129.6 (1C), 128.8 (2C), 127.9 (2C), 127.4 (1C), 127.0 (1C), 126.1 (1C), 125.3 (3C), 123.0 (1C), 120.6 (1C), 21.2 (1C), 21.1 (2C), 18.1 (2C), 16.8 (1C).

<u>HRMS (ESI)</u> calculated for $[M+H, C_{31}H_{30}N_3]^+$: 444.2434, found: 444.2438.

(*E*)-N-(2,6-dimethylphenyl)-1-(9-(2,4,6-triisopropylphenyl)-1,10-phenanthrolin-2yl)ethan-1-imine (L1b)

Yellow solid, 64% yield, melting point: 211.2 – 213.4 °C.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 8.73 (d, J = 8.4 Hz, 1H), 8.33 (d, J = 8.4 Hz, 1H), 8.27 (d, J = 8.2 Hz, 1H), 7.92 – 7.84 (m, 2H), 7.65 (d, J = 8.1 Hz, 1H), 7.15 (s, 2H), 7.09 – 7.04 (m, 2H), 6.97 – 6.91 (m, 1H), 2.99 (hept, J = 6.9 Hz, 1H), 2.73 (p, J = 6.8 Hz, 2H), 2.39 (s, 3H), 2.05 (s, 6H), 1.34 (d, J = 6.9 Hz, 6H), 1.24 (d, J = 6.7 Hz, 6H), 1.17 (d, J = 6.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 168.6 (1C), 160.2 (1C), 155.9 (1C), 149.0 (1C), 148.7 (1C),

146.8 (2C), 145.9 (1C), 145.6 (1C), 136.7 (1C), 136.1 (1C), 135.1 (1C), 129.6 (1C), 127.8 (2C), 127.3 (1C), 127.0 (2C), 126.0 (1C), 125.4 (1C), 125.2 (1C), 122.9 (1C), 120.9 (2C), 120.4 (1C), 34.3 (1C), 30.6 (2C), 24.9 (2C), 24.2 (2C), 24.1 (2C), 18.0 (2C), 17.0 (1C).

<u>HRMS (ESI)</u> calcd for [M+H, C₃₇H₄₂N₃]⁺: 528.3373, found: 528.3375.

(*E*)-N-(2,6-diethylphenyl)-1-(9-(2,4,6-triisopropylphenyl)-1,10-phenanthrolin-2-yl)ethan-1-imine (L1c)

Yellow solid, 67% yield, melting point: 204.9 – 206.2 °C.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 8.72 (d, *J* = 8.4 Hz, 1H), 8.32 (d, *J* = 8.4 Hz, 1H), 8.26 (d, *J* = 8.2 Hz, 1H), 7.92 – 7.82 (m, 2H), 7.64 (d, *J* = 8.2 Hz, 1H), 7.15 (s, 2H), 7.13 – 7.08 (m, 2H), 7.06 – 7.00 (m, 1H), 2.99 (hept, *J* = 6.9 Hz, 1H), 2.73 (hept, *J* = 6.8 Hz, 2H), 2.50 – 2.29 (m, 7H), 1.34 (d, *J* = 6.9 Hz, 6H), 1.24 (d, *J* = 6.8 Hz, 6H), 1.19 – 1.11 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 168.3 (1C), 160.2 (1C), 156.0 (1C), 148.7 (1C), 148.0 (1C), 146.8 (2C), 146.0 (1C), 145.6 (1C), 136.8 (1C), 136.1 (1C), 135.1 (1C), 131.2 (2C), 129.6 (1C), 127.3 (1C), 127.0 (1C), 126.0 (1C), 125.9 (2C), 125.2 (1C), 123.2 (1C), 120.9 (2C), 120.3 (1C), 34.4 (1C), 30.6 (2C), 24.9 (2C), 24.6 (2C), 24.1 (4C), 17.3 (1C), 13.7 (2C).

<u>HRMS (ESI)</u> calcd for [M+H, C₃₉H₄₆N₃]⁺: 556.3686, found: 556.3689.

(*E*)-N-(2,6-diisopropylphenyl)-1-(9-(2,4,6-triisopropylphenyl)-1,10-phenanthrolin-2yl)ethan-1-imine (L1d)

Yellow solid, 90% yield, melting point: 249.0 – 251.2 °C.

- ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 8.72 (d, J = 8.4 Hz, 1H), 8.33 (d, J = 8.4 Hz, 1H), 8.26 (d, J = 8.1 Hz, 1H), 7.93 7.83 (m, 2H), 7.64 (d, J = 8.2 Hz, 1H), 7.19 7.14 (m, 4H), 7.13 7.06 (m, 1H), 2.99 (hept, J = 6.9 Hz, 1H), 2.77 (dp, J = 24.9, 6.8 Hz, 4H), 2.42 (s, 3H), 1.34 (d, J = 6.9 Hz, 6H), 1.24 (d, J = 6.8 Hz, 6H), 1.19 1.11 (m, 18H).
- ¹³C NMR (101 MHz, CDCl₃) δ 168.3 (1C), 160.1 (1C), 155.9 (1C), 148.6 (1C), 146.8 (2C), 146.7 (1C), 146.0 (1C), 145.6 (1C), 136.8 (1C), 136.1 (1C), 135.7 (2C), 135.1 (1C), 129.6 (1C), 127.3 (1C), 127.0 (1C), 126.0 (1C), 125.2 (1C), 123.5 (1C), 122.9 (2C), 120.9 (2C), 120.4 (1C), 34.3 (1C), 30.6 (2C), 28.2 (2C), 24.9 (2C), 24.2 (2C), 24.1 (2C), 23.2 (2C), 22.9 (2C), 17.6 (1C).

<u>HRMS (ESI)</u> calcd for $[M+H, C_{41}H_{50}N_3]^+$: 584.3999, found 584.4003.

(E) - N - (2,6 - dibenzhydryl - 4 - methoxyphenyl) - 1 - (9 - (2,4,6 - triisopropylphenyl) - 1,10 - phenanthrolin - 2 - yl) ethan - 1 - imine (L1e)

Yellow solid, 66% yield, melting point: 127.1 - 129.0 °C. The amount of arylamine is 1.2 equivalents.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 8.24 (q, *J* = 9.0, 8.5 Hz, 3H), 7.85 (q, *J* = 8.8 Hz, 2H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.24 – 6.92 (m, 22H), 6.46 (s, 2H), 5.33 (s, 2H), 3.56 (s, 3H), 3.02 (p, *J* = 7.0 Hz, 1H), 2.62 (p, *J* = 6.9 Hz, 2H), 1.38 (d, *J* = 6.9 Hz, 6H), 1.32 (s, 3H), 1.15 (dd, *J* = 16.5, 6.8 Hz, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 171.0 (1C), 159.2 (1C), 155.0 (1C), 154.0 (1C), 147.6 (1C), 145.7 (2C), 145.0 (1C), 144.5 (1C), 142.5 (2C), 141.3 (1C), 141.1 (2C), 136.0 (1C), 134.7 (1C), 134.0 (1C), 132.6 (2C), 128.7 (4C), 128.4 (4C), 128.3 (1C), 127.4 (4C), 126.9 (4C), 126.1 (1C), 125.9 (1C), 125.2 (2C), 125.0 (3C), 123.8 (1C), 119.7 (2C), 119.3 (1C), 112.7 (2C), 54.1 (1C), 51.1 (2C), 33.4 (1C), 29.7 (2C), 23.9 (2C), 23.2 (2C), 22.8 (2C), 16.3 (1C).

<u>HRMS (ESI)</u> calcd for [M+H, C₆₂H₆₀N₃O]⁺: 862.4731, found: 862.4735.

(*E*)-1-(9-(3,5-di-*tert*-butylphenyl)-1,10-phenanthrolin-2-yl)-N-(2,6-dimethylphenyl)ethan-1-imine (L1f)

Yellow solid, 48% yield, melting point: 202.8 – 203.3 °C.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 8.80 (d, J = 8.4 Hz, 1H), 8.37 – 8.31 (m, 4H), 8.21 (d, J = 8.4 Hz, 1H), 7.91 – 7.81 (m, 2H), 7.59 – 7.54 (m, 1H), 7.12 (d, J = 7.5 Hz, 2H), 7.02 – 6.95 (m, 1H), 2.64 (s, 3H), 2.10 (s, 6H), 1.43 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 168.0 (1C), 157.8 (1C), 155.5 (1C), 151.1 (2C), 149.1 (1C), 145.9 (1C), 145.2 (1C), 138.5 (1C), 136.8 (1C), 136.3 (1C), 129.7 (1C), 127.9 (2C),

127.5 (1C), 127.3 (1C), 125.7 (1C), 125.3 (2C), 123.9 (1C), 123.0 (1C), 121.9 (2C), 120.3 (1C), 119.9 (1C), 35.0 (2C), 31.5 (6C), 18.0 (2C), 16.4 (1C). <u>HRMS (ESI)</u> calcd for [M+H, C₃₆H₄₀N₃]⁺: 514.3217, found: 514.3220.

(E)-1-(9-(3,5-di-tert-butylphenyl)-1,10-phenanthrolin-2-yl)-N-(2,6-

diisopropylphenyl)ethan-1-imine (L1g)

Yellow solid, 98% yield, melting point: 281.5 – 282.9 °C.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 8.79 (d, *J* = 8.4 Hz, 1H), 8.40 – 8.28 (m, 4H), 8.21 (d, *J* = 8.4 Hz, 1H), 7.86 (q, *J* = 8.7 Hz, 2H), 7.55 (s, 1H), 7.24 – 7.18 (m, 2H), 7.18 – 7.09 (m, 1H), 2.85 (p, *J* = 6.9 Hz, 2H), 2.66 (s, 3H), 1.42 (s, 18H), 1.17 (d, *J* = 6.8 Hz, 12H). ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 167.8 (1C), 157.8 (1C), 155.6 (1C), 151.2 (2C), 146.8 (1C), 145.9 (1C), 145.2 (1C), 138.5 (1C), 136.8 (1C), 136.3 (1C), 135.8 (2C), 129.7 (1C), 127.5 (1C), 127.2 (1C), 125.7 (1C), 123.9 (1C), 123.6 (1C), 123.0 (2C), 121.9 (2C), 120.3 (1C), 119.9 (1C), 35.1 (2C), 31.5 (6C), 28.3 (2C), 23.3 (2C), 22.9 (2C), 17.1 (1C).

<u>HRMS (ESI)</u> calcd for [M+H, C₄₀H₄₈N₃]⁺: 570.3843, found: 570.3846.

2.4 Preparation of iron complexes with 2-imino-9-aryl-1,10-phenanthroline ligands

In an argon-filled glovebox, a tube with branch seal (125 mL) was charged with L1a (90 mg, 0.2 mmol), FeCl₂ (25.3 mg, 1 equiv) and dry THF (20 mL). The reaction mixture was stirred at 70 °C for 24 h until the free ligand was fully consumed according to ¹H NMR analysis. The solvent was partially removed under vacuum (about 5 mL left), then dry *n*-hexane (15 mL) was added, and solids precipitated. The product was collected by filtration, washed with 20 mL *n*-hexane, and dried under vacuum to give dark blue solid C1a (110 mg, 96% yield), decomposition temperature: 270 °C

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 70.82, 47.63, 30.79, 28.78, 18.25, 9.08, 7.84, 4.21, 3.77, 2.78, 2.04, 1.86, 1.26, 0.88, -3.47, -5.90, -20.93.

IR (neat): 2912w, 1617m, 1558m, 1500m, 1435m, 1371m, 1295m, 1255m, 1204m, 1158m, 1140m, 1112m, 1091m, 1066m, 1034m, 989w, 912w, 898w, 866s, 846m, 789m, 777m, 764m, 752w, 734m, 652w, 619m cm⁻¹.

C1b, gray-green solid, 96% yield, decomposition temperature: 260 °C.

 $\frac{1}{1} \underline{\text{H NMR}} (400 \text{ MHz}, \text{CDCl}_3) \delta 69.70, 46.31, 39.20, 32.23, 31.79, 19.29, 6.03, 5.82, 5.48, 4.20, 6.03, 5.82, 5.48,$

1.75, 1.41, 1.37, 1.34, 1.25, 1.19, 0.87, -3.49, -6.23, -28.34, -48.96.

<u>IR (KBr)</u>: 3053w, 2959s, 2926m, 2868m, 1611m, 1499m, 1465m, 1442m, 1376m, 1304m, 1266m, 1206m, 1149w, 867m, 792w, 765s, 742s, 703w cm⁻¹.

C1c, green solid, 94% yield, decomposition temperature: 236 °C.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 69.47, 46.22, 39.59, 34.02, 31.55, 19.33, 6.12, 5.88, 5.68,

4.17, 2.04, -2.61, -4.24, -6.39, -13.52, -28.93, -48.95.

<u>IR (KBr)</u>: 2959s, 2930m, 2868m, 2361s, 2342s, 1609m, 1575m, 1507s, 1458s, 1374s, 1299s,

1267s, 1245s, 1192s, 1059m, 865s, 785s, 735m cm⁻¹.

C1d, dark blue solid, 96% yield, decomposition temperature: 290 °C.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 69.49, 53.02, 47.24, 45.42, 32.26, 19.67, 7.52, 6.16, 5.62,

5.42, 2.51, -0.58, -2.10, -8.17, -9.74, -17.41, -33.98, -36.73, -62.40.

<u>IR (KBr):</u> 2959s, 2927m, 2867m, 2359w, 2333w, 1609m, 1559m, 1497m, 1461m, 1382m, 1303m, 1189m, 1139w, 1109w, 1057w, 864m, 783m, 735w cm⁻¹.

C1e, dark green solid, 96% yield, decomposition temperature: >320 °C.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 63.39, 56.47, 51.54, 49.42, 33.93, 21.38, 11.52, 10.71, 8.67,

7.99, 7.30, 6.11, 3.84, 1.72, 0.88, -9.20, -11.60, -23.81, -38.84, -65.42.

IR (KBr): 3547m, 3478s, 3414s, 3240w, 2958w, 2360w, 2341w, 1638m, 1617m, 1495w, 1436w,

1373w, 1305w, 1205w, 864w, 703m, 624m, 605m, 484w cm⁻¹.

C1f, green solid, 94% yield, decomposition temperature: 220 °C.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 79.50, 44.28, 31.28, 27.29, 15.77, 15.00, 10.21, 4.02, 1.92, -1.58, -5.02, -6.13, -22.41, -27.33.

<u>IR (KBr)</u>: 3062w, 2958s, 2907m, 2867m, 1615m, 1597m, 1557m, 1500s, 1470m, 1420m, 1371m, 1297w, 1267w, 1203m, 1140w, 1094w, 862s, 799w, 768s, 709m, 629w cm⁻¹.

C1g, dark green solid, 92% yield, decomposition temperature: 248 °C.

 $\underline{^{1}H}$ NMR (400 MHz, CDCl₃) δ 82.81, 42.19, 34.99, 27.35, 13.57, 10.43, 7.28, 4.08, 3.46, -

5.84, -6.55, -6.70, -9.97, -26.40, -37.71, -39.22.

<u>IR (KBr)</u>: 3060w, 2962s, 2867m, 2360s, 2341s, 1605m, 1557m, 1498m, 1458m, 1371s, 1298s, 1244m, 1188m, 1057w, 934w, 863s, 809m, 794m, 779m, 731w cm⁻¹.

3. Additional optimization of reaction conditions

3.1 Effect of additives and solvents

General procedure: In an argon-filled glovebox, a vial (10 mL) was charged with C1d (3.6 mg, 0.005 mmol, 1 mol%) and solvent (1 mL). The reaction mixture was stirred at room temperature for 1 min, then was added the conjugated diene 1a (65 mg, 0.5 mmol), PhSiH₃ (59.4 mg, 0.55 mmol) and additive (0.01 mmol, 2 mol%). After stirring for 2 h at room temperature, the vial was removed from the glovebox and the reaction mixture was concentrated by rotary evaporation. Iron species were removed by flash column chromatography with DCM as eluent. The raw product was detected by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. The results were listed as following.

entry	[Fe]	reductant	solvent	conv. (%)	yield (%)	3aa/4aa/5aa/6aa
1	C1d	EtMgBr	THF	>95	99	99:1:0:0
2	C1d	MeMgBr	THF	>95	98	98:2:0:0
3	C1d	MeMgCl	THF	>95	97	98.5:1.5:0:0
4	C1d	PhMgBr	THF	>95	99	98:2:0:0
5	C1d	ZnEt ₂	THF	<5	ND^a	\mathbf{NA}^b
6	C1d	LiAlH ₄	THF	<5	ND	NA
7	C1d	NaHBEt ₃	THF	56	22	88:12:0:0
8	C1d	^t BuOK	THF	75	38	91:9:0:0
9	C1d	LDA	THF	>95	20	93:7:0:0

Table S1	Effect of	of	additives	and	solvents

10	C1d	none	THF	<5	ND	NA
11	C1d	EtMgBr	Et ₂ O	59	45	98:2:0:0
12	C1d	EtMgBr	dioxane	<5	ND	NA
13	C1d	EtMgBr	toluene	62	40	98:2:0:0
14	C1d	EtMgBr	hexane	67	57	98:2:0:0

^{*a*} ND, not detected. ^{*b*} NA, not applicable.

3.2 Effect of metal salts

General procedure: In an argon-filled glovebox, a vial (10 mL) was charged with metal salt (0.005 mmol, 1 mol%), **L1d** (2.9 mg, 0.005 mmol, 1 mol%) and THF (1 mL). The reaction mixture was stirred at 70 °C for 12 h, and then cooled to room temperature. The conjugated diene **1a** (65 mg, 0.5 mmol), PhSiH₃ (59.4 mg, 0.55 mmol, 1.1 equiv) and EtMgBr (10 μ L, 0.01 mmol, 2 mol%) was added and the mixture was stirred for 2 h at room temperature. The vial was removed from the glovebox and the reaction mixture was concentrated by rotary evaporation. Metal species were removed by flash column chromatography with DCM as eluent. The raw product was detected by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. The results were listed as following.

entry	metal salt	conv. (%)	yield (%)	3 aa/4aa/5aa/6aa
1	FeCl ₂	>95	98	98:2:0:0
2	Fe(acac) ₂	<5	ND^{a}	NA^b

Table S2 Effect of metal salt	S
-------------------------------	---

3	CoCl ₂	<5	ND	NA
4	NiCl ₂	<5	ND	NA
5	MnCl ₂	<5	ND	NA
6	CuCl ₂	<5	ND	NA
7	ZnCl ₂	<5	ND	NA
8	none	<5	ND	NA

^{*a*} ND, not detected. ^{*b*} NA, not applicable.

4. Typical procedures for hydrosilylation reactions

4.1. Hydrosilylation of conjugated dienes

In an argon-filled glovebox, a vial (10 mL) was charged with complexes C1d (5.0 mg, 0.007 mmol), dry anhydrous THF (1 mL), conjugated dienes 1 (0.7 mmol) and silanes 2 (0.77 mmol, 1.1 equiv) successively. The vial was removed from the glovebox after EtMgBr (1 M in THF, 14 μ L, 0.014 mmol, 2.0 mol%) was added and the reaction mixture was stirred at room temperature for 2 h. When the reaction was finished, the mixture was concentrated by rotating evaporation. The residue was purified by column chromatography to afford the desired products **3**.

4.2 Hydrosilylation of terminal alkenes

In an argon-filled glovebox, a vial (10 mL) was charged with complexes C1b (4.6 mg, 0.007 mmol), dry anhydrous THF (1 mL), alkene 7 (0.7 mmol) and phenylsilane (0.77 mmol, 1.1 equiv) successivelly. The vial was removed from the glovebox after EtMgBr (1 M in THF, 14 μ L, 0.014 mmol, 2.0 mol%) was added and the reaction mixture was stirred at room temperature for 2 h. When the reaction was finished, the mixture was concentrated by rotating evaporation. The residue was purified by column chromatography to afford the desired product **8**.

5. Analytical data of hydrosilylation products

(E)-phenyl(4-phenylbut-3-en-1-yl)silane (3aa)¹²

Serial number: sw-2-76, 162.6 mg, 98% yield, >98:2 r.r., colorless oil, $R_f = 0.52$ (PE)

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.43 – 7.26 (m, 7H), 7.23 – 7.15 (m, 1H),
6.37 (d, J = 15.8 Hz, 1H), 6.25 (dt, J = 15.7, 6.5 Hz, 1H), 4.34 (t, J = 3.6 Hz, 2H),
2.41 – 2.32 (m, 2H), 1.18 – 1.10 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 137.7 (1C), 135.3 (2C), 132.2 (2C), 129.6 (1C), 129.2 (1C), 128.4 (2C), 128.0 (2C), 126.9 (1C), 126.0 (2C), 28.4 (1C), 9.9 (1C).

(E)-(4-phenylbut-3-en-1-yl)(o-tolyl)silane (3ab)

Serial number: sw-3-43, 167.0 mg, 95% yield, 94:6 r.r., colorless oil. *R*_f = 0.59 (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 1H), 7.34 – 7.25 (m, 5H), 7.22 – 7.14 (m, 3H),

6.37 (d, *J* = 15.7 Hz, 1H), 6.25 (dt, *J* = 15.8, 6.5 Hz, 1H), 4.37 (t, *J* = 3.7 Hz, 2H), 2.45 (s, 3H), 2.40 – 2.32 (m, 2H), 1.19 – 1.09 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 144.0 (1C), 137.7 (1C), 136.4 (1C), 132.2 (1C), 131.6 (1C), 130.1 (1C), 129.4 (1C), 129.2 (1C), 128.4 (2C), 126.8 (1C), 126.0 (2C), 125.2 (1C), 28.6 (1C), 22.6 (1C), 9.6 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₇H₂₀Si]⁺:252.1334, found: 252.1328.

(E)-(4-phenylbut-3-en-1-yl)(m-tolyl)silane (3ac)

Serial number: sw-3-44, 163.6 mg, 93% yield, >98:2 r.r., colorless oil. $R_f = 0.50$ (PE).

 1 <u>H NMR</u> (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.33 – 7.24 (m, 5H), 7.23 – 7.15 (m, 2H),

- 6.37 (d, *J* = 15.7 Hz, 1H), 6.25 (dt, *J* = 15.8, 6.5 Hz, 1H), 4.32 (t, *J* = 3.7 Hz, 2H), 2.42 2.29 (m, 5H), 1.18 1.05 (m, 2H).
- ¹³C NMR (101 MHz, CDCl₃) δ 137.8 (1C), 137.5 (1C), 136.0 (1C), 132.3 (3C), 130.5 (1C), 129.3 (1C), 128.5 (2C), 128.0 (1C), 126.9 (1C), 126.0 (2C), 28.5 (1C), 21.5 (1C), 10.0 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₇H₂₀Si]⁺: 252.1334, found: 252.1328.

(E)-(4-methoxyphenyl)(4-phenylbut-3-en-1-yl)silane (3ad)

Serial number: sw-2-144, 178.0 mg, 95% yield, >98:2 r.r., colorless oil. *R_f*= 0.30 (PE). <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.55 – 7.45 (m, 2H), 7.32 – 7.25 (m, 4H), 7.23 – 7.14 (m, 1H), 6.95 – 6.86 (m, 2H), 6.37 (d, *J* = 15.8 Hz, 1H), 6.24 (dt, *J* = 15.7, 6.5 Hz, 1H), 4.32 (t, *J* = 3.6 Hz, 2H), 3.81 (s, 3H), 2.40 – 2.31 (m, 2H), 1.15 – 1.07 (m, 2H). <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 160.9 (1C), 137.7 (2C), 136.7 (1C), 132.3 (1C), 129.2 (1C), 128.4 (2C), 126.8 (1C), 126.0 (2C), 122.8 (1C), 113.9 (2C), 55.0 (1C), 28.4 (1C), 10.2 (1C).

HRMS (EI) calculated for [M, C₁₇H₂₀OSi]⁺: 268.1283, found: 268.1278.

(E)-(4-(*tert*-butyl)phenyl)(4-phenylbut-3-en-1-yl)silane (3ae)

Serial number: sw-2-194, 204 mg, 99% yield, >98:2 r.r., colorless oil. *R*_f = 0.48 (PE). <u>¹H NMR</u> (400 MHz, CDCl₃) 7.56 – 7.49 (m, 2H), 7.43 – 7.37 (m, 2H), 7.33 – 7.25 (m, 4H), 7.21 – 7.15 (m, 1H), 6.37 (d, *J* = 15.7 Hz, 1H), 6.24 (dt, *J* = 15.7, 6.5 Hz, 1H), 4.33 (t, *J* = 3.6 Hz, 2H), 2.42 – 2.32 (m, 2H), 1.32 (s, 9H), 1.18 – 1.08 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.7 (1C), 137.7 (1C), 135.2 (2C), 132.3 (1C), 129.2 (1C), 128.6 (1C), 128.4 (2C), 126.8 (1C), 126.0 (2C), 125.0 (2C), 34.7 (1C), 31.2 (3C), 28.5 (1C), 10.0 (1C).

<u>HRMS (EI)</u> calculated for [M, C₂₀H₂₆Si]⁺: 294.1804, found: 294.1796.

(E)-(4-fluorophenyl)(4-phenylbut-3-en-1-yl)silane (3af)

Serial number: sw-4-126, 169.4 mg, 94% yield, >98:2 r.r., colorless oil. *R_f*= 0.78 (PE).
<u>¹H NMR</u> (400 MHz, CDCl₃) δ7.59 – 7.51 (m, 2H), 7.33 – 7.26 (m, 4H), 7.23 – 7.16 (m, 1H), 7.10 – 7.02 (m, 2H), 6.36 (d, *J* = 17.2 Hz, 1H), 6.23 (dt, *J* = 15.7, 6.6 Hz, 1H), 4.33 (t, *J* = 3.6 Hz, 2H), 2.41 – 2.30 (m, 2H), 1.17 – 1.07 (m, 2H).
<u>¹³C NMR</u> (101 MHz, CDCl₃) δ 164.0 (*J* = 250.5 Hz, 1C), 162.8 (1C), 137.6 (1C), 137.2 (1C), 137.2 (1C), 137.2 (1C), 129.4 (1C), 128.5 (2C), 127.6 (1C), 126.9 (1C), 126.0 (2C), 115.4 (1C), 115.2 (1C), 28.3 (1C), 10.0 (1C).

 $\frac{19}{\text{F NMR}}$ (376 MHz, CDCl₃) δ -110.83.

<u>HRMS (EI)</u> calculated for [M, C₁₆H₁₇FSi]⁺: 256.1084, found: 256.1078.

(E)-(4-chlorophenyl)(4-phenylbut-3-en-1-yl)silane (3ag)

Serial number: sw-4-118, 185.2 mg, 97% yield, >98:2 r.r., colorless oil. $R_f = 0.81$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.31 – 7.25

(m, 4H), 7.22 - 7.16 (m, 1H), 6.36 (d, J = 15.7 Hz, 1H), 6.21 (dt, J = 15.8, 6.6 Hz,

1H), 4.32 (t, *J* = 3.6 Hz, 2H), 2.41 – 2.27 (m, 2H), 1.18 – 1.06 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 137.5 (1C), 136.6 (2C), 136.0 (1C), 131.8 (1C), 130.5 (1C),

129.4 (1C), 128.5 (2C), 128.3 (2C), 126.9 (1C), 125.9 (2C), 28.3 (1C), 9.8 (1C). <u>HRMS (EI)</u> calculated for [M, C₁₆H₁₇ClSi]⁺: 272.0788, found: 272.0783.

(E)-(4-methylbenzyl)(4-phenylbut-3-en-1-yl)silane (3ah)

Serial number: sw-2-146, 178.8 mg, 96% yield, >98:2 r.r., colorless oil. *R_f*= 0.55 (PE). <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 4H), 7.23 – 7.14 (m, 1H), 7.09 – 6.94 (m, 4H), 6.34 (d, *J* = 15.8 Hz, 1H), 6.20 (dt, *J* = 15.8, 6.6 Hz, 1H), 3.83 (p, *J* = 3.6 Hz, 2H), 2.32 – 2.24 (m, 5H), 2.22 (t, *J* = 3.7 Hz, 2H), 0.91 – 0.80 (m, 2H). <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 137.7 (1C), 136.4 (1C), 134.0 (1C), 132.2 (1C), 129.2 (2C), 129.1 (1C), 128.5 (2C), 128.0 (2C), 126.9 (1C), 126.0 (2C), 28.5 (1C), 20.9 (1C),

18.4 (1C), 8.7 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₈H₂₂Si]⁺: 266.1491, found: 266.1486.

(E)-octyl(4-phenylbut-3-en-1-yl)silane (3ai)

SiH₂C₈H₁₇

Serial number: sw-4-179, 175.3 mg, 91% yield, 98:2 r.r., colorless oil. $R_f = 0.72$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 4H), 7.22 – 7.16 (m, 1H), 6.38 (d, J = 15.8 Hz, 1H), 6.26 (dt, J = 15.7, 6.5 Hz, 1H), 3.70 (p, J = 3.6 Hz, 2H), 2.37 – 2.25 (m, 2H), 1.42 – 1.25 (m, 12H), 0.92 – 0.85 (m, 5H), 0.76 – 0.67 (m, 2H).
¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 137.8 (1C), 132.6 (1C), 129.0 (1C), 128.5 (2C), 126.8 (1C),

126.0 (2C), 32.9 (1C), 31.9 (1C), 29.3 (1C), 29.2 (1C), 28.8 (1C), 25.4 (1C), 22.7 (1C), 14.1 (1C), 9.1 (1C), 9.0 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₈H₃₀Si]⁺: 274.2117, found: 274.2112.

(E)-phenyl(4-(o-tolyl)but-3-en-1-yl)silane (3ba)

Serial number: sw-2-107, 170.4 mg, 96% yield, 98:2 r.r., colorless oil. $R_f = 0.52$ (PE).

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.63 - 7.54 \text{ (m, 2H)}, 7.43 - 7.32 \text{ (m, 4H)}, 7.16 - 7.08 \text{ (m, 3H)}, 6.57 \text{ (d, } J = 15.6 \text{ Hz}, 1\text{H}), 6.11 \text{ (dt, } J = 15.6, 6.7 \text{ Hz}, 1\text{H}), 4.35 \text{ (t, } J = 3.7 \text{ Hz}, 2\text{H}), 2.44 - 2.35 \text{ (m, 2H)}, 2.31 \text{ (s, 3H)}, 1.19 - 1.11 \text{ (m, 2H)}.$

¹³C NMR (101 MHz, CDCl₃) δ 136.8 (1C), 135.3 (2C), 135.0 (1C), 133.5 (1C), 132.3 (1C), 130.1 (1C), 129.6 (1C), 128.0 (2C), 127.1 (1C), 126.8 (1C), 126.0 (1C), 125.5 (1C), 28.7 (1C), 19.8 (1C), 10.0 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₇H₂₀Si]⁺: 252.1334, found: 252.1327.

(E)-phenyl(4-(3-(trifluoromethyl)phenyl)but-3-en-1-yl)silane (3ca)

Serial number: sw-2-138, 196.8 mg, 92% yield, 98:2 r.r., colorless oil. $R_f = 0.48$ (PE).

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.62 – 7.49 (m, 3H), 7.48 – 7.31 (m, 6H), 6.39 (d, J = 15.9 Hz,

1H), 6.30 (dt, *J* = 15.7, 6.2 Hz, 1H), 4.35 (t, *J* = 3.6 Hz, 2H), 2.39 (q, *J* = 7.1 Hz, 2H), 1.21 – 1.07 (m, 2H).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}} (101 \text{ MHz, CDCl}_3) \delta 138.4 (1C), 135.2 (2C), 134.2 (1C), 132.1 (1C), 130.9 (q, J = 32.1 \text{ Hz}, 1C)., 129.7 (1C), 129.1 (d, J = 1.4 \text{ Hz}, 1C), 128.8 (1C), 128.1 (3C), 124.2 (q, J = 270 \text{ Hz}, 1C), 123.4 (q, J = 3.8 \text{ Hz}, 1C), 122.6 (q, J = 4.0 \text{ Hz}, 1C), 28.4 (1C), 9.7 (1C).$

¹⁹F NMR (376 MHz, CDCl₃) δ -62.73.

<u>HRMS (ESI)</u> calculated for [M-H, C₁₇H₁₆F₃Si]⁻: 305.0979, found: 305.0965.

(E)-phenyl(4-(p-tolyl)but-3-en-1-yl)silane (3da)

Serial number: sw-2-108, 172.1 mg, 98% yield, >98:2 r.r., colorless oil. *R_f*= 0.52 (PE).
¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.62 – 7.54 (m, 2H), 7.44 – 7.31 (m, 3H), 7.23 – 7.18 (m, 2H), 7.12 – 7.06 (m, 2H), 6.34 (d, *J* = 15.8 Hz, 1H), 6.19 (dt, *J* = 15.7, 6.6 Hz, 1H), 4.34 (t, *J* = 3.6 Hz, 2H), 2.39 – 2.33 (m, 2H), 2.32 (s, 3H), 1.17 – 1.07 (m, 2H).
¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 136.6 (1C), 135.3 (2C), 134.9 (1C), 132.3 (1C), 131.2 (1C), 129.6 (1C), 129.2 (2C), 129.1 (1C), 128.1 (2C), 125.9 (2C), 28.4 (1C), 21.2 (1C),

10.0 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₇H₂₀Si]⁺: 252.1334, found: 252.1327.

(E)-(4-(4-methoxyphenyl)but-3-en-1-yl)(phenyl)silane (3ea)

Serial number: sw-2-86, 178.2 mg, 95% yield, >98:2 r.r., colorless oil. $R_f = 0.53$ (PE/EA = 20:1, v/v).

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.64 - 7.52 \text{ (m, 2H)}, 7.43 - 7.32 \text{ (m, 3H)}, 7.26 - 7.22 \text{ (m, 2H)}, 6.88 - 6.76 \text{ (m, 2H)}, 6.31 \text{ (d, } J = 15.6, 1\text{H}), 6.10 \text{ (dt, } J = 15.7, 6.7 \text{ Hz}, 1\text{H}), 4.33 \text{ (t, } J = 3.6 \text{ Hz}, 2\text{H}), 3.79 \text{ (d, } J = 1.4 \text{ Hz}, 3\text{H}), 2.35 \text{ (dtd, } J = 7.8, 6.4, 1.4 \text{ Hz}, 2\text{H}), 1.18 - 1.05 \text{ (m, 2H)}.$

¹³C NMR (101 MHz, CDCl₃) δ 158.6 (1C), 135.2 (2C), 132.3 (1C), 130.5 (1C), 130.0 (1C), 129.6 (1C), 128.6 (1C), 128.0 (2C), 127.0 (2C), 113.9 (2C), 55.2 (1C), 28.3 (1C), 10.0 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₇H₂₀OSi]⁺: 268.1283, found 268.1278.

(E)-N,N-dimethyl-4-(4-(phenylsilyl)but-1-en-1-yl)aniline (3fa)

_SiH₂Ph Me₂N²

Serial number: sw-2-160, 193 mg, 98% yield, >98:2 r.r., yellow oil. $R_f = 0.24$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.62 – 7.52 (m, 2H), 7.42 – 7.31 (m, 3H), 7.24 – 7.15 (m, 2H),

6.70 – 6.62 (m, 2H), 6.28 (d, J = 15.7 Hz, 1H), 6.04 (dt, J = 15.9, 6.7 Hz, 1H), 4.33

(t, J = 3.5 Hz, 2H), 2.92 (s, 6H), 2.39 – 2.28 (m, 2H), 1.16 – 1.07 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 149.7 (1C), 135.3 (2C), 132.5 (1C), 129.5 (1C), 129.0 (1C),

128.0 (3C), 126.8 (2C), 126.4 (1C), 112.6 (2C), 40.6 (2C), 28.4 (1C), 10.2 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₈H₂₃NSi]⁺: 281.1600, found: 281.1592.

(E)-(4-(4-fluorophenyl)but-3-en-1-yl)(phenyl)silane (3ga)

F SiH₂Ph

Serial number: sw-2-99, 177.2 mg, 99% yield, >98:2 r.r., colorless oil. $R_f = 0.59$ (PE).

 $\frac{1}{1}$ H NMR (400 MHz, CDCl₃) δ 7.63 – 7.53 (m, 2H), 7.46 – 7.30 (m, 3H), 7.29 – 7.21 (m, 2H), 7.03 – 6.88 (m, 2H), 6.32 (d, *J* = 15.7 Hz, 1H), 6.14 (dt, *J* = 15.8, 6.6 Hz, 1H), 4.34 (t, *J* = 3.6 Hz, 2H), 2.41 – 2.30 (m, 2H), 1.18 – 1.07 (m, 2H).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}}$ (101 MHz, CDCl₃) δ 161.9 (J = 244.1 Hz, 1C), 135.2 (2C), 133.8 (1C), 132.2 (1C), 131.9 (1C), 129.6 (1C), 128.1 (1C), 128.0 (2C), 127.4 (1C), 127.3 (1C), 115.4 (1C), 115.2 (1C), 28.3 (1C), 9.9 (1C).

 19 F NMR (376 MHz, CDCl₃) δ -115.71.

HRMS (EI) calculated for [M, C₁₆H₁₇FSi]⁺: 256.1084, found: 256.1078.

(E)-(4-(4-chlorophenyl)but-3-en-1-yl)(phenyl)silane (3ha)

CI SiH₂Ph

Serial number: sw-2-126, 186.9 mg, 98% yield, >98:2 r.r., colorless oil. *R_f*= 0.63 (PE). <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.62 – 7.52 (m, 2H), 7.45 – 7.31 (m, 3H), 7.25 – 7.18 (m, 4H), 6.32 (d, *J* = 15.8, 1H), 6.21 (dt, *J* = 15.8, 6.4 Hz, 1H), 4.34 (t, *J* = 3.6 Hz, 2H), 2.44

- 2.29 (m, 2H), 1.18 - 1.08 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 136.2 (1C), 135.2 (2C), 132.9 (1C), 132.4(1C), 132.1 (1C), 129.6 (1C), 128.6 (2C), 128.1 (1C), 128.0 (2C), 127.2 (2C), 28.4 (1C), 9.8 (1C).
 <u>HRMS (EI)</u> calculated for [M, C₁₆H₁₇ClSi]⁺: 272.0788, found: 272.0783.

(E)-(4-(naphthalen-2-yl)but-3-en-1-yl)(phenyl)silane (3ia)

SiH₂Ph

Serial number: sw-2-148, 199 mg, 99% yield, 98:2 r.r., colorless oil. $R_f = 0.50$ (PE).

- <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.81 7.71 (m, 3H), 7.66 7.57 (m, 3H), 7.53 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.47 7.32 (m, 5H), 6.53 (d, *J* = 15.7 Hz, 1H), 6.37 (dt, *J* = 15.7, 6.6 Hz, 1H), 4.37 (t, *J* = 3.6 Hz, 2H), 2.49 2.35 (m, 2H), 1.23 1.11 (m, 2H).
- ¹³C NMR (101 MHz, CDCl₃) δ 135.3 (2C), 135.1 (1C), 133.7 (1C), 132.7 (1C), 132.6 (1C), 132.2 (1C), 129.6 (1C), 129.4 (1C), 128.0 (3C), 127.8 (1C), 127.6 (1C), 126.1 (1C), 125.4 (2C), 123.6 (1C), 28.5 (1C), 9.9 (1C).

<u>HRMS (EI)</u> calculated for [M, C₂₀H₂₀Si]⁺: 288.1334, found: 288.1329.

(E)-(4-(benzo[d][1,3]dioxol-5-yl)but-3-en-1-yl)(phenyl)silane (3ja)

O SiH₂Ph

Serial number: sw-3-8, 196.2 mg, 99% yield, 98:2 r.r., colorless oil. $R_f = 0.53$ (PE/EA = 10:1, v/v).

- <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.63 7.52 (m, 2H), 7.45 7.31 (m, 3H), 6.88 6.82 (m, 1H),
 6.76 6.68 (m, 2H), 6.28 (d, J = 15.7, 1H), 6.07 (dt, J = 15.8, 6.8 Hz, 1H), 5.93 (s, 2H), 4.38 4.29 (m, 2H), 2.39 2.27 (m, 2H), 1.17 1.06 (m, 2H).
- ¹³C NMR (101 MHz, CDCl₃) δ 147.9 (1C), 146.6 (1C), 135.2 (2C), 132.2 (2C), 130.4 (1C), 129.6 (1C), 128.8 (1C), 128.0 (2C), 120.3 (1C), 108.2 (1C), 105.4 (1C), 100.9 (1C), 28.3 (1C), 10.0 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₇H₁₈O₂Si]⁺: 282.1076, found: 282.1069.

(E)-(4-(furan-2-yl)but-3-en-1-yl)(phenyl)silane (3ka)

SiH₂Ph

Serial number: sw-2-161, 148 mg, 93% yield, 97:3 r.r., colorless oil. $R_f = 0.73$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.60 – 7.52 (m, 2H), 7.43 – 7.27 (m, 4H), 6.35 – 6.30 (m, 1H),
6.22 – 6.17 (m, 2H), 6.14 – 6.09 (m, 1H), 4.33 (t, J = 3.7 Hz, 2H), 2.39 – 2.27 (m, 2H), 1.17 – 1.05 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 153.2 (1C), 141.3 (1C), 135.2 (2C), 132.2 (1C), 131.2 (1C), 129.6 (1C), 128.0 (2C), 118.0 (1C), 111.1 (1C), 106.2 (1C), 28.1 (1C), 9.7 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₄H₁₆OSi]⁺: 228.0970, found 228.0966.

(*E*)-phenyl(4-phenylpent-3-en-1-yl)silane (3la)

Serial number: sw-2-202, 167.0 mg, 95% yield, >98:2 r.r., colorless oil. $R_f = 0.61$ (PE).

- ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.62 7.55 (m, 2H), 7.43 7.27 (m, 7H), 7.24 7.18 (m, 1H),
 5.83 5.74 (m, 1H), 4.34 (t, J = 3.6, 2H), 2.42 2.30 (m, 2H), 1.98 (s, 3H), 1.18 1.07 (m, 2H).
- ¹³C NMR (101 MHz, CDCl₃) δ 143.8 (1C), 135.2 (2C), 134.3 (1C), 132.4 (1C), 129.9 (1C),
 129.6 (1C), 128.1 (2C), 128.0 (2C), 126.5 (1C), 125.6 (2C), 24.1 (1C), 15.8 (1C),
 10.3 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₇H₂₀Si]⁺: 252.1334, found: 252.1329.

(4,4-diphenylbut-3-en-1-yl)(phenyl)silane (3ma)

Ph SiH₂Ph

Serial number: sw-3-190, 191.7 mg, 87% yield, >98:2 r.r., colorless oil. Complex C1b was used as the catalyst. R_f = 0.29 (PE).

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}}$ (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.40 – 7.11 (m, 13H), 6.08 (t, *J* = 7.4 Hz, 1H), 4.28 (t, *J* = 3.7 Hz, 2H), 2.29 (q, *J* = 7.7 Hz, 2H), 1.15 – 1.03 (m, 2H).

 $\frac{13}{C}$ NMR (101 MHz, CDCl₃) δ 142.7 (1C), 141.1 (1C), 140.0 (1C), 135.2 (2C), 132.3 (1C),

131.3 (1C), 129.9 (2C), 129.6 (1C), 128.2 (2C), 128.1 (2C), 128.0 (2C), 127.3 (2C), 126.9 (1C), 126.9 (1C), 25.2 (1C), 10.7 (1C).

<u>HRMS (EI)</u> calculated for [M, C₂₂H₂₂Si]⁺: 314.1491, found: 314.1481.

(E)-(3-methyl-4-phenylbut-3-en-1-yl)(phenyl)silane (3na)¹³

SiH₂Ph Me

Serial number: sw-2-162, 176.2 mg, 99% yield, >98:2 r.r., colorless oil. $R_f = 0.69$ (PE).

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.43 – 7.25 (m, 5H), 7.24 – 7.13 (m, 3H),
6.29 (s, 1H), 4.34 (t, J = 3.6 Hz, 2H), 2.36 – 2.26 (m, 2H), 1.84 (s, 3H), 1.24 – 1.12 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 140.2 (1C), 138.5 (1C), 135.3 (2C), 132.4 (1C), 129.6 (1C), 128.8 (2C), 128.0 (4C), 125.9 (1C), 124.4 (1C), 35.8 (1C), 17.5 (1C), 8.7 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₇H₂₀Si]⁺: 252.1334, found: 252.1328.

(Z)-phenyl(3-phenylpent-3-en-1-yl)silane (3oa)

Me SiH₂Ph

Serial number: llj-1-106, 172.9 mg, 98% yield, 98:2 r.r., colorless oil. Complex C1b (2 mol%) was used as the catalyst. $R_f = 0.59$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) 7.56 – 7.48 (m, 2H), 7.43 – 7.28 (m, 5H), 7.22 (d, *J* = 7.3 Hz, 1H),
7.15 – 7.08 (m, 2H), 5.59 – 5.51 (m, 1H), 4.26 (t, *J* = 3.7 Hz, 2H), 2.53 – 2.43 (m, 2H), 1.54 (d, *J* = 6.9 Hz, 3H), 1.04 – 0.90 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 142.8 (1C), 140.6 (1C), 135.2 (1C), 132.4 (1C), 129.5 (1C), 128.6 (1C), 128.0 (1C), 127.9 (1C), 126.4 (1C), 120.6 (1C), 34.4 (1C), 14.6 (1C), 8.9

(1C).

<u>HRMS (EI)</u> calculated for [M, C₁₇H₂₀Si]⁺: 252.1334, found: 252.1328.

(E)-non-3-en-1-yl(phenyl)silane (3pa)¹³

C₅H₁₁ SiH₂Ph

Serial number: sw-4-79A, 156.7 mg, 96% yield, 1,2/1,4 > 98:2 (the 1,2/1,4 refers to the ratio of 1,2- and 1,4-*anti*-Markovnikov hydrosilylation product), colorless oil. Complex **C1e** was used as the catalyst; EtMgBr (4 mol%) was added at -30 °C, and then the mixture was stirred at 0 °C for 10 h. R_f = 0.85 (PE).

- ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.60 7.52 (m, 2H), 7.43 7.31 (m, 3H), 5.50 5.34 (m, 2H),
 4.29 (t, J = 3.7 Hz, 2H), 2.15 (td, J = 7.6, 5.3 Hz, 2H), 1.96 (q, J = 6.6 Hz, 2H), 1.37 1.20 (m, 6H), 1.07 0.97 (m, 2H), 0.88 (t, J = 6.8 Hz, 3H).
- ¹³C NMR (101 MHz, CDCl₃) δ 135.3 (2C), 132.6 (1C), 131.5 (1C), 130.1 (1C), 129.5 (1C), 128.0 (2C), 32.4 (1C), 31.4 (1C), 29.3 (1C), 27.9 (1C), 22.6 (1C), 14.1 (1C), 10.1 (1C).

(*E*)-(4-cyclohexylbut-3-en-1-yl)(phenyl)silane (3qa)¹³

SiH₂Ph

Serial number: sw-4-79B, 164.0 mg, 96% yield, 1,2/1,4 > 98:2 (the 1,2/1,4 refers to the ratio of 1,2- and 1,4-*anti*-Markovnikov hydrosilylation product), colorless oil. Complex **C1e** was used as the catalyst; EtMgBr (4 mol%) was added at -30 °C, and then the mixture was stirred at 0 °C for 10 h. $R_f = 0.86$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.61 – 7.51 (m, 2H), 7.42 – 7.30 (m, 3H), 5.46 – 5.29 (m, 2H),
4.28 (t, J = 3.7 Hz, 2H), 2.18 – 2.09 (m, 2H), 1.94 – 1.81 (m, 1H), 1.74 – 1.58 (m, 5H), 1.29 – 0.98 (m, 7H).

¹³C NMR (101 MHz, CDCl₃) δ 136.0 (1C), 135.3 (2C), 132.6 (1C), 129.5 (1C), 128.9 (1C), 128.0 (2C), 40.6 (1C), 33.2 (2C), 28.0 (1C), 26.3 (1C), 26.1 (2C), 10.1 (1C).

(4-(*tert*-butyl)phenyl)(3-methylbut-3-en-1-yl)silane (3re)

Serial number: sw-3-167, 154.1 mg, 95% yield, 1,2/1,4 = 94:6 (the 1,2/1,4 refers to the ratio of 1,2- and 1,4-*anti*-Markovnikov hydrosilylation product), colorless oil. Silane **2e** was used instead of **2a**. $R_f = 0.56$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ7.54 – 7.49 (m, 2H), 7.42 – 7.37 (m, 2H), 4.75 – 4.68 (m, 2H),
4.29 (t, J = 3.7 Hz, 2H), 2.20 – 2.10 (m, 2H), 1.73 (s, 3H), 1.32 (s, 9H), 1.13 – 1.02 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 152.7 (1C), 147.4 (1C), 135.2 (2C), 128.8 (1C), 125.0 (2C), 109.1 (1C), 34.7 (1C), 33.0 (1C), 31.2 (3C), 22.2 (1C), 8.3 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₅H₂₄Si]⁺: 232.1647, found: 232.1641.

(7-methyl-3-methyleneoct-6-en-1-yl)(phenyl)silane (3sa)¹³

Serial number: sw-4-79C, 153.7 mg, 90% yield, 1,2/1,4 = 93:7 (the 1,2/1,4 refers to the ratio of 1,2- and 1,4-*anti*-Markovnikov hydrosilylation product), colorless oil. Complex **C1d** was used as the catalyst; EtMgBr (4 mol%) was added at -30 °C, and then the mixture was stirred at 0 °C for 10 h. R_f = 0.61 (PE).

- <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.61 7.54 (m, 2H), 7.43 7.32 (m, 3H), 5.14 5.04 (m, 1H),
 4.77 (s, 1H), 4.73 (s, 1H), 4.30 (t, *J* = 3.6 Hz, 2H), 2.18 2.00 (m, 6H), 1.68 (s, 3H),
 1.60 (s, 3H), 1.14 1.03 (m, 2H).
- ¹³C NMR (101 MHz, CDCl₃) δ 151.0 (1C), 135.2 (2C), 132.4 (1C), 131.6 (1C), 129.6 (1C), 128.0 (2C), 124.1 (1C), 108.3 (1C), 35.8 (1C), 31.4 (1C), 26.4 (1C), 25.7 (1C), 17.7 (1C), 8.3 (1C).

(3-cyclohexylidenepropyl)(phenyl)silane (3ta)

SiH₂Ph

Serial number: sw-3-147, 155.7 mg, 97% yield, 1,2/1,4 = 92:8 (the 1,2/1,4 refers to the ratio of 1,2- and 1,4-*anti*-Markovnikov hydrosilylation product), colorless oil. $R_f = 0.64$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.61 – 7.52 (m, 2H), 7.42 – 7.30 (m, 3H), 5.10 (t, J = 7.1 Hz, 1H), 4.28 (t, J = 3.7 Hz, 2H), 2.15 (q, J = 7.5 Hz, 2H), 2.11 – 1.99 (m, 4H), 1.58 – 1.41 (m, 6H), 1.06 – 0.94 (m, 2H).

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 139.2 (1C), 135.2 (2C), 132.7 (1C) 129.5 (1C), 127.9 (2C),
122.9 (1C), 37.1 (1C), 28.7 (1C), 28.6 (1C), 27.7 (1C), 27.0 (1C), 22.5 (1C), 10.9 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₅H₂₂Si]⁺: 230.1491, found: 230.1488.

(E)-(4,8-dimethylnona-3,7-dien-1-yl)(phenyl)silane (3ua)

Me Me SiH₂Ph

Serial number: sw-3-75, 172.3 mg, 95% yield, 1,2/1,4 = 97:3 (the 1,2/1,4 refers to the ratio of 1,2- and 1,4-*anti*-Markovnikov hydrosilylation product), colorless oil. $R_f = 0.81$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ7.60 – 7.53 (m, 2H), 7.42 – 7.31 (m, 3H), 5.16 (tq, J = 7.1, 1.4 Hz, 1H), 5.10 (dtd, J = 6.7, 5.2, 4.1, 2.6 Hz, 1H), 4.29 (t, J = 3.7 Hz, 2H), 2.15 (q, J = 7.5 Hz, 2H), 2.09 – 2.00 (m, 2H), 1.99 – 1.92 (m, 2H), 1.68 (s, 3H), 1.60 (s, 3H), 1.56 (s, 3H), 1.05 – 0.96 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 135.2 (2C), 134.7 (1C), 132.7 (1C), 131.3 (1C), 129.5 (1C), 128.0 (2C), 126.1 (1C), 124.4 (1C), 39.7 (1C), 26.7 (1C), 25.7 (1C), 23.2 (1C), 17.7 (1C), 16.0 (1C), 10.5 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₇H₂₆Si]⁺: 258.1804, found: 258.1793.

((3E,5E)-4-methyl-6-(2,6,6-trimethylcyclohex-1-en-1-yl)hexa-3,5-dien-1-

yl)(phenyl)silane (3va)

Serial number: llj-1-19, 182.0 mg, 80% yield, 1,2/1,4 > 98:2 (the 1,2/1,4 refers to the ratio of 1,2- and 1,4-*anti*-Markovnikov hydrosilylation product), colorless oil. $R_f = 0.44$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ7.60 – 7.53 (m, 2H), 7.43 – 7.31 (m, 3H), 5.97 (s, 2H), 5.43 (td,

J = 7.3, 1.4 Hz, 1H), 4.31 (t, *J* = 3.7 Hz, 2H), 2.30 (q, *J* = 7.6 Hz, 2H), 1.99 (t, *J* = 6.3 Hz, 2H), 1.74 (s, 3H), 1.68 (s, 3H), 1.64 – 1.57 (m, 2H), 1.48 – 1.43 (m, 2H), 1.11 – 1.02 (m, 2H), 1.00 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 137.9 (1C), 137.8 (1C), 135.3 (2C), 133.6 (1C), 132.6 (1C), 132.4 (1C), 129.6 (1C), 128.3 (1C), 128.0 (2C), 124.5 (1C), 39.6 (1C), 34.2 (1C), 32.9 (1C), 28.9 (2C), 23.6 (1C), 21.7 (1C), 19.3 (1C), 12.3 (1C), 10.4 (1C).
 <u>HRMS (EI)</u> calculated for [M, C₂₂H₃₂Si]⁺: 324.2273, found: 324.2266.

(S)-phenyl(2-(4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)ethyl)silane (3wa)¹³

Serial number: sw-3-10, 170.0 mg, 95% yield, 1,2/1,4 > 98:2 (the 1,2/1,4 refers to the ratio of 1,2- and 1,4-*anti*-Markovnikov hydrosilylation product), colorless oil. $R_f = 0.78$ (PE).

- <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.61 7.51 (m, 2H), 7.43 7.30 (m, 3H), 5.43 (s, 1H), 4.74 4.65 (m, 2H), 4.28 (t, J = 3.6 Hz, 2H), 2.13 1.75 (m, 8H), 1.72 (s, 3H), 1.47 1.33 (m, 1H), 1.12 1.01 (m, 2H).
- ¹³C NMR (101 MHz, CDCl₃) δ 150.3 (1C), 138.6 (1C), 135.2 (2C), 132.6 (1C), 129.5 (1C), 128.0 (2C), 120.0 (1C), 108.4 (1C), 41.2 (1C), 32.7 (1C), 30.7 (1C), 28.6 (1C), 27.8 (1C), 20.8 (1C), 8.2 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₇H₂₄Si]⁺: 256.1647, found: 256.1653.

(2-(cyclohept-1-en-1-yl)ethyl)(phenyl)silane (3xa)¹³

SiH₂Ph

Serial number: sw-4-60, 156.1 mg, 97% yield, 1,2/1,4 = 96:4 (the 1,2/1,4 refers to the ratio of 1,2- and 1,4-*anti*-Markovnikov hydrosilylation product), colorless oil. *R_f*= 0.68 (PE).
<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.63 – 7.50 (m, 2H), 7.44 – 7.31 (m, 3H), 5.55 (t, *J* = 6.5 Hz, 1H), 4.28 (t, *J* = 3.7 Hz, 2H), 2.14 – 2.01 (m, 6H), 1.71 (p, *J* = 5.9 Hz, 2H), 1.50 – 1.40 (m, 4H), 1.09 – 0.98 (m, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 145.9 (1C), 135.2 (2C), 132.7 (1C), 129.5 (1C), 127.9 (2C),

<u>C NMR</u> (101 MHz, CDCl₃) 8 145.9 (1C), 155.2 (2C), 152.7 (1C), 129.5 (1C), 127.9 (2C), 125.1 (1C), 35.2 (1C), 32.6 (2C), 28.2 (1C), 27.3 (1C), 26.9 (1C), 8.6 (1C).

phenethyl(phenyl)silane (8aa)¹⁴

Serial number: lmp-1-109, 147 mg, 99% yield, colorless oil. $R_f = 0.64$ (PE).

 1 <u>H NMR</u> (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.43 – 7.31 (m, 3H), 7.30 – 7.23 (m, 2H),

7.22 – 7.13 (m, 3H), 4.32 (t, *J* = 3.6 Hz, 2H), 2.80 – 2.72 (m, 2H), 1.33 – 1.25 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 143.9 (1C), 135.2 (2C), 132.1 (1C), 129.6 (1C), 128.3 (2C), 128.0 (2C), 127.9 (2C), 125.8 (1C), 31.1 (1C), 12.1 (1C).

(3-methylphenethyl)(phenyl)silane (8ba)³

```
Me_____SiH<sub>2</sub>Ph
```

Serial number: sw-3-183, 150.0 mg, 95% yield, colorless oil. $R_f = 0.32$ (PE).

 1 <u>H NMR</u> (400 MHz, CDCl₃) δ 7.60 – 7.52 (m, 2H), 7.44 – 7.31 (m, 3H), 7.21 – 7.12 (m, 1H),

7.02 – 6.95 (m, 3H), 4.31 (t, J = 3.6 Hz, 2H), 2.77 – 2.68 (m, 2H), 2.31 (s, 3H), 1.33

– 1.24 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 143.9 (1C), 137.9 (1C), 135.2 (2C), 132.2 (1C), 129.6 (1C), 128.7 (1C), 128.2 (1C), 128.0 (2C), 126.5 (1C), 124.9 (1C), 31.0 (1C), 21.4 (1C), 12.1 (1C).

(4-fluorophenethyl)(phenyl)silane (8ca)¹⁴

F SiH₂Ph

Serial number: lmp-2-99, 159 mg, 99% yield, colorless oil. $R_f = 0.75$ (PE)

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.60 – 7.51 (m, 2H), 7.44 – 7.31 (m, 3H), 7.16 – 7.06 (m, 2H),
7.00 – 6.89 (m, 2H), 4.30 (t, J = 3.6 Hz, 2H), 2.78 – 2.68 (m, 2H), 1.32 – 1.22 (m, 2H).

 $\frac{^{13}\text{C NMR}}{^{12}\text{C NMR}} (101 \text{ MHz, CDCl}_3) \delta 161.2 (J = 242.4 \text{ Hz, 1C}), 139.5 (1C), 135.2 (2C), 132.0 (1C), 129.7 (1C), 129.2 (2C), 128.0 (2C), 115.1 (1C), 114.9 (1C), 30.3 (1C), 12.3 (1C).$

(4-methoxyphenethyl)(phenyl)silane(8da)¹⁴

MeO SiH₂Ph

Serial number: lmp-4-87, 163.0 mg, 96% yield, colorless oil. *R_f*= 0.61 (PE/EA = 20:1, *ν/ν*). <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.59 – 7.54 (m, 2H), 7.41 – 7.33 (m, 3H), 7.13 – 7.08 (m, 2H), 6.84 – 6.79 (m, 2H), 4.30 (t, *J* = 3.6 Hz, 2H), 3.79 (s, 3H), 2.75 – 2.68 (m, 2H), 1.31 – 1.23 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.7 (1C), 136.0 (1C), 135.2 (2C), 132.2 (1C), 129.6 (1C),
 128.8 (2C), 128.0 (2C), 113.7 (2C), 55.2 (1C), 30.2 (1C), 12.3 (1C).

(4-(*tert*-butyl)phenethyl)(phenyl)silane (8ea)¹⁵

SiH₂Ph

Serial number: sw-3-175, 178.6 mg, 95% yield, colorless oil. $R_f = 0.45$ (PE).
<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 2H), 7.42 – 7.32 (m, 3H), 7.32 – 7.27 (m, 2H),
7.15 – 7.09 (m, 2H), 4.32 (t, J = 3.6 Hz, 2H), 2.78 – 2.69 (m, 2H), 1.33 – 1.26 (m, 11H).

¹³C NMR (101 MHz, CDCl₃) δ 148.6 (1C), 141.0 (1C), 135.3 (2C), 132.3 (1C), 129.7 (1C), 128.1 (2C), 127.6 (2C), 125.3 (2C), 34.4 (1C), 31.5 (3C), 30.6 (1C), 12.0 (1C).

(2-([1,1'-biphenyl]-4-yl)ethyl)(phenyl)silane (8fa)

SiH₂Ph

Serial number: sw-3-176, 194.2 mg, 96% yield, colorless oil. $R_f = 0.50$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ7.62 – 7.54 (m, 4H), 7.53 – 7.47 (m, 2H), 7.46 – 7.29 (m, 6H),
7.28 – 7.23 (m, 2H), 4.35 (t, J = 3.6 Hz, 2H), 2.87 – 2.74 (m, 2H), 1.39 – 1.29(m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 143.2 (1C), 141.2 (1C), 138.9 (1C), 135.3 (2C), 132.2 (1C),
 129.7 (1C), 128.8 (2C), 128.4 (2C), 128.1 (2C), 127.2 (2C), 127.1 (3C), 30.8 (1C),
 12.2 (1C).

<u>HRMS (EI)</u> calculated for [M, C₂₀H₂₀Si]⁺: 288.1334, found: 288.1329.

phenyl(6-phenylhexyl)silane (8ga)

Ph SiH₂Ph

Serial number: lmp-4-68, 176.3 mg, 94% yield, colorless oil. $R_f = 0.41$ (PE).

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 2H), 7.42 – 7.32 (m, 3H), 7.30 – 7.24 (m, 2H),
 7.17 (m, 3H), 4.28 (t, J = 3.7 Hz, 2H), 2.63 – 2.54 (m, 2H), 1.65 – 1.55 (m, 2H), 1.51 – 1.28 (m, 6H), 0.97 – 0.88 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 142.8 (1C), 135.2 (2C), 132.7 (1C), 129.5 (1C), 128.4 (2C),
 128.2 (2C), 127.9 (2C), 125.5 (1C), 35.9 (1C), 32.6 (1C), 31.3 (1C), 28.9 (1C),
 25.0 (1C), 10.0 (1C).

<u>HRMS (EI)</u> calculated for [M, C₁₈H₂₄Si]⁺: 268.1647, found: 268.1642.

(6-chlorohexyl)(phenyl)silane (8ha)³

CI SiH₂Ph

Serial number: lmp-4-6, 133.3 mg, 84% yield, colorless oil. $R_f = 0.72$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.62 – 7.52 (m, 2H), 7.43 – 7.33 (m, 3H), 4.29 (t, J = 3.7 Hz, 2H), 3.52 (t, J = 6.7 Hz, 2H), 1.75 (p, J = 6.7 Hz, 2H), 1.53 – 1.34 (m, 6H), 0.98 – 0.91 (m, 2H).
 ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 135.2 (2C), 132.6 (1C), 129.5 (1C), 127.9 (2C), 45.1 (1C),

32.5 (1C), 32.0 (1C), 26.5 (1C), 24.9 (1C), 9.9 (1C).

1-(6-(phenylsilyl)hexyl)piperidine (8ia)

SiH₂Ph

Serial number: lmp-4-1, 162.0 mg, 84% yield, colorless oil. $R_f = 0.15$ (PE/EA = 1:1, v/v).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 2H), 7.41 – 7.31 (m, 3H), 4.27 (t, J = 3.7 Hz, 2H), 2.34 (br, 4H), 2.28 – 2.21 (m, 2H), 1.58 (p, J = 5.7 Hz, 4H), 1.50 – 1.34 (m, 8H), 1.30 – 1.23 (m, 2H), 0.96 – 0.89 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 135.1 (2C), 132.6 (1C), 129.4 (1C), 127.9 (2C), 59.6 (1C),
 54.6 (2C), 32.7 (1C), 27.3 (1C), 26.8 (1C), 26.0 (2C), 24.9 (1C), 24.5 (1C), 9.9 (1C).

<u>HRMS (EI)</u> calcd for [M, C₁₇H₂₉NSi]⁺: 275.2069, found: 275.2063.

4-(6-(phenylsilyl)hexyl)morpholine (8ja)³

Serial number: lmp-4-22, 169 mg, 87% yield, yellow oil. $R_f = 0.33$ (PE/EA = 1:1, v/v)

 1 <u>H NMR</u> (400 MHz, CDCl₃) δ 7.63 – 7.50 (m, 2H), 7.42 – 7.32 (m, 3H), 4.28 (t, *J* = 3.7 Hz,

2H), 3.71 (t, *J* = 4.7 Hz, 4H), 2.48 – 2.26 (m, 6H), 1.50 – 1.24 (m, 8H), 0.99 – 0.87

(m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 135.2 (2C), 132.7 (1C), 129.5 (1C), 127.9 (2C), 67.0 (2C), 59.2 (1C), 53.8 (2C), 32.7 (1C), 27.1 (1C), 26.4 (1C), 25.0 (1C), 9.9 (1C).

N,N-dimethyl-3-(phenylsilyl)propan-1-amine (8ka)¹⁶

 Me_2N SiH₂Ph

Serial number: sw-4-80, 108.1 mg, 80% yield, colorless oil. The reaction mixture was directly desolvated by vacuum under reduced pressure, and the resulting crude product was distilled under reduced pressure using a high vacuum pump, and the fraction was collected as the pure product.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 2H), 7.42 – 7.31 (m, 3H), 4.31 (t, J = 3.7 Hz, 2H), 2.31 – 2.25 (m, 2H), 2.19 (s, 6H), 1.67 – 1.57 (m, 2H), 0.98 – 0.91 (m, 2H).
 ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 135.1 (2C), 133.0 (1C), 129.4 (1C), 127.9 (2C), 62.2 (1C), 45.4 (2C), 23.2 (1C), 7.8 (1C).

(2-phenoxyethyl)(phenyl)silane (8la)

Serial number: sw-4-55, 153.2 mg, 96% yield, colorless oil. $R_f = 0.61$ (PE/EA = 20:1, v/v).

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.66 – 7.54 (m, 2H), 7.44 – 7.32 (m, 3H), 7.29 – 7.20 (m, 2H), 6.97 – 6.90 (m, 1H), 6.89 – 6.82 (m, 2H), 4.40 (t, *J* = 3.6 Hz, 2H), 4.13 (t, *J* = 7.7 Hz, 2H), 1.59 – 1.49 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.6 (1C), 135.3 (2C), 131.4 (1C), 129.8 (1C), 129.4 (2C),
 128.1 (2C), 120.7 (1C), 114.6 (2C), 65.1 (1C), 11.7 (1C).

<u>HRMS (EI)</u> calcd for [M, C₁₄H₁₆OSi]⁺: 228.0970, found: 228.0966.

(2-butoxyethyl)(phenyl)silane (8ma)

Me O SiH₂Ph

Serial number: lmp-3-144, 137.0 mg, 94% yield, colorless oil. Amount of EtMgBr, 5 mol%. R_f = 0.63 (PE/EA = 20:1, v/v).

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 2H), 7.42 – 7.32 (m, 3H), 4.31 (t, J = 3.6 Hz, 2H), 3.55 (t, J = 7.8 Hz, 2H), 3.39 (t, J = 6.6 Hz, 2H), 1.59 – 1.49 (m, 2H), 1.41 – 1.31 (m, 4H), 0.91 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 135.2 (2C), 132.0 (1C), 129.6 (1C), 128.0 (2C), 70.3 (1C), 67.7 (1C), 31.8 (1C), 19.4 (1C), 13.9 (1C), 12.1 (1C).

<u>HRMS (EI)</u> calcd for [M, C₁₂H₂₀OSi]⁺: 208.1283, found: 208.1288.

trimethyl(2-(phenylsilyl)ethyl)silane (8na)¹⁷

TMS SiH₂Ph

Serial number: sw-4-52, 136.8 mg, 94% yield, colorless oil. Complex C1d was used as the catalyst. $R_f = 0.76$ (PE).

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.43 – 7.32 (m, 3H), 4.31 (t, J = 3.6 Hz, 2H), 0.91 – 0.82 (m, 2H), 0.62 – 0.53 (m, 2H), -0.02 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 135.2 (2C), 132.9 (1C), 129.5 (1C), 127.9 (2C), 10.6 (1C),
 2.7 (1C), -2.1 (3C).

dimethyl(phenyl)(2-(phenylsilyl)ethyl)silane (80a)

Serial number: sw-3-180, 176.0 mg, 93% yield, colorless oil. $R_f = 0.45$ (PE).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.55 – 7.46 (m, 4H), 7.42 – 7.30 (m, 6H), 4.27 (t, *J* = 3.3 Hz, 2H), 0.89 – 0.77 (m, 4H), 0.26 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 139.0 (1C), 135.3 (2C), 133.7 (2C), 132.7 (1C), 129.6 (1C), 128.9 (1C), 128.0 (2C), 127.8 (2C), 9.8 (1C), 2.8 (1C), -3.5 (2C).

<u>HRMS (ESI)</u> calculated for [M-H, C₁₆H₂₁Si₂]⁻: 269.1187, found: 269.1176.

6. Gram-scale experiment and product transformations

6.1 Gram-scale experiment

In an argon-filled glovebox, a vial (125 mL) was charged with complexes C1d (14.2 mg, 0.02 mmol), dry anhydrous THF (20 mL), conjugated diene 1a (1.3 g, 10 mmol, 1.0 equiv) and phenylsilane 2a (1.2 g, 11 mmol, 1.1 equiv) successively. The vial was removed from the glovebox after EtMgBr (1 M in THF, 200 μ L, 0.2 mmol, 2.0 mol%) was added and the reaction mixture was stirred at room temperature for 12 h. When the reaction was finished, the mixture was concentrated by rotating evaporation. The residue was purified by column chromatography to afford the desired products 3aa as a colorless oil (2.3 g, 97% yield, >98:2 r.r.).

6.2 Synthesis of (E)-dimethoxy(phenyl)(4-phenylbut-3-en-1-yl)silane (9)³

Ph
$$SiH_2Ph$$
 $[RuCl_2(p-cymene)]_2 (0.5 mol\%)$ Ph $Si(OMe)_2Ph$
3aa 9
98% yield

To a Schlenk tube (15 mL) was charged with $[RuCl_2(p-cymene)]_2$ (1 mg, 0.0016 mmol), the tube was replaced with argon and anhydrous methanol (2 mL) was added throuth syringe. Then **3aa** (76.2 mg, 0.32 mmol) was added dropwise at 0 °C and stirred for 10 min. When the reaction was finished, the mixture was concentrated by rotating evaporation. The residue was purified by chromatography to afford the desired products **9** as a colorless oil (93.6 mg, 98% yield).

(*E*)-dimethoxy(phenyl)(4-phenylbut-3-en-1-yl)silane (9)

Ph Si(OMe)₂Ph

Serial number: sw-4-145, 93.6 mg, 98% yield, colorless oil. *R_f*= 0.5 (PE/EA = 20:1, *v*:*v*). <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.56 – 7.51 (m, 2H), 7.40 – 7.27 (m, 3H), 7.24 – 7.15 (m, 4H), 7.13 – 7.06 (m, 1H), 6.26 (d, *J* = 15.8 Hz, 1H), 6.15 (dt, *J* = 15.7, 6.4 Hz, 1H), 3.53 (s, 6H), 2.28 – 2.14 (m, 2H), 1.03 – 0.91 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 137.8 (1C), 134.3 (2C), 132.8 (1C), 130.2 (1C), 128.7 (1C), 128.4 (2C), 128.0 (2C), 126.7 (2C), 125.9 (2C), 50.7 (2C), 26.0 (1C), 12.0 (1C).
 <u>HRMS (EI)</u> calculated for [M, C₁₈H₂₂O₂Si]⁺: 298.1389, found: 298.1383.

6.3 Synthesis of (*E*)-difluoro(phenyl)(4-phenylbut-3-en-1-yl)silane (10)³

To a Schlenk tube (15 mL) was charged with CuI (2.9 mg, 0.015 mmol, 5 mol%), CuCl₂ (168.8 mg, 1.26 mmol, 4.2 equiv) and CsF (115.5 mg, 0.76 mmol, 2.5 equiv), the tube was replaced with argon and anhydrous THF (2 mL) was added. Then **3aa** (71.4 mg, 0.3 mmol) was added dropwise at room temperature and stirred for 18 h. When the reaction was finished, the mixture was concentrated by rotating evaporation. The resulting crude product was distilled under reduced pressure using a high vacuum pump, and the fraction was collected as **10** as a colorless oil (62.5 mg, 76% yield).

(E)-difluoro(phenyl)(4-phenylbut-3-en-1-yl)silane (10)

Ph SiF₂Ph

Serial number: sw-4-162, 62.5 mg, 76% yield, colorless oil.

- $\frac{^{1}\text{H NMR}}{^{7}\text{MR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.71 7.61 \text{ (m, 2H)}, 7.58 7.50 \text{ (m, 1H)}, 7.48 7.40 \text{ (m, 2H)}, 7.34 7.26 \text{ (m, 4H)}, 7.24 7.16 \text{ (m, 1H)}, 6.39 \text{ (d, } J = 16.1 \text{ Hz}, 1\text{H}), 6.22 \text{ (dt, } J = 15.6, 6.6 \text{ Hz}, 1\text{H}), 2.50 2.37 \text{ (m, 2H)}, 1.30 1.22 \text{ (m, 2H)}.$
- $\frac{^{13}\text{C NMR}}{^{12}\text{MR}} (101 \text{ MHz, CDCl}_3) \delta 137.4 (1C), 133.7 (1C), 131.9 (1C), 130.9 (1C), 129.9 (1C), 129.0 (J = 20.2 \text{ Hz}, 1C), 128.5 (2C), 128.3 (2C), 127.1 (2C), 126.0 (2C), 24.9 (1C), 12.0 (J = 20.2 \text{ Hz}, 1C).$

<u>HRMS (EI)</u> calculated for [M, C₁₆H₁₆F₂Si]⁺: 274.0989, found: 274.0985.

6.4 Synthesis of (*E*)-4-phenylbut-3-en-1-ol $(11)^3$

To a solution of **3aa** (71.4 mg, 0.3 mmol, 1.0 equiv) in MeOH and THF (3 mL, MeOH/THF = 1:1, v/v), K₂CO₃ (207 mg, 1.5 mmol, 5.0 equiv) and hydrogen peroxide (0.18 mL, 5 equiv, 30% aqueous solution) were added insequencely. Then the mixture was stirred at 50°C. After 8 h, the mixture was etracted with EtOAc and then the organic layer was separated and washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography to afford the desired products **11** as a colorless oil (42.5 mg, 96% yield).

(*E*)-4-phenylbut-3-en-1-ol (11)

Ph

Serial number: sw-4-131, 42.5 mg, 96% yield, colorless oil. $R_f = 0.35$ (PE/EA = 5:1, v:v).

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}}$ (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 4H), 7.25 – 7.18 (m, 1H), 6.50 (d, *J* = 15.8 Hz, 1H), 6.21 (dt, *J* = 15.8, 7.1 Hz, 1H), 3.76 (t, *J* = 6.3 Hz, 2H), 2.54 – 2.43 (m, 2H), 1.64 – 1.54 (br, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 137.2 (1C), 132.8 (1C), 128.5 (2C), 127.2 (1C), 126.3 (1C), 126.1 (2C), 62.0 (1C), 36.4 (1C).

6.5 Synthesis of phenyl((*E*)-4-phenylbut-3-en-1-yl)((*E*)-styryl)silane (12)¹⁸

In an argon-filled glovebox, a vial (10 ml) was charged with $CoBr_2$ (1.3 mg, 0.006 mmol, 2 mol%), Xantphos (3.8 mg, 0.0066 mmol, 2.2 mol%) and anhydrous THF (2 mL), the mixture was stirred at room temperature for 2 h. Then **3aa** (71.4 mg, 0.3 mmol, 1.0 equiv) and phenylacetylene (30.6 mg, 0.3 mmol, 1.0 equiv) were added. The vial was removed from the glovebox after NaBHEt₃ (1 M in THF, 18 μ L, 0.018 mmol, 6.0 mol%) was added and the

reaction mixture was stirred at room temperature for 3 h. When the reaction was finished, the mixture was concentrated by rotating evaporation. The residue was purified by chromatography to afford the desired products **12** as a colorless oil (86.3 mg, 85% yield, 96:4 r.r.).

phenyl((E)-4-phenylbut-3-en-1-yl)((E)-styryl)silane (12)

Serial number: sw-4-170, 86.3 mg, 85% yield, 96:4 r.r., colorless oil. $R_f = 0.54$ (PE).

- ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.65 7.57 (m, 2H), 7.44 7.25 (m, 12H), 7.21 7.16 (m, 1H), 7.08 (d, *J* = 19.1 Hz, 1H), 6.56 (dd, *J* = 19.1, 3.4 Hz, 1H), 6.37 (d, *J* = 15.9 Hz, 1H), 6.28 (dt, *J* = 15.8, 6.3 Hz, 1H), 4.70 (q, *J* = 3.5 Hz, 1H), 2.39 (dt, *J* = 9.7, 6.5 Hz, 2H), 1.26 – 1.19 (m, 2H).
- ¹³C NMR (101 MHz, CDCl₃) δ 147.9 (1C), 137.9 (1C), 137.7 (1C), 134.9 (2C), 134.4 (1C),
 132.7 (1C), 129.6 (1C), 129.0 (1C), 128.6 (2C), 128.4 (3C), 128.0 (2C), 126.8 (1C),
 126.6 (2C), 125.9 (2C), 122.3 (1C), 27.8 (1C), 12.1 (1C).

<u>HRMS (EI)</u> calculated for [M, C₂₄H₂₄Si]⁺: 340.1647, found: 340.1640.

6.6 Synthesis of polyorganosiloxane 13

In an argon-filled glovebox, a Schlenk tube (25 mL) was charged with 1,4cyclohexanediol (116 mg, 1 mmol, 1 equiv), $B(C_6F_5)_3$ (2.6 mg, 0.005 mmol, 0.5 mol%), anhydrous toluene (3 mL) and **3aa** (238 mg, 1 mmol, 1.0 equiv) successively. The tube was removed from the glovebox, connected to an argon filled balloon and stirred at room temperature for 48 h. When the reaction was finished, the mixture was concentrated by rotating evaporation. The residue was dissolved in THF (1 mL), which was added dropwise to hexane (50 mL). The emulsion formed was centrifuged, and the residue obtained after removing the supernatant was re-precipitated and centrifuged twice more according to the above method. The final residue was collected and dried under vacuum as the target product **13** as solid-liquid mixtures (213.5 mg, 61% yield). The M_n and M_w/M_n values were determined by GPC with THF solvent and polystyrene standards, M_n = 5551, M_w/M_n = 1.4.

Serial number: sw-5-19B, 213.5 mg, 61% yield, solid-liquid mixtures.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.6 - 77.53 (m, 2H), 7.43 - 7.29 (m, 3H), 7.28 - 7.18 (m, 4H),
 7.17 - 7.09 (m, 1H), 6.40 - 6.06 (m, 2H), 3.97 - 3.68 (m, 2H), 2.35 - 2.15 (m, 2H),
 1.99 - 1.73 (m, 4H), 1.46 - 1.30 (m, 4H), 1.07 - 0.92 (m, 2H).

Scheme S1 GPC Spectra of Polymer13

6.7 Synthesis of polyorganosiloxane 14¹⁹

In an argon-filled glovebox, a vial (10 mL) was charged with [Co] (11.5 mg, 0.025 mmol, 5 mol%), anhydrous toluene (3 mL), **3aa** (119 mg, 0.5 mmol) and terephthalaldehyde (67 mg, 0.5 mmol, 1.0 equiv) successively. The vial was removed from the glovebox after NaBEt₃H (1.0 M in THF, 75 μ L, 0.075 mmol, 15 mol%) was added and stirred at room temperature for 48 h. When the reaction was finished, the mixture was concentrated by rotating evaporation. The residue was dissolved in THF (1 mL), which was added dropwise to hexane (50 mL). The emulsion formed was centrifuged, and the residue obtained after removing the supernatant was re-precipitated and centrifuged twice more according to the above method. The final residue was collected and dried under vacuum as the target product **14** as brown viscous liquid (91.2 mg, 49% yield). The M_n and M_w/M_n values were determined by GPC with THF solvent and polystyrene standards, M_n = 5197, M_w/M_n = 1.7.

Serial number: sw-4-190, 91.2 mg, 49% yield, brown viscous liquid. <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.73 – 7.19 (m, 14H), 6.50-5.95 (m, 2H), 5.00 – 4.55 (m, 4H), 2.50 – 2.00 (m, 2H), 1.22 – 0.98 (m, 2H).

Scheme S2 GPC Spectra of Polymer 14

7. Mechanistic studies

7.1 Hydrosilylation of an *E*/*Z* mixture of 1,3-diene 1a'

In an argon-filled glovebox, a vial (10 mL) was charged with complexes C1d (3.6 mg, 0.005 mmol), dry anhydrous THF (1 mL), 1,3-dienes 1a' (65 mg, 0.5 mmol, E/Z = 38:62) and silanes 2a (59.4 mg, 0.55 mmol, 1.1 equiv) successively. The reaction mixture was stirred at room temperature for 2 h after EtMgBr (1 M in THF, 10 µL, 0.01 mmol, 2.0 mol%) was added. The vial was removed from the glovebox and the reaction mixture was concentrated by rotating evaporation. The residue was purified by column chromatography to afford the products 3aa' as a colorless oil (117 mg, 98% yield, >98:2 r.r., E/Z = 38:62).

(*E*)-phenyl(4-phenylbut-3-en-1-yl)silane (*E*-3aa)¹²

Ph SiH₂Ph

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (400 \text{ MHz, CDCl}_{3}) \delta 7.62 - 7.56 \text{ (m, 2H)}, 7.44 - 7.15 \text{ (m, 8H)}, 6.43 - 6.33 \text{ (m, 1H)}, 6.25 \text{ (dt, } J = 15.6, 6.5 \text{ Hz}, 1\text{H}), 4.34 \text{ (t, } J = 3.3 \text{ Hz}, 2\text{H}), 2.37 \text{ (q, } J = 7.4 \text{ Hz}, 2\text{H}), 1.19 - 1.03 \text{ (m, 2H)}.$

(Z)-phenyl(4-phenylbut-3-en-1-yl)silane (Z-3aa)²⁰

Ph

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.56 – 7.49 (m, 2H), 7.44 – 7.15 (m, 8H), 6.43 – 6.33 (m, 1H),
5.70 (dt, J = 11.5, 7.3 Hz, 1H), 4.31 (q, J = 3.3 Hz, 2H), 2.48 (q, J = 7.7 Hz, 2H),
1.19 – 1.03 (m, 2H).

7.2 Deuterium labelling experiments

In an argon-filled glovebox, a vial (10 mL) was charged with complexes C1d (1.42 mg, 0.002 mmol), dry anhydrous THF (1 mL), 1i (72 mg, 0.4 mmol, 2 equiv) and silane 2e-*d* (33.4 mg, 0.20 mmol) successively. The reaction mixture was stirred at room temperature for 2 h after EtMgBr (1 M in THF, 4 μ L, 0.004 mmol, 2.0 mol%) was added. The vial was removed from the glovebox and the reaction mixture was concentrated by rotating evaporation. The residue was purified by column chromatography to afford the products **3ie**-*d* (65.8 mg, 95% yield, >98:2 r.r.) and **1i**-*d* (35.3 mg, 98% recovery). The ²H NMR spectroscopy was measured with CDCl₃ as an internal standard, and the 1,3,5-trimethoxybenzene was used as an internal standard to determine the ratio of product and CDCl₃ by ¹H NMR.

3ie-d, 65.8 mg, 95% yield, >98:2 r.r., colorless oil, R_f= 0.22 (PE).
¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.79 – 7.70 (m, 3H), 7.64 (s, 1H), 7.57 – 7.49 (m, 3H), 7.47 – 7.35 (m, 4H), 6.53 (d, J = 15.7 Hz, 1H), 6.37 (dt, J = 15.7, 6.3 Hz, 1H), 4.35 (q, J = 3.8 Hz, 0.36 H), 2.47 – 2.36 (m, 0.95 H), 1.32 (s, 9H), 1.14 (d, J = 8.0 Hz, 2H).
¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 152.8 (1C), 135.3 (2C), 135.2 (1C), 133.7 (1C), 132.8 (1C), 132.7 (1C), 129.4 (1C), 128.6 (1C), 128.1 (1C), 127.9 (1C), 127.7 (1C), 126.2 (1C), 125.5 (2C), 125.1 (2C), 123.6 (1C), 34.8 (1C), 31.3 (3C), 28.3 (1C), 9.9 (1C).

The ²H NMR analysis is well consistent with the ¹H NMR analysis. See followed spectrum:

Figure S1. ²H NMR of the product **3ie-***d*. CDCl₃ (1.20 equiv) was used as an internal standard.

1i-d, 35.3 mg, 0.2 mmol, white solid.

```
<sup>1</sup><u>H NMR</u> (400 MHz, CDCl<sub>3</sub>) δ 7.82 – 7.71 (m, 4H), 7.65 – 7.58 (m, 1H), 7.48 – 7.38 (m, 2H),
6.96 – 6.86 (m, 1H), 6.72 (d, J = 15.6 Hz, 1H), 6.56 (dt, J = 16.9, 10.2 Hz, 0.77 H),
5.38 (dd, J = 16.8, 1.4 Hz, 1H), 5.20 (dd, J = 9.9, 1.5 Hz, 1H).
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 137.3 (1C), 134.6 (1C), 133.7 (1C), 133.0 (1C), 132.9 (1C)
```

130.0 (1C), 128.3 (1C), 128.0 (1C), 127.7 (1C), 126.6 (1C), 126.3 (1C), 125.9 (1C), 123.5 (1C), 117.8 (1C).

The ²H NMR analysis is well consistent with the ¹H NMR analysis. See followed spectrum:

7.3 Mixture silanes experiment

In an argon-filled glovebox, a vial (10 mL) was charged with complexes C1d (2.8 mg, 0.004 mmol), dry anhydrous THF (1 mL), conjugated diene 1a (57.2 mg, 0.44 mmol, 2.2 equiv), silanes 2e-*d* (33.4 mg, 0.2 mmol, 1.0 equiv) and 2d (27.6 mg, 0.2 mmol, 1 equiv) successively. The reaction mixture was stirred at room temperature for 5 min after EtMgBr (1 M in THF, 8 μ L, 0.004 mmol, 2.0 mol%) was added. The vial was removed from the glovebox and quenched with 2 drops water, the reaction mixture was concentrated by rotating evaporation. The residue was purified by column chromatography to afford the products **3ae-***d* (20 mg, 17% yield, >98:2 r.r.) and **3ad-***d* (14 mg, 13% yield, >98:2 r.r.). The ²H NMR spectroscopy was measured with CDCl₃ as an internal standard, and the 1,3,5-trimethoxybenzene was used as an internal standard to determine the ratio of product and CDCl₃ by ¹H NMR.

3ae-*d*, 20 mg, 17% yield, >98:2 r.r., colorless oil.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.43 – 7.37 (m, 2H), 7.33 – 7.26 (m, 4H), 7.22 – 7.16 (m, 1H), 6.38 (d, *J* = 16.4, 1H), 6.24 (dd, *J* = 15.8, 6.4 Hz, 1H), 4.32 (q, *J* = 3.8 Hz, 0.24 H), 2.42 – 2.31 (m, 0.98 H), 1.32 (s, 9H), 1.11 (d, *J* = 8.0 Hz, 2H). ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 152.7 (1C), 137.7 (1C), 135.2 (2C), 132.3 (1C), 129.2 (1C), 128.6 (1C), 128.4 (2C), 126.8 (1C), 126.0 (2C), 125.0 (2C), 34.7 (1C), 31.2 (3C), 28.1 (1C), 9.8 (1C). The ²H NMR analysis is well consistent with the ¹H NMR analysis. See followed spectrum:

Figure S3. ²H NMR of the product **3ae-***d*. CDCl₃ (2.22 equiv) was used as an internal standard.

3ad-d, 14 mg, 13% yield, >98:2 r.r., colorless oil.
¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.53 – 7.47 (m, 2H), 7.33 – 7.27 (m, 4H), 7.22 – 7.15 (m, 1H), 6.95 – 6.88 (m, 2H), 6.37 (d, J = 15.8, 1H), 6.24 (dt, J = 15.7, 6.5 Hz, 1H), 4.32 (t, J = 3.6 Hz, 1.87 H), 3.82 (s, 3H), 2.40 – 2.31 (m, 1.94 H), 1.14 – 1.07 (m, 2H).
¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 160.9 (1C), 137.7 (1C), 136.7 (2C), 132.3 (1C), 129.2 (1C), 128.4 (2C), 126.8 (1C), 125.9 (2C), 122.8 (1C), 113.9 (2C), 55.0 (1C), 28.4 (1C), 10.2 (1C).

The ²H NMR analysis is well consistent with the ¹H NMR analysis. See followed spectrum:

Figure S4. ²H NMR of the product **3ad-***d*. CDCl₃ (4.69 equiv) was used as an internal standard

7.4 Parallel kinetic isotope effect experiment

In an argon-filled glovebox, a vial (10 mL) was charged with complexes C1d (1.4 mg, 0.002 mmol), dry anhydrous THF (1 mL), conjugated diene 1a (26.0 mg, 0.2 mmol), silane 2e (36.1 mg, 0.22 mmol, 1.1 equiv) or 2e-*d* (36.7 mg, 0.22 mmol, 1.1 equiv) successively. The reaction mixture was stirred at room temperature for 2 min after EtMgBr (1 M in THF, 5 μ L, 0.005 mmol, 2.5 mol%) was added. The vial was removed from the glovebox and quenched with 2 drops water. Iron species were removed by flash column chromatography with DCM as eluent. The raw product was detected by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. We repeated the experiments for four times, respectively. The average of *k*_H/*k*_D is 0.46. The results were listed as following.

entry	% yield (3ae)	% yield (3ae- <i>d</i>)
1	6.4	14.6
2	6.3	12.1
3	7.6	16.1
4	6.0	15.2
Average yield	6.6	14.5
$k_{ m H}/k_{ m D}$	0.46	

 Table S3 Parallel kinetic isotope effect experiments

8 NMR spectra of all products

2-chloro-9-mesityl-1,10-phenanthroline (2a)

2-chloro-9-(2,4,6-triisopropylphenyl)-1,10-phenanthroline (2b)

1-(9-(2,4,6-triisopropylphenyl)-1,10-phenanthrolin-2-yl)ethan-1-one (3b)

(E)-N-(2,6-dimethylphenyl)-1-(9-mesityl-1,10-phenanthrolin-2-yl)ethan-1-imine (L1a) -8.766 -8.745 -8.745 -8.245 -8.295 -8.268 -8.268 -8.268 -7.861 -7.833 -7.861 -7.833 -7.733 -7.833 -7.733 -7.833 -7.735 -7.735 -7.735 -7.735 -7.735 -6.635 -7.755 -7.7555 -7.7555 -7.7555 -7.7555 -7.7555 -7.7555 -7.7555 -7.7555 -

(*E*)-N-(2,6-dimethylphenyl)-1-(9-(2,4,6-triisopropylphenyl)-1,10-phenanthrolin-2-yl)ethan-1-imine (L1b)

(*E*)-N-(2,6-diethylphenyl)-1-(9-(2,4,6-triisopropylphenyl)-1,10-phenanthrolin-2-yl)ethan-1-imine (L1c)

(*E*)-N-(2,6-diisopropylphenyl)-1-(9-(2,4,6-triisopropylphenyl)-1,10-phenanthrolin-2-yl)ethan-1-imine (L1d)

(E)-N-(2,6-dibenzhydryl-4-methoxyphenyl)-1-(9-(2,4,6-triisopropylphenyl)-1,10-

(E)-1-(9-(3,5-di-tert-butylphenyl)-1,10-phenanthrolin-2-yl)-N-(2,6-

(E)-phenyl(4-phenylbut-3-en-1-yl)silane (3aa)

7,596 7,592 7,582 7,573 7,573 7,573 7,573 7,573 7,582 7,583 7,583 7,583 7,583 7,583 7,583 7,583 7,583 7,583 7,583 7,586 7,382 7,732 7,382 7,732 7,382 7,732 7,382 7,732 7,382 7,732 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,382 7,773 7,773 7,273 7,773 7,273 7,773 7,273 7,773 7,273 7,773 7,273

(E)-(4-phenylbut-3-en-1-yl)(o-tolyl)silane (3ab)

(*E*)-(4-phenylbut-3-en-1-yl)(m-tolyl)silane (3ac) (*E*)-

(*E*)-(4-methoxyphenyl)(4-phenylbut-3-en-1-yl)silane (3ad) ²¹²² ²

(E)-(4-(tert-butyl)phenyl)(4-phenylbut-3-en-1-yl)silane (3ae)

(E)-(4-fluorophenyl)(4-phenylbut-3-en-1-yl)silane (3af)

(*E*)-(4-methylbenzyl)(4-phenylbut-3-en-1-yl)silane (3ah)

7,329 7,7326 7,7327 7,7327 7,7327 7,7327 7,7327 1,747 1,275 1,275 1,275 1,275 1,191 1,275 1,191 1,275 1,191 1,275 1,191 1,275 1,191 1,275 1,191 1,275 1,191 1,275 1,191 1,275 1,191 1,275 1,191 1,275 1,191 1,275 1,215

(E)-octyl(4-phenylbut-3-en-1-yl)silane (3ai)

(E)-phenyl(4-(o-tolyl)but-3-en-1-yl)silane (3ba)

7,602 7,7598

(E)-phenyl(4-(3-(trifluoromethyl)phenyl)but-3-en-1-yl)silane (3ca)

(E)-phenyl(4-(p-tolyl)but-3-en-1-yl)silane (3da)

7,592 7,575 7,575 7,575 7,575 7,575 7,575 7,575 7,575 7,539 7,539 7,539 7,537 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,335 7,337 7,337 7,337 7,335 7,337 7,337 7,335 7,337 7,335 7,337 7,335 7,337 7,337 7,335 7,337 7,337 7,335 7,337 7,337 7,335 7,337 7,337 7,335 7,337 7,335 7,337 7,335 7,337 7,335 7,335 7,337 7,3357 7,3357 7,3357 7,3357 7,3357 7,3357 7,3357 7,3357 7,3357 7,3

(E)-(4-(4-methoxyphenyl)but-3-en-1-yl)(phenyl)silane (3ea)

(E)-(4-(4-fluorophenyl)but-3-en-1-yl)(phenyl)silane (3ga)

7,558 7,7569 7,7574 7,7574 7,7569 7,7586 7,7586 7,7587 7,7375 7,7375 7,7375 7,7375 7,7375 7,7375 7,7375 7,7375 7,7375 7,7375 7,7375 7,7375 6,698 6,534 6,533 6,5356 6,5356 6,5356 6,5556 6,5556 6,5556 6,5556 6,5556 6,5556 6,5556 6,55566 6,555

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -31

(E)-(4-(naphthalen-2-yl)but-3-en-1-yl)(phenyl)silane (3ia)

7,7,77 7,7,77 7,7,75 7,7,56 1,

(*E*)-(4-(benzo[d][1,3]dioxol-5-yl)but-3-en-1-yl)(phenyl)silane (3ja) (*E*)-(4-(benzo[d][1,3]dioxol-5-yl)but-3-en-1-yl)(phenyl)silane (3ja) (*E*)-(2-(benzo[d][1,3]dioxol-5-yl)(but-3-en-1-yl)(phenyl)silane (3ja) (*E*)-(2-(benzo[d][1,3]dioxol-5-yl)(but-3-en-1-yl)(but-3-en-1-yl)(but-3-en-1-yl)(but-3-en-1-yl)(but-3-en

(*E*)-(4-(furan-2-yl)but-3-en-1-yl)(phenyl)silane (3ka) (*E*)-

SiH₂Ph

(E)-phenyl(4-phenylpent-3-en-1-yl)silane (3la)

(4,4-diphenylbut-3-en-1-yl)(phenyl)silane (3ma) (8,4-diphenylbut-3-en-1-yl)(phenyl)silane (3ma) (9,6-1) (10,0-1

(E)-(3-methyl-4-phenylbut-3-en-1-yl)(phenyl)silane (3na)

7,259 7,593 7,593 7,593 7,593 7,593 7,593 7,593 7,593 7,593 7,593 7,593 7,593 7,593 7,593 7,593 7,593 7,593 7,593 7,594 7,594 7,219 7,719

(E)-non-3-en-1-yl(phenyl)silane (3pa)

(E)-(4-cyclohexylbut-3-en-1-yl)(phenyl)silane (3qa)

(4-(*tert*-butyl)phenyl)(3-methylbut-3-en-1-yl)silane (3re)

(7-methyl-3-methyleneoct-6-en-1-yl)(phenyl)silane (3sa)

7,558 7,558 7,558 7,559 7,559 7,559 7,559 7,559 7,738 7,739 7,738 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749

(3-cyclohexylidenepropyl)(phenyl)silane (3ta)

7.579 7.5655 7.5655 7.5665 7.560 7.560 7.560 7.560 7.530 7.330 7.332 7.332 7.335 7.3377 7.335 7.3377 7.335 7.3377 7.3357 7.3377 7.3377 7.3377 7.33777 7.33777 7.337777 7.3377777777	<u>5.119</u> 5.101 5.083	4.300 4.294 4.284 4.275	2.181 2.162 2.142 2.1123 2.105 2.015 2.075 2.075 2.075 2.032 2.032 2.032	1.534 1.526 1.528 1.517 1.518 1.504 1.1.504 1.1.455 1.1.055 1.1.455 1.1.455 1.1.0555 1.1.0555 1.1.05555 1.1.05555555555
---	--------------------------------	----------------------------------	---	--

(2-(cyclohept-1-en-1-yl)ethyl)(phenyl)silane (3xa)

S104

(3-methylphenethyl)(phenyl)silane (8ba) 7,574 7,555 7,555 7,555 7,555 7,555 7,555 7,417 7,417 7,417 7,417 7,413 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,390 7,310 -4.324 -4.315 -4.306 2.749 2.735 2.721 2.721 2.721 2.721 2.721 2.721 2.314 1.321 1.321 1.321 1.307 1.307 1.307 1.302 1.209 1.209 1.2011 SiH₂Ph Me 2.00J 3.05J 1.08y 3.03y 1.95-2.20H 3.22H 2.45H 8.5 8.0 , 7.5 7.0 6.5 4.5 3.5 3.0 2.5 1.5 6.0 5.5 5.0 4.0 2.0 1.0 0.5 0.0 -0.5 143.9 137.9 135.2 135.2 135.2 135.2 128.7 128.7 128.2 128.0 128.0 128.0 128.0 — 31.0 - 21.4 — 12.1 SiH₂Ph Me

(4-fluorophenethyl)(phenyl)silane (8ca)

7,573 7,564 7,564 7,556 7,556 7,556 7,556 7,556 7,556 7,556 7,556 7,556 7,556 7,556 7,536 7,339 7,339 7,336 7,346 7,347 7,447

(4-methoxyphenethyl)(phenyl)silane (8da)

7.572 7.568 7.7.568 7.7.568 7.7.568 7.7.568 7.7.5378 7.7.5378 7.7.5378 7.7.3378 7.7.3378 7.7.3378 7.7.3378 7.7.3338 7.7.3338 7.7.3338 7.7.099

(4-(*tert*-butyl)phenethyl)(phenyl)silane (8ea)

(2-([1,1'-biphenyl]-4-yl)ethyl)(phenyl)silane (8fa) (2-([1,1'-biphenyl]-4-yl)ethyl)(

phenyl(6-phenylhexyl)silane (8ga)

1-(6-(phenylsilyl)hexyl)piperidine (8ia)

N,N-dimethyl-3-(phenylsilyl)propan-1-amine (8ka)

Me₂N SiH₂Ph

(2-phenoxyethyl)(phenyl)silane(8la)

trimethyl(2-(phenylsilyl)ethyl)silane (8na)

dimethyl(phenyl)(2-(phenylsilyl)ethyl)silane (80a)

7,545 7,557 7,557 7,557 7,557 7,551 7,551 7,551 7,551 7,551 7,551 7,551 7,551 7,551 7,551 7,551 7,558 7,748 7,748 7,748 7,748 7,748 7,735

(E)-dimethoxy(phenyl)(4-phenylbut-3-en-1-yl)silane (9)

7.575 7.575 7.556 7.556 7.556 7.556 7.358 7.338 7.338 7.338 7.335 7.3349 7.335 7.3349 7.335 7.3349 7.3349 7.335 7.3349 7.3349 7.335 7.3349 7.3349 7.335 7.3349 7.7308 6.287 7.710 7.710 7.7208 6.287 7.710 7.7208 6.287 7.7108 6.287 7.7108 6.287 7.7108 6.281 7.7108 6.281 7.7108 6.281 7.7108 6.281 7.7108 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.281 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.2217 7.7208 6.22217 7.7208 7.72008 7.7208 7.7208 7.7208 7.7208 7.72008 7.7208 7.7208 7.7

(*E*)-difluoro(phenyl)(4-phenylbut-3-en-1-yl)silane (10) (*E*)-difluoro(phenylbut-3-en-1-yl)silane (10) (*E*)-difluoro(p

, 70 . 50 . 40

phenyl((*E*)-4-phenylbut-3-en-1-yl)((*E*)-styryl)silane (12)

7,611 7,611 7,611 7,611 7,611 7,611 7,611 7,447 7,447 7,447 7,447 7,447 7,441 7,447 7,447 7,339 7,349 7,349 7,349 7,349 7,349 7,349 7,349 7,349 7,349 7,349 7,449 7,449 7,449 7,449 7,449

Phenyl(4-phenylbut-3-en-1-yl)silane (3aa')

7,596 7,577 7,577 7,573 7,579 7,579 7,574 7,574 7,525 7,525 7,528 7,528 7,339 7,336 7,236 7,247

9. References

- R. J. Maza, E. Davenport, N. Miralles, J. J. Carbo and E. Fernandez, *Org. Lett.*, 2019, 21, 2251.
- (2) N. T. Patil and V. Singh, Chem. Commun., 2011, 47, 11116.
- (3) M.-Y. Hu, Q. He, S.-J. Fan, Z.-C. Wang, L.-Y. Liu, Y.-J. Mu, Q. Peng and S.-F. Zhu, Nat. Commun., 2018, 9, 221.
- (4) T.-Q. Wang, Y.-Y. Hu and S.-L. Zhang, Org. Biomol. Chem., 2010, 8, 2312.
- (5) K. Clinch, C. J. Marquez, M. J. Parrott and R. Ramage, Tetrahedron, 1989, 45, 239.
- (6) L. T. Kliman, S. N. Mlynarski, G. E. Ferris and J. P. Morken, *Angew. Chem. Int. Ed.* 2012, 51, 521.
- (7) L.-H. Liao, R.-Z. Guo and X.-D. Zhao, Angew. Chem. Int. Ed., 2017, 56, 3201.
- (8) W. Herz and R. R. Juo, J. Org. Chem., 1985, 50, 618.
- (9) A. M. Schmidt and P. Eilbracht, J. Org. Chem., 2005, 70, 5528.
- (10) M. D. Visco, J. M. Wieting and A. E. Mattson, Org. Lett., 2016, 18, 2883.
- (11) M. Kuritani, S. Tashiro and M. Shionoya, Inorg. Chem., 2012, 51, 1508.
- (12) M. D. Greenhalgh, D. J. Frank and S. P. Thomas, Adv. Synth. Catal., 2014, 356, 584.
- (13) B. Raya, S. Jing, V. Balasanthiran and T. V. RajanBabu, ACS Catal., 2017, 7, 2275.
- (14) D.-J. Peng, Y.-L. Zhang, X.-Y. Du, L. Zhang, X.-B. Leng, M. D. Walter and Z. Huang, J. Am. Chem. Soc., 2013, 135, 19154.
- (15) A. J. Challinor, M. Calin, G. S. Nichol, N. B. Carter and S. P. Thomas, *Adv. Synth. Catal.*, 2016, **358**, 2404.
- (16) C. Chen, M. B. Hecht, A. Kavara, W. W. Brennessel, B. Q. Mercado, D. J. Weix and P. L. Holland, J. Am. Chem. Soc., 2015, 137, 13244.
- (17) P.-F. Fu, J. Mol. Catal. A-Chem., 2006, 243, 253.
- (18) C.-Z. Wu, W. J. Teo and S.-Z. Ge, ACS Catal., 2018, 8, 5896.
- (19) M.-Y. Hu, P. He, T.-Z. Qiao, W. Sun, W.-T. Li, J. Lian, J.-H. Li and S.-F. Zhu, J. Am. Chem. Soc., 2020, 142, 16894.
- (20) R. Y. Kong and M. R. Crimmin, J. Am. Chem. Soc., 2020, 142, 11967.