Iridium-Catalyzed Asymmetric *trans*-Selective Hydrogenation of 1,3-Disubstituted Isoquinolines

Alexia N. Kim, Aurapat Ngamnithiporn, Michael D. Bartberger, and Brian M. Stoltz*

Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 stoltz@caltech.edu

Table of Contents:

Materials and Methods SI	[2
List of Abbreviations SI	[3
Syntheses of Hydroxymethyl 1,3-Disubstituted Isoquinolines SI	[3
Syntheses of 1,3-Disubstituted Isoquinolines with Different Directing Groups	15
General Procedure for Hydrogenation Reactions SI	18
Experimental Procedure and Characterization Data for Product Transformations SI 2	28
Additional Optimization Results SI 2	29
Deuterium Experiments	30
Proposed Catalytic Cycle	32
Determination of Enantiomeric Excess	33
Crystal Structure Analysis of Product 5a (sample No.: V21097) SI 3	36
Determination of Relative and Absolute Configuration of 2a by VCDSI	44
References	46
NMR and IR Spectra of New Compounds SI 4	47
SFC Traces of Racemic and Enantioenriched Compounds	94

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon.¹ Reaction progress was monitored by thinlayer chromatography (TLC) or Agilent 1290 UHPLC-MS. TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, with KMnO₄ or *p*-anisaldehyde staining. Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40–63 μm) was used for flash chromatography. ¹H NMR spectra were recorded on Bruker 400 MHz or Varian Mercury 300 MHz spectrometers and are reported relative to residual CHCl₃ (§ 7.26 ppm). ¹³C NMR spectra were recorded on Bruker 400 MHz spectrometer (100 MHz) and are reported relative to CHCl₃ (δ 77.16 ppm). ¹⁹F NMR spectra were recorded on Varian Mercury 300 MHz spectrometer (282 MHz). Data for ¹H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet, app = apparent. Data for ${}^{13}C$ NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained using Perkin Elmer Spectrum BXII spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm⁻¹). Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are reported as: $[\alpha]_D^T$ (concentration in 10 mg/1 mL, solvent). Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. High resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source, or an Agilent 6230 TOF, in electrospray ionization (ESI+).

A crystal was mounted on a polyimide MiTeGen loop with STP Oil Treatment and placed under a nitrogen stream. Low temperature (100K) X-ray data (ϕ -and ω -scans) were collected with a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON II CPAD detector with Cu K_{α} radiation ($\lambda = 1.54178$ Å) from an I μ S micro-source for the structure of compound V21097. The structure was solved by direct methods using SHELXS² and refined against F^2 on all data by full-matrix least squares with SHELXL-2017³ using established refinement techniques.⁴ All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were placed in idealized positions and the coordinates refined (each of the two disordered pairs were constrained to the same position). The isotropic displacement parameters of all hydrogen atoms were fixed at 1.2 times (1.5 times for methyl groups and alcohol) the U_{eq} value of the bonded atom.

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa Aesar and used as received unless otherwise stated.

List of Abbreviations:

ee – enantiomeric excess, SFC – supercritical fluid chromatography, TLC – thin-layer chromatography, IPA – isopropanol, LiHMDS – lithium bis(trimethylsilyl)amide, dba – dibenzylideneacetone, RBF – round-bottom flask, TFA – trifluoroacetic acid, TBAI – tetrabutylammonium iodide, TBABr – tetrabutylammonium bromide, TBACl – tetrabutylammonium chloride, Boc₂O – di-*tert*-butyl dicarbonate, HPLC – high-performance liquid chromatography, DMAP – 4-dimethylaminopyridine, THF – tetrahydrofuran, BnBr – benzyl bromide, CDI – 1,1'-carbonyldiimidazole

Syntheses of Hydroxymethyl 1,3-Disubstituted Isoquinolines

General sequence:

General procedure 1: Enolate alkylation of aryl bromide

tert-butyl 2-(2-(2-methyl-1,3-dioxolan-2-yl)phenyl)acetate (S2a): To a Schlenk flask were added $P(t-Bu)_3$ •HBF₄ (1.4 g, 4.8 mmol, 0.1 equiv), $Pd_2(dba)_3$ (2.2 g, 2.4 mmol, 0.05 equiv), a solution of 2-(2-bromophenyl)-2-methyl-1,3-dioxolane (S1a) (12 g, 48 mmol, 0.42 M in toluene), and *tert*-butyl acetate (11 g, 97 mmol, 2 equiv), respectively. The reaction mixture was cooled to -78 °C and sparged with N_2 for 15 min. A degassed solution of LiHMDS (20 g, 121

mmol, 1 M in toluene) was then added via syringe. The reaction mixture was sparged with N₂ for an additional 15 minutes at -78 °C, and allowed to slowly warm to room temperature. The reaction mixture was stirred at 23 °C for 18 h, and then quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with Et₂O twice (2 x 100 mL). The combined organic phases were dried over MgSO₄, filtered, and the solvent was removed in vacuo. The crude product was purified by silica gel flash chromatography (5% EtOAc in hexanes) to afford **S2a** as a yellow oil (12.4 g, 44.5 mmol, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.45 (m, 1H), 7.20 – 7.06 (m, 3H), 3.96 – 3.83 (m, 2H), 3.71 (s, 2H), 3.68 – 3.55 (m, 2H), 1.60 (s, 3H), 1.39 (s, 9H); All characterization data match those reported in the literature.⁵

tert-butyl 2-(4-fluoro-2-(2-methyl-1,3-dioxolan-2-yl)phenyl)acetate (S2b): Compound S2b was prepared using general procedure 1 and purified by column chromatography (10% EtOAc in hexanes) to provide a colorless solid (1.9 g, 60% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, J = 10.3, 2.8 Hz, 1H), 7.15 (dd, J = 8.4, 5.7 Hz, 1H), 6.94 (td, J = 8.2, 2.9 Hz, 1H), 4.06 – 3.90 (m, 2H), 3.74 (s, 2H), 3.72 – 3.69 (m, 2H), 1.65 (s, 3H), 1.45 (s, 9H); All characterization data match those reported in the literature.⁵

General procedure 2: Isoquinoline annulation and triflation

1-methylisoquinolin-3-yl trifluoromethanesulfonate (S3a): To a RBF was added ester S2a (12.4 g, 48 mmol), anhydrous CH_2Cl_2 (480 mL, 0.1 M), and TFA (160 mL, 33% volume of CH_2Cl_2), respectively. The reaction mixture was stirred at 23 °C for 2 h, and then concentrated in vacuo. The crude mixture was transferred to a Schlenk tube, and dissolved in MeCN (48 mL, 1 M) and aqueous NH₄OH (28–30%, 96 mL, 200% volume of MeCN). The tube was sealed with a Kontes valve to prevent loss of gaseous ammonia and stirred at 70 °C. Within 1 h, the yellow

solid of the 3-hydroxyisoquinoline began to precipitate from the solution. After stirring for 18 hours at 70 °C, the reaction mixture was cooled to room temperature and placed in a -20 °C freezer overnight, and the yellow solid was collected via vacuum filtration. This yellow powder was then washed with cold MeCN and dried under high vacuum to provide a 3-hydroxyisoquinoline intermediate (3.9 g, 24 mmol). If any starting material remains, the filtrate could be transferred to a flask and concentrated in vacuo to undergo a second condensation reaction.

To a separate flame-dried RBF containing CH₂Cl₂ (120 mL, 0.2 M) and freshly distilled pyridine (19.6 mL, 242 mmol, 10 equiv), the collected intermediate (3.9 g, 24 mmol) was added, and the flask was cooled to 0 °C. Trifluoromethanesulfonic anhydride (8.2 mL, 48 mmol, 2 equiv) was then added dropwise at 0 °C, and the reaction mixture was stirred at 0 °C for 1 h. The reaction was then quenched with saturated aqueous NaHCO₃ at 0 °C, and then slowly warmed to room temperature. The reaction mixture was extracted with CH₂Cl₂ (2 x 100 mL), dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (10% EtOAc in hexanes) to afford **S3a** as a pale yellow oil (5.0 g, 17 mmol, 36% yield over 3 steps): ¹H NMR (400 MHz, CDCl₃) δ 8.17 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.88 (dt, *J* = 8.3, 1.0 Hz, 1H), 7.76 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.67 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.42 (s, 1H), 2.97 (s, 3H); All characterization data match those reported in the literature.⁵

7-fluoro-1-methylisoquinolin-3-yl trifluoromethanesulfonate (S3b): Compound S3b was prepared using general procedure 2 and purified by column chromatography (10% EtOAc in hexanes) to provide a pale brown oil (1.3 g, 39% yield over 3 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 9.0, 5.3 Hz, 1H), 7.76 (dd, J = 9.6, 2.5 Hz, 1H), 7.56 (ddd, J = 8.9, 8.0, 2.5 Hz, 1H), 7.43 (s, 1H), 2.92 (s, 3H); All characterization data match those reported in the literature.⁵

General procedure 3: Suzuki cross-coupling

1-methyl-3-phenylisoquinoline (3d): To a flame-dried 20-mL scintillation vial capped with a PTFE-lined silicone septum was added XPhos Pd G3 (50 mg, 0.05 mmol, 0.02 equiv) and phenyl boronic acid (548 mg, 3.8 mmol, 1.5 equiv). The reaction vial was then evacuated and backfilled with N₂ three times. The isoquinoline triflate **S3a** (720 mg, 2.5 mmol) in degassed THF (7 mL, 0.3 M) was then added to the vial, followed by degassed 0.5 M K₃PO₄ solution (13 mL, 0.2 M). The reaction was then stirred at 40 °C for 2 hours. Afterwards, the reaction was diluted with water and the aqueous layer was extracted with Et₂O. The combined organic phases were dried over Na₂SO₄, concentrated in vacuo, and purified by column chromatography (5% EtOAc in hexanes) to afford **3d** as a white solid (495 mg, 2.3 mmol, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.13 (m, 3H), 7.93 (s, 1H), 7.86 (dt, *J* = 8.3, 1.0 Hz, 1H), 7.67 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.57 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.52 – 7.48 (m, 2H), 7.42 – 7.38 (m, 1H), 3.05 (s, 3H); All characterization data match those reported in the literature.⁵

3-(4-methoxyphenyl)-1-methylisoquinoline (S4b): Compound **S4b** was prepared using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a white solid (101 mg, 99% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.07 (m, 3H), 7.89 – 7.81 (m, 2H), 7.68 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.58 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.20 – 7.16 (m, 2H), 3.04 (s, 3H); All characterization data match those reported in the literature.⁵

3-(4-(*tert***-butyl)phenyl)-1-methylisoquinoline (S4c):** Compound S4c was prepared using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a pale yellow oil (164 mg, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.07 (m, 3H), 7.84 (s, 1H), 7.81 (d, J = 8.5, 1H), 7.64 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.53 (ddd, J = 8.2, 6.8, 1.3 Hz,

1H), 7.06 - 7.01 (m, 2H), 3.88 (s, 3H), 3.03 (s, 3H); All characterization data match those reported in the literature.⁵

3-(4-fluorophenyl)-1-methylisoquinoline (S4d): Compound **S4d** was prepared using general procedure 3 and purified by column chromatography (10% EtOAc in hexanes) to provide a white solid (158 mg, 96% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.4 Hz, 1H) 8.06 (d, J = 8.5 Hz, 2H), 7.90 (s, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.66 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.57 – 7.52 (m, 3H), 3.04 (s, 3H), 1.38 (s, 9H); All characterization data match those reported in the literature.⁵

1-methyl-3-(4-(trifluoromethyl)phenyl)isoquinoline (S4e): Compound **S4e** was prepared using general procedure 3 and purified by column chromatography (2% to 3% EtOAc in hexanes) to provide a white solid (449 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.1 Hz, 2H), 8.15 (d, J = 8.4, 1H), 7.96 (s, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.78 – 7.73 (m, 2H), 7.73 – 7.67 (m, 1H), 7.63 – 7.59 (m, 1H), 3.05 (s, 3H); All characterization data match those reported in the literature.⁵

4-(1-methylisoquinolin-3-yl)benzonitrile (S4f): Compound **S4f** was prepared using general procedure 3 and purified by column chromatography (10% to 20% EtOAc in hexanes) to provide a white solid (122 mg, 72% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.38 – 8.22 (m, 2H), 8.16 (d, *J* = 8.3 Hz, 1H), 7.99 (s, 1H), 7.89 (d, *J* = 8.3, 1H), 7.82 – 7.75 (m, 2H), 7.73 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 7.64 (ddd, *J* = 8.2, 6.9, 1.3 Hz, 1H), 3.05 (s, 3H); All characterization data match those reported in the literature.⁵

3-([1,1'-biphenyl]-4-yl)-1-methylisoquinoline (S4g): Compound **S4g** was prepared using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a colorless solid (191 mg, 94% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.22 (m, 2H), 8.14 (d, J = 8.4 Hz, 1H), 7.98 (s, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.75 – 7.73 (m, 2H), 7.70 – 7.67 (m, 3H), 7.58 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.50 – 7.46 (m, 2H), 7.39 – 7.37 (m, 1H), 3.06 (s, 3H); All characterization data match those reported in the literature.⁵

1-methyl-3-(naphthalen-2-yl)isoquinoline (S4h): Compound **S4h** was prepared using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a white solid (142 mg, 77% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.27 (dd, J = 8.6, 1.8 Hz, 1H), 8.16 (dq, J = 8.3, 1.0 Hz, 1H), 8.07 (s, 1H), 8.00 – 7.96 (m, 2H), 7.91 – 7.86 (m, 2H), 7.70 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.59 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.56 – 7.46 (m, 2H), 3.09 (s, 3H); All characterization data match those reported in the literature.⁵

3-(3,5-dimethylphenyl)-1-methylisoquinoline (S4i): Compound **S4i** was prepared using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a white solid (156 mg, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 8.4, 1.1 Hz, 1H), 7.90 (s, 1H), 7.85 (dd, J = 8.2, 0.7 Hz, 1H), 7.75 (s, 2H), 7.66 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.56 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.05 (s, 1H), 3.05 (s, 3H), 2.43 (s, 6H); All characterization data match those reported in the literature.⁵

3-(3,4-dimethoxyphenyl)-1-methylisoquinoline (S4j): Compound **S4j** was prepared using general procedure 3 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (248 mg, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.4, 1H), 7.89 – 7.81 (m, 2H), 7.77 (d, J = 2.1 Hz, 1H), 7.71 – 7.61 (m, 2H), 7.55 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 4.04 (s, 3H), 3.95 (s, 3H), 3.04 (s, 3H); All characterization data match those reported in the literature.⁵

1-methyl-3-(1-methyl-1*H***-pyrazol-4-yl)isoquinoline (S4k):** Compound **S4k** was prepared using general procedure 3 and purified by column chromatography (50% to 60% EtOAc in hexanes) to provide a white solid (124 mg, 64% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 1H), 8.04 – 8.00 (m, 2H), 7.77 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.67 – 7.60 (m, 2H), 7.54 – 7.47 (m, 1H), 3.98 (s, 3H), 2.97 (s, 3H); All characterization data match those reported in the literature.⁵

3-(6-methoxypyridin-3-yl)-1-methylisoquinoline (S4l): Compound **S4l** was prepared from triflate **S3a** using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to afford a white solid (232 mg, 90% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.89 (dd, *J* = 2.5, 0.8 Hz, 1H), 8.36 (dd, *J* = 8.6, 2.5 Hz, 1H), 8.11 (dd, *J* = 8.4, 1.0 Hz, 1H), 7.85 – 7.83 (m, 2H), 7.67 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.56 (ddd, *J* = 8.1, 6.9, 1.3 Hz, 1H), 6.87 (dd, *J* = 8.6, 0.8 Hz, 1H), 4.01 (s, 3H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 159.0, 147.7, 145.7, 137.6, 136.8, 130.3, 129.2, 127.6, 126.9, 126.6, 125.8, 114.5, 110.8, 53.8, 22.8; IR (Neat Film, NaCl) 2937, 2363, 1604, 1568, 1498, 1443, 1326, 1278, 1254, 1119, 1021, 831, 745; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₅N₂O [M+H]⁺: 251.1184, found 251.1185.

7-fluoro-1-methyl-3-phenylisoquinoline (S4m): Compound **S4m** was prepared using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a white solid (254 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.11 (m, 2H), 7.90 (s, 1H), 7.85 (dd, J = 9.2, 5.7 Hz, 1H), 7.73 – 7.68 (m, 1H), 7.54 – 7.48 (m, 2H), 7.48 – 7.38 (m, 2H), 2.99 (s, 3H); All characterization data match those reported in the literature.⁵

7-fluoro-1-methyl-3-(4-(trifluoromethyl)phenyl)isoquinoline (S4n): Compound **S4n** was prepared using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a white solid (349 mg, 89% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.0 Hz, 2H), 7.94 (s, 1H), 7.90 – 7.85 (m, 1H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.71 – 7.69 (m, 1H), 7.53 – 7.43 (m, 1H), 2.99 (s, 3H); All characterization data match those reported in the literature.⁵

General procedure 4: Oxidation and reduction to hydroxymethyl isoquinoline

(3-phenylisoquinolin-1-yl)methanol (1a): To a 20-mL microwave vial under N₂ containing a magnetic stir bar was added SeO₂ (375 mg, 3.4 mmol, 2 equiv), isoquinoline S4a (370 mg, 1.7 mmol), and 1,4-dioxane (17 mL, 0.1 M). The reaction vial was then sealed and heated to 110 °C while stirring for 2 hours. The reaction mixture was then cooled to 23 °C, filtered through celite,

and rinsed with EtOAc. The filtrate was then concentrated in vacuo to afford the crude aldehyde intermediate that was used in the next step without further purification.

To a scintillation vial containing the crude aldehyde in 4:1 CH₂Cl₂:MeOH (0.1 M) was added sodium borohydride (96 mg, 2.5 mmol, 1.5 equiv) at 23 °C. The reaction mixture was stirred until no starting material remained by TLC, and then quenched by the addition of citric acid monohydrate (355 mg, 1.7 mmol, 1 equiv). The reaction mixture was stirred for an additional 10 minutes at 23 °C, then basified by the addition of saturated aqueous NaHCO₃. The layers were separated and the aqueous phase was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (10% acetone in hexanes) to afford **1a** as a white solid (337 mg, 1.43 mmol, 85% yield over 2 steps): ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.15 (d, *J* = 7.0 Hz, 2H), 8.03 (s, 1H), 7.94 – 7.92 (m, 2H), 7.73 (ddd, *J* = 8.3, 6.9, 1.1 Hz, 1H), 7.61 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.46 – 7.42 (m, 1H), 5.31 (s, 2H), 5.26 (br s, 1H, OH); All characterization data match those reported in the literature.⁵

(3-(4-methoxyphenyl)isoquinolin-1-yl)methanol (1b): Compound 1b was prepared using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (148 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.07 (m, 2H), 7.93 (s, 1H), 7.91 – 7.85 (m, 2H), 7.69 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.56 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.06 – 7.03 (m, 2H), 5.28 (s, 3H), 3.89 (s, 3H); All characterization data match those reported in the literature.⁵

((3-(4-(*tert*-butyl)phenyl)isoquinolin-1-yl)methanol (1c): Compound 1c was prepared using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (135 mg, 78% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.06 (m, 2H), 8.00 (s, 1H), 7.97 – 7.85 (m, 2H), 7.72 (ddd, J = 8.4, 6.9, 1.2 Hz, 1H), 7.62 – 7.58 (m, 1H), 7.58 – 7.52 (m, 2H), 5.30 (s, 3H), 1.40 (s, 9H); All characterization data match those reported in the literature.⁵

(3-(4-fluorophenyl)isoquinolin-1-yl)methanol (1d): Compound 1d was prepared using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a colorless solid (134 mg, 80% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 8.9, 5.4 Hz, 2H), 7.96 (s, 1H), 7.95 – 7.89 (m, 2H), 7.73 (ddd, J = 8.3, 6.9, 1.1 Hz, 1H), 7.61 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.21 (dd, J = 8.9, 8.5 Hz, 2H), 5.30 (s, 2H), 5.17 (br s, 1H, OH); All characterization data match those reported in the literature.⁵

(3-(4-(trifluoromethyl)phenyl)isoquinolin-1-yl)methanol (1e): Compound 1e was prepared using general procedure 4 and purified by column chromatography (10% to 20% EtOAc in hexanes) to provide a white solid (302 mg, 58% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 7.8 Hz, 2H), 8.07 (s, 1H), 8.00 – 7.92 (m, 2H), 7.82 – 7.73 (m, 3H), 7.70 – 7.61 (m, 1H), 5.32 (s, 2H), 5.10 (br s, 1H, OH); All characterization data match those reported in the literature.⁵

4-(1-(hydroxymethyl)isoquinolin-3-yl)benzonitrile (1f): Compound **1f** was prepared using general procedure 4 and purified by column chromatography (30% EtOAc in hexanes) to provide a white solid (112 mg, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.18 (m, 2H), 8.09 (s, 1H), 7.97 (m, 2H), 7.86 – 7.74 (m, 3H), 7.68 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 5.32 (s, 2H), 4.99 (s, 1H); All characterization data match those reported in the literature.⁵

(3-([1,1'-biphenyl]-4-yl)isoquinolin-1-yl)methanol (1g): Compound 1g was prepared using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a colorless solid (79 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.20 (m, 2H), 8.07 (s, 1H), 7.98 – 7.88 (m, 2H), 7.81 – 7.66 (m, 5H), 7.62 (ddd, J = 8.4, 6.9, 1.2 Hz, 1H), 7.49 (dd, J = 8.2, 6.8 Hz, 2H), 7.43 – 7.34 (m, 1H), 5.32 (s, 3H); All characterization data match those reported in the literature.⁵

(3-(naphthalen-2-yl)isoquinolin-1-yl)methanol (1h): Compound 1h was prepared using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (124 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 8.27 (dd, J = 8.6, 1.8 Hz, 1H), 8.16 (s, 1H), 8.05 – 7.93 (m, 4H), 7.91 – 7.89 (m, 1H), 7.75 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.62 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.58 – 7.47 (m, 2H), 5.34 (s, 3H); All characterization data match those reported in the literature.⁵

(3-(3,5-dimethylphenyl)isoquinolin-1-yl)methanol (1i): Compound 1i was prepared using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (155 mg, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.94 – 7.91 (m, 2H), 7.78 – 7.76 (m, 2H), 7.72 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.60 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.09 (s, 1H), 5.30 (s, 3H), 2.44 (s, 6H); All characterization data match those reported in the literature.⁵

(3-(3,4-dimethoxyphenyl)isoquinolin-1-yl)methanol (1j): Compound 1j was prepared using general procedure 4 and purified by column chromatography (40% EtOAc in hexanes) to provide a white solid (168 mg, 64% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.93 – 7.90 (m, 2H), 7.77 – 7.67 (m, 3H), 7.58 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.03 – 7.01 (m, 1H), 5.30 (s, 2H), 5.26 (br s, 1H, OH), 4.03 (s, 3H), 3.97 (s, 3H); All characterization data match those reported in the literature.⁵

(3-(1-methyl-1*H*-pyrazol-4-yl)isoquinolin-1-yl)methanol (1k): Compound 1k was prepared using general procedure 4 and purified by column chromatography (70% to 80% EtOAc in hexanes + 1% NEt₃) to provide a pale beige solid (93 mg, 71% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 7.95 (m, 2H), 7.85 – 7.79 (m, 2H), 7.71 – 7.59 (m, 2H), 7.53 – 7.49 (m, 1H), 5.21 (s, 2H), 3.98 (s, 3H); All characterization data match those reported in the literature.⁵

(3-(6-methoxypyridin-3-yl)isoquinolin-1-yl)methanol (11): Compound 11 was prepared from isoquinoline S4I using general procedure 4 and purified by column chromatography (20% to 30% EtOAc in hexanes) to provide a white solid (177 mg, 72% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.94 (dd, J = 2.6, 0.7 Hz, 1H), 8.34 (dd, J = 8.7, 2.5 Hz, 1H), 7.94 – 7.91 (m, 3H), 7.73 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.61 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 6.89 (dd, J = 8.7, 0.7 Hz, 1H), 5.30 (s, 2H), 5.10 (br s, 1H, OH), 4.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 157.7, 146.4, 145.7, 137.2, 137.0, 131.1, 128.2, 127.8, 127.6, 124.1, 123.3, 115.4, 111.1, 61.6, 53.9; IR (Neat Film, NaCl) 3380, 3058, 2948, 2363, 1624, 1606, 1573, 1504, 1447, 1380, 1326, 1286,

1088, 1024, 832, 747 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₆H₁₅N₂O₂ [M+H]⁺: 267.1128, found 267.1131.

(7-fluoro-3-phenylisoquinolin-1-yl)methanol (1m): Compound 1m was prepared using general procedure 4 and purified by column chromatography (10% EtOAc in hexanes) to provide a white solid (94 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.0 Hz, 2H), 8.00 (s, 1H), 7.96 - 7.87 (m, 1H), 7.57 - 7.47 (m, 4H), 7.44 (td, *J* = 6.9, 6.4, 1.4 Hz, 1H), 5.21 (s, 2H), 5.11 (br s, 1H, OH); All characterization data match those reported in the literature.⁵

(7-fluoro-3-(4-(trifluoromethyl)phenyl)isoquinolin-1-yl)methanol (1n): Compound 1n was prepared using general procedure 4 and purified by column chromatography (10% EtOAc in hexanes) to provide a white solid (80 mg, 60% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.1 Hz, 2H), 8.02 (s, 1H), 7.95 (dd, J = 9.8, 5.4 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.58 – 7.47 (m, 2H), 5.21 (s, 2H), 4.94 (br s, 1H, OH); All characterization data match those reported in the literature.⁵

Syntheses of 1,3-Disubstituted Isoquinolines with Different Directing Groups

1-(methoxymethyl)-3-phenylisoquinoline (3a): To a scintillation vial containing a magnetic stir bar and isoquinoline **1a** (165 mg, 0.70 mmol) in THF (7 mL, 0.1 M) was added KO*t*-Bu (86 mg, 0.77 mmol, 1.1 equiv) at 23 °C. The resulting mixture was stirred for 5 minutes, then cooled to 0 °C, followed by the addition of MeI (0.05 mL, 0.77 mmol, 1.1 equiv). The reaction was allowed to slowly warm to 23 °C overnight and then was quenched with saturated aqueous NH₄Cl. The organic phase was collected and the aqueous phase was extracted with EtOAc (2 x 20 mL). The

organic phases were combined, dried over MgSO₄, and concentrated in vacuo. The crude product was purified by column chromatography (5% EtOAc in hexanes) to afford **3a** as a white solid (79 mg, 45% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 8.4, 1.1 Hz, 1H), 8.20 – 8.13 (m, 2H), 8.04 (s, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.69 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.60 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.51 (td, J = 7.3, 6.5, 1.2 Hz, 2H), 7.45 – 7.37 (m, 1H), 5.14 (s, 2H), 3.51 (s, 3H); All characterization data match those reported in the literature.⁵

1-((benzyloxy)methyl)-3-phenylisoquinoline (3b): This procedure has been adapted from a previous report.⁶ To a flame-dried RBF equipped with a magnetic stir bar was added NaH (36.4 mg, 60% w/w in mineral oil, 0.91 mmol, 1.3 equiv) and THF (7 mL, 0.1 M). To this suspension, isoquinoline **1a** (165 mg, 0.70 mmol) was added. After 5 minutes of stirring at room temperature, the reaction mixture was cooled to 0 °C and BnBr (0.91 mL, 0.91 mmol, 1.3 equiv) was added. The reaction was allowed to slowly warm to room temperature overnight. Silica (1 g) was then added and the solvent was evaporated under vacuum. The crude product was purified by column chromatography (5% EtOAc in hexanes) to afford **3b** as a colorless viscous oil (153 mg, 67% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 8.4, 1.1 Hz, 1H), 8.21 – 8.14 (m, 2H), 8.04 (s, 1H), 7.89 (d, J = 8.4, 6.9 Hz, 2H), 7.45 – 7.27 (m, 6H), 5.24 (s, 2H), 4.67 (s, 2H); All characterization data match those reported in the literature.⁵

(3-phenylisoquinolin-1-yl)methyl acetate (3c): To a 20-mL scintillation vial containing a magnetic stir bar and isoquinoline 1a (165 mg, 0.70 mmol) in THF (7 mL, 0.1 M) was added DMAP (8.6 mg, 0.07 mmol, 0.1 equiv) and pyridine (0.14 mL, 1.75 mmol, 2.5 equiv). Acetic anhydride (0.1 mL, 1.05 mmol, 1.5 equiv) was then added dropwise. The reaction mixture was stirred overnight at room temperature then diluted with Et₂O and washed with saturated aqueous NH₄Cl. The organic phase was collected, dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (10% EtOAc in hexanes) to afford 3c as a colorless viscous oil (194 mg, >99% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.19 – 8.13 (m, 2H), 8.11 (dd, *J* = 8.4, 1.0 Hz, 1H), 8.07 (s, 1H), 7.92 (dt, *J* = 8.3, 0.9 Hz, 1H), 7.71 (ddd, *J* =

8.2, 6.8, 1.2 Hz, 1H), 7.61 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.45 – 7.38 (m, 1H), 5.79 (s, 2H), 2.20 (s, 3H); All characterization data match those reported in the literature.⁵

3-phenylisoquinoline-1-carbaldehyde (S5): To a Schlenk flask containing a magnetic stir bar was added SeO₂ (140 mg, 1.26 mmol, 2 equiv) and a solution of isoquinoline **3d** (138 mg, 0.63 mmol) in 1,4-dioxane (13 mL, 0.05 M). The reaction vial was then sealed and heated to 110 °C while stirring for 2 hours. The reaction mixture was then cooled to 23 °C and filtered through celite with EtOAc. The crude product was then purified by column chromatography (5% EtOAc in hexanes) to afford **S5** as a pale yellow solid (1.32 g, 96% yield): ¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 9.32 (d, *J* = 8.2 Hz, 1H), 8.31 (s, 1H), 8.24 (d, *J* = 8.1 Hz, 2H), 7.97 (d, *J* = 7.3 Hz, 1H), 7.84 – 7.67 (m, 2H), 7.56 (t, *J* = 7.5 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 1H); All characterization data match those reported in the literature.⁵

tert-butyl ((3-phenylisoquinolin-1-yl)methyl)carbamate (3e): This procedure has been adapted from a previous report.⁷ To a solution of aldehyde S5 (196 mg, 0.84 mmol) and *t*-butyl carbamate (197 mg, 1.68 mmol, 2 equiv) in MeCN (8 mL, 0.1 M) were added trifluoroacetic acid (0.2 mL, 2.52 mmol, 3 equiv) and triethylsilane (1.3 mL, 8.4 mmol, 10 equiv). The reaction mixture was stirred at 23 °C overnight and then quenched with saturated aqueous Na₂CO₃ and extracted with EtOAc (2 x 20 mL). The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (15% EtOAc in hexanes) to afford **3e** as a white solid (225 mg, 80% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 7.7 Hz, 2H), 8.10 (d, *J* = 8.4 Hz, 1H), 8.00 (s, 1H), 7.90 (d, *J* = 8.2 Hz, 1H), 7.70 (ddd, *J* = 8.1, 6.9, 1.1 Hz, 1H), 7.61 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.48 – 7.40 (m, 1H), 6.43 (br s, 1H), 5.03 (d, *J* = 4.4 Hz, 2H), 1.54 (s, 9H); All characterization data match those reported in the literature.⁵

(3-phenylisoquinolin-1-yl)methanamine (3f): To a solution of carbamate 3e (225 mg, 0.67 mmol) in CH₂Cl₂ (2.2 mL, 0.3 M) was added trifluoroacetic acid (1.03 mL, 13.48 mmol, 20 equiv). The reaction was stirred at 23 °C for 1 hour and then neutralized to neutral pH with 1M NaOH. The organic phase was washed with water and extracted with CH₂Cl₂ (2 x 20 mL), then dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (5% MeOH in CH₂Cl₂ with 1% NEt₃) to afford 3f as a yellow solid (113 mg, 72% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.18 (m, 2H), 8.09 (d, *J* = 8.5 Hz, 1H), 7.97 (s, 1H), 7.58 (dd, *J* = 7.8 Hz, 1H), 7.68 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.58 (ddd, *J* = 8.2, 6.9, 1.3 Hz, 1H), 7.53 – 7.49 (m, 2H), 7.44 – 7.39 (m, 1H), 4.56 (s, 2H), 2.31 (br s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 149.5, 139.6, 137.1, 130.3, 128.9, 128.6, 128.0, 127.2, 127.0, 125.2, 124.1, 115.7, 44.6; IR (Neat Film, NaCl) 3276, 3054, 2968, 2924, 1622, 1574, 1501, 1456, 1439, 1365, 1326, 1201, 882, 784, 766, 694 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₅N₂ [M+H]⁺: 235.1235, found 235.1231.

General Procedure 5: Hydrogenation Reactions

An oven-dried 20-mL scintillation vial containing a magnetic stir bar and an isoquinoline substrate (0.2 mmol) was capped with a PTFE-lined septum and pierced with two 21-gauge needles. The vials were then placed in a Parr bomb and brought into a N₂-filled glovebox, with the exception of the pressure gauge. In a nitrogen-filled glovebox, a solution of the ligand (SLJ418-1) (4.53 mg, 0.006 mmol per reaction) and $[Ir(cod)Cl]_2$ (1.68 mg, 0.0025 mmol per reaction) in 1,2-DCE (1.8 mL per reaction) was prepared and allowed to stand for 10 minutes. Meanwhile, a solution of TBABr (4.83 mg, 0.015 mmol per reaction) in AcOH (0.2 mL per reaction) was prepared in a 1-dram vial, and 0.2 mL of the solution was added to each reaction vial by syringe. After re-capping the vials with caps equipped with needles, the reaction vials were placed in the bomb and the top was covered tightly with plastic wrap secured by a rubber band. The bomb was then removed from the glovebox, and the pressure gauge was quickly screwed in place and tightened. The bomb was charged to 5-10 bar H₂ and slowly released. This process was repeated two more times, before charging the bomb to 20 bar of H₂ (or 60 bar H₂). The bomb was then left stirring at 200 rpm at 23 °C (or placed in an oil bath and

heated to 60 °C) for 18 hours. Then, the bomb was removed from the stir plate and the hydrogen pressure was vented. The reaction vials were removed from the bomb and each solution was basified by the addition of saturated aqueous K_2CO_3 (2 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 2 mL). The combined organics layers were then dried over Na₂SO₄ and concentrated in vacuo. The diastereoselectivity of the hydrogenation reaction was determined by crude ¹H NMR analysis.

Then, to a scintillation vial containing the crude reaction mixture in THF (0.05 M) was added 1,1'-carbonyldiimidazole (CDI) (130 mg, 0.8 mmol, 4 equiv) and heated at 50 °C for 15 hours. The reaction mixture was then cooled to 23 °C, concentrated, and purified by column chromatography to separate the diastereomers and isolate the *trans*-product.

<u>Please note</u> that the NMR data listed is for the major diastereomer. The enantiomeric excess was determined by chiral SFC analysis of the *trans*-product (see Table S3). The absolute configuration was determined for compound **5a** via X-ray crystallographic analysis, and the absolute configuration for all other products has been inferred by analogy.

(1*S*,3*R*)-1-(methoxymethyl)-3-phenyl-1,2,3,4-tetrahydroisoquinoline (4a): Compound 4a was prepared from isoquinoline 3a using general procedure 5 and determined by ¹H NMR spectroscopy of the crude reaction mixture to consist of a mixture of diastereomers; (dr = 17:1); ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.46 (m, 2H), 7.39 – 7.35 (m, 2H), 7.32 – 7.27 (m, 1H), 7.25 – 7.20 (m, 1H), 7.20 – 7.15 (m, 2H), 7.16 – 7.10 (m, 1H), 4.45 – 4.42 (m, 1H), 4.07 – 3.94 (m, 2H), 3.59 (t, *J* = 8.7 Hz, 1H), 3.43 (s, 3H), 3.06 (dd, *J* = 16.0, 11.1 Hz, 1H), 2.92 (dd, *J* = 16.0, 3.6 Hz, 1H); All characterization data match those reported in the literature.⁵

(1*S*,3*R*)-1-((benzyloxy)methyl)-3-phenyl-1,2,3,4-tetrahydroisoquinoline (4b): Compound 4b was prepared from isoquinoline 3b using general procedure 5 and determined by ¹H NMR spectroscopy of the crude reaction mixture to consist of a mixture of diastereomers; (dr = >20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.46 (m, 2H), 7.40 – 7.34 (m, 6H), 7.32 – 7.28 (m, 2H), 7.22 – 7.16 (m, 3H), 7.14 – 7.11 (m, 1H), 4.61 (s, 2H), 4.48 (dd, *J* = 8.7, 3.4 Hz, 1H), 4.12 (dd, *J*

= 9.0, 3.6 Hz, 1H), 4.04 (dd, J = 11.1, 3.5 Hz, 1H), 3.67 (t, J = 8.7 Hz, 1H), 3.05 (dd, J = 15.9, 11.1 Hz, 1H), 2.91 (dd, J = 15.8, 3.5 Hz, 1H); All characterization data match those reported in the literature.⁵

((1*S*,3*R*)-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl acetate (4c): Compound 4c was prepared from isoquinoline 3c using general procedure 5 and determined by ¹H NMR spectroscopy of the crude reaction mixture to consist of a mixture of diastereomers; (dr = >20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.41 – 7.37 (m, 2H), 7.34 – 7.30 (m, 1H), 7.27 – 7.24 (m, 1H), 7.23 – 7.18 (m, 2H), 7.16 – 7.10 (m, 1H), 4.78 (dd, *J* = 10.8, 3.5 Hz, 1H), 4.54 – 4.51 (m, 1H), 4.14 (dd, *J* = 10.8, 8.7 Hz, 1H), 4.05 (dd, *J* = 11.1, 3.4 Hz, 1H), 3.08 – 3.01 (m, 1H), 2.90 (dd, *J* = 15.5, 3.6 Hz, 1H), 2.08 (s, 3H); All characterization data match those reported in the literature.⁵

(1*R*,3*R*)-1-methyl-3-phenyl-1,2,3,4-tetrahydroisoquinoline (4d): Compound 4d was prepared from isoquinoline 3d using general procedure 5 and determined by ¹H NMR spectroscopy of the crude reaction mixture to consist of a mixture of diastereomers; (dr = >20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.46 (m, 2H), 7.41 – 7.37 (m, 2H), 7.33 – 7.29 (m, 1H), 7.28 – 7.23 (m, 1H), 7.23 – 7.14 (m, 2H), 7.11 (d, *J* = 6.9 Hz, 1H), 4.34 (q, *J* = 6.6 Hz, 1H), 4.08 (dd, *J* = 11.1, 3.9 Hz, 1H), 3.12 – 3.01 (m, 1H), 2.96 (dd, *J* = 16.2, 4.1 Hz, 1H), 1.55 (d, *J* = 6.5 Hz, 3H); All characterization data match those reported in the literature.⁵

tert-butyl (((1*S*,3*R*)-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl)carbamate (4e): Compound 4e was prepared from isoquinoline 3e using general procedure 5 and determined by ¹H NMR spectroscopy of the crude reaction mixture as a mixture of diastereomers; (dr = 1.4:1); 25% ee for major diastereomer; $[α]_D^{25}$ –1.3 (*c* 0.53, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.45 (m, 2H), 7.40 – 7.36 (m, 2H), 7.32 – 7.28 (m, 1H), 7.20 – 7.18 (m, 3H), 7.14 – 7.12 (m, 1H), 5.12 (br s, 1H), 4.18 (dd, *J* = 10.7, 4.0 Hz, 1H), 3.59 – 3.54 (m, 1H), 3.39 (ddd, *J* = 14.2, 10.7, 4.9 Hz, 1H), 3.02 (dd, *J* = 16.3, 4.2 Hz, 1H), 2.94 (dd, *J* = 16.3, 10.8 Hz, 1H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 142.8, 134.5, 134.3, 128.2, 127.6, 126.4, 126.0, 125.7, 125.7, 125.1, 55.2, 50.1, 43.6, 36.1, 28.9, 27.4; IR (Neat Film, NaCl) 3733, 3330, 2924, 2368, 2335, 1699, 1492, 1394, 1366, 1268, 1258, 1171, 754 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₁H₂₇N₂O₂ [M+H]⁺: 339.2073, found 339.2075; SFC Conditions: 30% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 1.95, minor = 4.28.

(5*S*,10*bS*)-5-phenyl-1,5,6,10*b*-tetrahydro-3*H*-oxazolo[4,3-*a*]isoquinolin-3-one (5a): Compound 5a was prepared from isoquinoline 1a using general procedure 5 and purified by column chromatography (20% to 40% to 60% EtOAc in hexanes) to provide a clear solid (33 mg, 63% yield); 91% ee; $[\alpha]_D^{25}$ +124.3 (*c* 1.04, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.19 (m, 8H), 6.91 (d, *J* = 7.3 Hz, 1H), 5.31 (dd, *J* = 6.7, 2.8 Hz, 1H), 4.74 (t, *J* = 8.0 Hz, 1H), 4.69 – 4.66 (m, 1H), 4.29 (dd, *J* = 7.8, 5.9 Hz, 1H), 3.41 (dd, *J* = 16.8, 6.7 Hz, 1H), 3.22 (dd, *J* = 16.7, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 138.8, 134.4, 133.2, 129.4, 128.8, 128.1, 127.9, 127.2, 127.2, 124.4, 68.7, 51.7, 51.5, 31.4; IR (Neat Film, NaCl) 2910, 1751, 1601, 1494, 1452, 1402, 1221, 1114, 1066, 1030, 758, 701 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₆NO₂ [M+H]⁺: 266.1176, found 266.1177; SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak IC column, $\lambda = 210$ nm, t_R (min): major = 2.61, minor = 2.41.

(5*S*,10*bS*)-5-(4-methoxyphenyl)-1,5,6,10b-tetrahydro-3*H*-oxazolo[4,3-*a*]isoquinolin-3-one (5b): Compound 5b was prepared from isoquinoline 1b using general procedure 5 and purified by column chromatography (20% to 30% to 40% EtOAc in hexanes) to provide a pale yellow oil (38 mg, 64% yield); 96% ee; $[\alpha]_D^{25}$ +150.4 (*c* 1.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.24 (m, 3H), 7.22 – 7.20 (m, 2H), 6.94 (d, *J* = 8.0 Hz, 1H), 6.82 – 6.78 (m, 2H), 5.32 (dd, *J* = 6.7, 2.4 Hz, 1H), 4.77 (t, *J* = 8.0 Hz, 1H), 4.71 – 4.67 (m, 1H), 4.30 (dd, *J* = 8.0, 6.2 Hz, 1H), 3.75 (s, 3H), 3.44 (dd, *J* = 16.6, 6.8 Hz, 1H), 3.23 (dd, *J* = 16.7, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 157.4, 134.4, 133.2, 130.7, 129.4, 128.4, 128.1, 127.2, 124.5, 114.1, 68.8, 55.3, 51.6, 50.8, 31.4; IR (Neat Film, NaCl) 2907, 2836, 1750, 1610, 1513, 1402, 1304, 1251, 1178, 1066, 1030, 828, 756 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₈H₁₈NO₃ [M+H]⁺: 296.1281, found 296.1280; SFC Conditions: 10% MeOH, 3.5 mL/min, Chiralcel OJ-H column, λ = 210 nm, t_R (min): major = 8.66, minor = 7.52.

(5*S*,10*bS*)-5-(4-(*tert*-butyl)phenyl)-1,5,6,10b-tetrahydro-3*H*-oxazolo[4,3-*a*]isoquinolin-3-one (5c): Compound 5c was prepared from isoquinoline 1c using general procedure 5 and purified by column chromatography (20% to 30% to 40% EtOAc in hexanes) to provide a clear oil (43 mg, 67% yield); 95% ee; $[\alpha]_D^{25}$ +115.6 (*c* 1.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.26 (m, 4H), 7.24 – 7.22 (m, 1H), 7.21 – 7.19 (m, 2H), 6.93 (d, *J* = 7.2 Hz, 1H), 5.31 (dd, *J* = 6.8, 2.5 Hz, 1H), 4.74 (t, *J* = 8.0 Hz, 1H), 4.72 – 4.68 (m, 1H), 4.29 (dd, *J* = 7.3, 5.3 Hz, 1H), 3.42 (dd, *J* = 16.6, 6.9 Hz, 1H), 3.23 (dd, *J* = 16.7, 2.6 Hz, 1H), 1.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 150.8, 135.7, 134.5, 133.4, 129.4, 128.1, 127.1, 126.9, 125.7, 124.5, 68.7, 51.6, 51.1, 34.6, 31.4, 31.3; IR (Neat Film, NaCl) 3010, 2962, 1754, 1455, 1401, 1267, 1215, 1115, 1068, 1026, 828, 757 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₁H₂₄NO₂ [M+H]⁺: 322.1802, found 322.1801; SFC Conditions: 20% MeOH, 3.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 5.04, minor = 5.44.

(5*S*,10b*S*)-5-(4-fluorophenyl)-1,5,6,10b-tetrahydro-3*H*-oxazolo[4,3-*a*]isoquinolin-3-one (5d): Compound 5d was prepared from isoquinoline 1d using general procedure 5 and purified by column chromatography (20% to 30% to 40% EtOAc in hexanes) to provide a clear oil (40 mg, 70% yield); 95% ee; $[\alpha]_D^{25}$ +150.5 (*c* 1.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.21 (m, 5H), 6.96 – 6.91 (m, 3H), 5.29 (dd, *J* = 6.8, 2.8 Hz, 1H), 4.76 (t, *J* = 8 Hz, 1H), 4.67 (ddd, *J* = 8.7, 6.2, 1.1 Hz, 1H), 4.30 (dd, *J* = 8.1, 6.2 Hz, 1H), 3.42 (ddd, *J* = 16.7, 6.6, 1.3 Hz, 1H), 3.19 (dd, *J* = 16.7, 2.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, *J* = 246.8 Hz), 157.5, 134.6 (d, *J* = 3.3 Hz), 134.3, 132.9, 129.4, 129.0 (d, *J* = 8.1 Hz), 128.3, 127.4, 124.5, 115.7 (d, *J* = 21.5 Hz), 68.7, 51.6, 50.9, 31.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -114.4 – -114.5 (m); IR (Neat Film, NaCl) 2910, 1753, 1605, 1510, 1402, 1223, 1161, 1068, 1043, 1029, 885, 828, 758, 745 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₅FNO₂ [M+H]⁺: 284.1081, found 284.1078; SFC Conditions: 35% MeOH, 3.5 mL/min, Chiralpak IC column, $\lambda = 210$ nm, t_R (min): minor = 2.39, major = 2.58.

(5*S*,10*bS*)-5-(4-(trifluoromethyl)phenyl)-1,5,6,10b-tetrahydro-3*H*-oxazolo[4,3-*a*]isoquinolin-3-one (5e): Compound 5e was prepared from isoquinoline 1e using general procedure 5 and purified by column chromatography (20% to 30% to 40% EtOAc in hexanes) to provide a white solid (43 mg, 64% yield); 91% ee; $[\alpha]_D^{25}$ +118.2 (*c* 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.32 – 7.26 (m, 3H), 7.00 – 6.97 (m, 1H), 5.35 (dd, *J* = 6.7, 3.4 Hz, 1H), 4.82 (t, *J* = 8.0 Hz, 1H), 4.76 – 4.72 (m, 1H), 4.38 (dd, *J* = 8.1, 5.9 Hz, 1H), 3.47 (ddd, *J* = 16.6, 6.6, 1.2 Hz, 1H), 3.24 (dd, *J* = 16.6, 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 143.0, 143.0, 134.2, 132.7, 130.2 (q, *J* = 32.6 Hz), 129.3, 128.4, 127.5, 125.9 (q, *J* = 3.8 Hz), 124.4, 124.0 (q, *J* = 271.0 Hz), 68.6, 51.8, 51.5, 31.6; ¹⁹F NMR (282 MHz, CDCl₃) δ 62.7; IR (Neat Film, NaCl) 2916, 1753, 1620, 1402, 1326, 1225, 1162, 1114, 1068, 1017, 889, 829, 757 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₈H₁₅F₃NO₂ [M+H]⁺: 334.1049, found 334.1048; SFC Conditions: 25% MeOH, 3.5 mL/min, Chiralpak IC column, λ = 210 nm, t_R (min): minor = 2.22, major = 2.37.

4-((5*S***,10***bS***)-3-oxo-1,5,6,10***b***-tetrahydro-3***H***-oxazolo[4,3-***a***]isoquinolin-5-yl)benzonitrile (5***f***): Compound 5***f* **was prepared from isoquinoline 1***f* **using general procedure 5 and purified by column chromatography (25% to 35% to 50% EtOAc in hexanes) to provide a white solid (27 mg, 47% yield); 83% ee; [\alpha]_D^{25} +112.3 (***c* **1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.58 (m, 2H), 7.46 – 7.43 (m, 2H), 7.32 – 7.27 (m, 3H), 7.01 – 6.99 (m, 1H), 5.31 (dd,** *J* **= 6.5, 3.8 Hz, 1H), 4.83 (t,** *J* **= 8.4 Hz, 1H), 4.76 – 4.72 (m, 1H), 4.40 (dd,** *J* **= 8.3, 5.9 Hz, 1H), 3.45 (dd,** *J* **= 16.5, 6.4 Hz, 1H), 3.20 (dd,** *J* **= 16.6, 3.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 144.5, 134.1, 132.7, 132.5, 129.3, 128.5, 127.9, 127.7, 124.3, 118.6, 111.9, 68.5, 51.9, 51.8, 31.7; IR (Neat Film, NaCl) 2909, 2228, 1747, 1679, 1608, 1402, 1224, 1160, 1114, 1043, 1031, 829, 764, 733 cm⁻¹; HRMS (MM:ESI-APCI+)** *m/z* **calc'd for C₁₈H₁₅N₂O₂ [M+H]⁺: 291.1134, found 291.1137; SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak IC column, λ = 210 nm, t_R (min): minor = 3.97, major = 4.48.**

(5*S*,10*bS*)-5-([1,1'-biphenyl]-4-yl)-1,5,6,10b-tetrahydro-3*H*-oxazolo[4,3-*a*]isoquinolin-3-one (5g): Compound 5g was prepared from isoquinoline 1g using general procedure 5 and purified by column chromatography (20% to 30% to 40% EtOAc in hexanes) to provide a white solid (38 mg, 56% yield); 75% ee; $[\alpha]_D^{25}$ +108.5 (*c* 1.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.51 (m, 4H), 7.44 – 7.37 (m, 4H), 7.36 – 7.31 (m, 3H), 7.30 – 7.25 (m, 1H), 6.98 (d, *J* = 7.1 Hz, 1H), 5.40 (dd, *J* = 6.7, 2.8 Hz, 1H), 4.83 – 4.76 (m, 2H), 4.39 – 4.32 (m, 1H), 3.49 (dd, *J* = 16.7, 6.7 Hz, 1H), 3.31 (dd, *J* = 16.7, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 140.8, 140.6, 137.8, 134.4, 133.2, 129.4, 128.9, 128.2, 127.6, 127.6, 127.5, 127.3, 127.1, 124.5, 68.7, 51.7, 51.3, 31.5; IR (Neat Film, NaCl) 3028, 2908, 1751, 1487, 1454, 1402, 1220, 1162, 1070, 1042, 886, 830, 760 cm⁻¹; HRMS (MM:ESI-APCI+) *m*/*z* calc'd for C₂₃H₂₀NO₂ [M+H]⁺: 342.1489, found 342.1501; SFC Conditions: 45% MeOH, 3.5 mL/min, Chiralcel OJ-H column, λ = 210 nm, t_R (min): minor = 5.72, major = 6.80.

(5S,10bS)-5-(naphthalen-2-yl)-1,5,6,10b-tetrahydro-3*H*-oxazolo[4,3-*a*]isoquinolin-3-one (5h): Compound 5h was prepared from isoquinoline 1h using general procedure 5 and purified

by column chromatography (20% to 30% to 40% EtOAc in hexanes) to provide a pale white solid (34 mg, 54% yield); 89% ee; $[α]_D^{25}$ +91.3 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.79 (m, 2H), 7.73 – 7.70 (m, 1H), 7.68 (s, 1H), 7.50 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.38 – 7.30 (m, 2H), 7.27 – 7.23 (m, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 5.52 (dd, *J* = 6.5, 3.2 Hz, 1H), 4.79 (t, *J* = 8.0 Hz, 1H), 4.74 – 4.70 (m, 1H), 4.35 (dd, *J* = 8.0, 6.0 Hz, 1H), 3.54 (dd, *J* = 16.7, 6.6 Hz, 1H), 3.41 (dd, *J* = 16.8, 2.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 136.1, 134.4, 133.2, 133.1, 132.9, 129.4, 128.8, 128.2, 128.1, 127.7, 127.2, 126.4, 126.3, 125.9, 125.4, 124.5, 68.8, 51.8, 51.6, 31.3; IR (Neat Film, NaCl) 3017, 1750, 1454, 1401, 1327, 1215, 1070, 1030, 818, 756 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₁H₁₈NO₂ [M+H]⁺: 316.1332, found 316.1332; SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak IC column, λ = 210 nm, t_R (min):, minor = 4.21, major = 4.61.

(5*S*,10*bS*)-5-(3,5-dimethylphenyl)-1,5,6,10b-tetrahydro-3*H*-oxazolo[4,3-*a*]isoquinolin-3-one (5i): Compound 5i was prepared from isoquinoline 1i using general procedure 5 and purified by column chromatography (10% to 20% to 30% to 40% EtOAc in hexanes) to provide a pale white solid (36 mg, 61% yield); 86% ee; $[\alpha]_D^{25}$ +125.3 (*c* 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.23 (m, 3H), 6.97 (d, *J* = 7.1 Hz, 1H), 6.92 (s, 2H), 6.89 (s, 1H), 5.26 (dd, *J* = 6.7, 3.2 Hz, 1H), 4.82 – 4.75 (m, 2H), 4.39 – 4.32 (m, 1H), 3.42 (dd, *J* = 16.6, 6.7 Hz, 1H), 3.24 (dd, *J* = 16.6, 3.2 Hz, 1H), 2.25 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 138.9, 138.3, 134.5, 133.4, 129.5, 129.3, 128.1, 127.1, 124.8, 124.3, 68.5, 51.8, 51.5, 31.7, 21.5; IR (Neat Film, NaCl) 3010, 2916, 1752, 1606, 1454, 1402, 1265, 1220, 1070, 1043, 1030, 758, 747 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₉H₂₀NO₂ [M+H]⁺: 294.1489, found 294.1489; SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak IC column, $\lambda = 210$ nm, t_R (min): minor = 2.47, major = 2.71.

(5S,10bS)-5-(3,4-dimethoxyphenyl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-a]isoquinolin-3-

one (5j): Compound 5j was prepared from isoquinoline 1j using general procedure 5 and purified by column chromatography (40% to 50% to 75% EtOAc in hexanes) to provide a pale yellow oil (33 mg, 51% yield); 87% ee; $[\alpha]_D^{25}$ +120.9 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.28 (m, 2H), 7.27 – 7.23 (m, 1H), 6.95 (d, *J* = 6.8 Hz, 1H), 6.86 (d, *J* = 2.0 Hz, 1H), 6.75 (dd, *J* = 8.3, 2.0 Hz, 1H), 6.71 (d, *J* = 8.3 Hz, 1H), 5.32 (d, *J* = 6.7, 2.3 Hz, 1H), 4.78 (t, *J* = 8.0 Hz, 1H), 4.70 – 4.66 (m, 1H), 4.30 (dd, *J* = 8.1, 6.2 Hz, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 3.45 (dd, *J* = 16.8, 6.5 Hz, 1H), 3.24 (dd, *J* = 16.8, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 149.2, 148.7, 134.4, 133.3, 131.1, 129.3, 128.1, 127.2, 124.5, 119.1, 111.0, 110.9, 68.9, 56.0, 56.0, 51.6, 51.1, 31.4; IR (Neat Film, NaCl) 2929, 2836, 1748, 1592, 1516, 1403, 1259, 1237, 1142, 1026, 758, 749 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₉H₂₀NO₄ [M+H]⁺: 326.1387, found 326.1385; SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 2.13, minor = 2.74.

(5*S*,10*bS*)-5-(1-methyl-1*H*-pyrazol-4-yl)-1,5,6,10b-tetrahydro-3*H*-oxazolo[4,3-*a*]isoquinolin-3-one (5k): Compound 5k was prepared from isoquinoline 1k using general procedure 5 and purified by column chromatography (80% to 90% to 100% EtOAc in hexanes) to provide a pale yellow oil as a mixture of diastereomers (47 mg, 88% overall yield) (dr = 3.0:1); 97% ee for major diastereomer; $[\alpha]_D^{25}$ +113.6 (*c* 1.00, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.28 (s, 1H), 7.27 – 7.21 (m, 3H), 7.17 (s, 1H), 6.96 – 6.94 (m, 1H), 5.34 (dd, *J* = 6.6, 2.0 Hz, 1H), 4.77 – 4.74 (m, 2H), 4.29 – 4.23 (m, 1H), 3.78 (s, 3H), 3.42 (dd, *J* = 16.5, 6.7 Hz, 1H), 3.03 (dd, *J* = 16.4, 1.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 138.1, 134.1, 132.8, 129.7, 128.8, 128.0, 127.3, 124.7, 119.7, 69.1, 51.5, 44.2, 39.1, 32.3; IR (Neat Film, NaCl) 2930, 1750, 1444, 1401, 1276, 1216, 1070, 1021, 988, 761, 751 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C1₅H₁₆N₃O₂ [M+H]⁺: 270.1237, found 270.1238; SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): minor = 2.24, major = 2.67.

(5*S*,10*bS*)-5-(6-methoxypyridin-3-yl)-1,5,6,10b-tetrahydro-3*H*-oxazolo[4,3-*a*]isoquinolin-3one (5l): Compound 5l was prepared from isoquinoline 1l using general procedure 5 and purified by column chromatography (25% to 35% to 50% EtOAc in hexanes) to provide a pale yellow oil (38 mg, 64% yield); 95% ee; $[\alpha]_D^{25}$ +124.9 (*c* 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 2.6 Hz, 1H), 7.54 (dd, *J* = 8.7, 2.6 Hz, 1H), 7.29 – 7.27 (m, 2H), 7.25 – 7.23 (m, 1H), 6.95 (dd, *J* = 6.9 Hz, 1H), 6.68 (d, *J* = 8.6 Hz, 1H), 5.31 (dd, *J* = 6.7, 2.5 Hz, 1H), 4.78 (t, *J* = 8.0 Hz, 1H), 4.69 (dd, *J* = 8.8, 6.2 Hz, 1H), 4.31 (dd, *J* = 8.1, 6.0 Hz, 1H), 3.86 (s, 3H), 3.45 (dd, *J* = 16.7, 6.8 Hz, 1H), 3.21 (dd, *J* = 16.8, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 157.4, 145.4, 138.3, 134.1, 132.6, 129.5, 128.3, 127.4, 126.9, 124.6, 111.3, 68.9, 53.5, 51.6, 49.3, 31.1; IR (Neat Film, NaCl) 2945, 1752, 1608, 1494, 1400, 1288, 1262, 1068, 1027, 827, 758, 742 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₇N₂O₃ [M+H]⁺: 297.1234, found 297.1236; SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): minor = 2.80, major = 3.30.

(5*S*,10*bS*)-9-fluoro-5-phenyl-1,5,6,10b-tetrahydro-3*H*-oxazolo[4,3-*a*]isoquinolin-3-one (5m): Compound 5m was prepared from isoquinoline 1m using general procedure 5 and purified by column chromatography (20% to 30% to 40% EtOAc in hexanes) to provide a white solid (38 mg, 67% yield); 95% ee; [α]p²⁵ +163.7 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.21 (m, 6H), 6.98 (td, *J* = 8.6, 2.5 Hz, 1H), 6.65 (dd, *J* = 8.9, 2.4 Hz, 1H), 5.33 (dd, *J* = 6.6, 2.7 Hz, 1H), 4.74 (t, *J* = 8.5 Hz, 1H), 4.67 – 4.63 (m, 1H), 4.28 (dd, *J* = 8.2, 5.9 Hz, 1H), 3.38 (dd, *J* = 16.6, 6.4 Hz, 1H), 3.22 (dd, *J* = 16.6, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.7 (d, *J* = 246.6 Hz), 157.4, 138.4, 136.1 (d, *J* = 6.6 Hz), 131.0 (d, *J* = 7.8 Hz), 128.9, 128.8 (d, *J* = 3.3 Hz), 128.0, 127.1, 115.4 (d, *J* = 21.3 Hz), 111.4 (d, *J* = 22.1 Hz), 68.4, 51.7 (d, *J* = 2.2 Hz), 51.4, 30.6; ¹⁹F NMR (282 MHz, CDCl₃) δ –114.3 – –114.4 (m); IR (Neat Film, NaCl) 3061, 2914, 1752, 1613, 1593, 1499, 1450, 1430, 1402, 1327, 1241, 1216, 1162, 1069, 1034, 868, 814, 756 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₅FNO₂ [M+H]⁺: 284.1081, found 284.1083; SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak IC column, λ = 210 nm, t_R (min): minor = 2.09, major = 2.53.

(5*S*,10*bS*)-9-fluoro-5-(4-(trifluoromethyl)phenyl)-1,5,6,10b-tetrahydro-3*H*-oxazolo[4,3*a*]isoquinolin-3-one (5n): Compound 5n was prepared from isoquinoline 1n using general procedure 5 and purified by column chromatography (20% to 30% to 40% EtOAc in hexanes) to provide a pale yellow oil (38 mg, 54% yield); 92% ee; $[\alpha]_D^{25}$ +115.7 (*c* 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.29 (dd, *J* = 8.6, 5.4 Hz, 1H), 7.02 (td, *J* = 8.4, 2.5 Hz, 1H), 6.71 (dd, *J* = 8.8, 2.4 Hz, 1H), 5.35 (dd, *J* = 6.6, 3.4 Hz, 1H), 4.80 (t, *J* = 8.5, 1H), 4.69 (dd, *J* = 8.6, 5.9 Hz, 1H), 4.35 (dd, *J* = 8.4, 5.8 Hz, 1H), 3.42 (dd, *J* = 16.6, 6.3 Hz, 1H), 3.22 (dd, *J* = 16.6, 3.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, *J* = 247.2 Hz), 157.5, 142.7, 136.0 (d, *J* = 6.8 Hz), 131.0 (d, *J* = 7.9 Hz), 130.3 (q, *J* = 32.6 Hz), 128.4 (d, *J* = 3.3 Hz, 1H), 127.5, 125.9 (q, *J* = 3.7 Hz), 124.0 (q, *J* = 271.0 Hz), 115.7 (d, *J* = 21.3 Hz), 111.5 (d, *J* = 22.4 Hz), 68.3, 51.9 (d, *J* = 2.2 Hz), 51.5, 30.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -62.7, -113.7 - -113.8 (m); IR (Neat Film, NaCl) 2921, 1754, 1620, 1594, 1500, 1402, 1326, 1241, 1162, 1115, 1068, 1018, 839, 759 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₈H₁₄F₄NO₂ [M+H]⁺: 352.0955, found 352.0954; SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak IC column, λ = 210 nm, t_R (min): minor = 1.43, major = 1.60.

Experimental Procedure for Product Transformations:

This procedure has been adapted from a previous report.⁸ To a 1-dram vial equipped with a stir bar was added a solution of tetrahydroisoquinoline 5a (4.4 mg, 0.02 mmol) in 1:1 1,4dioxane:H₂O (0.4 mL total, 0.05 M). Barium hydroxide octahydrate (24 mg, 4.1 equiv, 0.07 mmol) was then added and the vial was capped with a PTFE-lined septum and sealed with electrical tape. The reaction mixture was heated to 120 °C and stirred for 3 hours until TLC analysis indicated complete consumption of the starting material. The reaction was then diluted with H₂O, extracted with EtOAc, and the collected organic layers were dried over Na₂SO₄ and concentrated under vacuum. The crude product was purified by column chromatography (50% EtOAc in hexanes + 1% NEt₃) to afford **2a** as a white solid (3.2 mg, 81% yield): $[\alpha]_D^{25}$ -8.3 (c 0.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.44 (m, 2H), 7.42 – 7.38 (m, 2H), 7.33 – 7.29 (m, 1H), 7.22 - 7.18 (m, 2H), 7.17 - 7.13 (m, 2H), 4.23 (dd, J = 10.6, 4.8 Hz, 1H), 4.15 (dd, J = 11.2, 3.9 Hz, 1H), 3.80 (dd, J = 10.8, 4.8 Hz, 1H), 3.71 (t, J = 10.7 Hz, 1H), 3.07 (dd, J = 10.7 16.4, 3.9 Hz, 1H), 2.95 (dd, J = 16.3, 11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 135.5, 134.7, 129.5, 128.8, 127.5, 127.0, 126.7, 126.6, 126.4, 63.8, 57.4, 50.7, 36.8; IR (Neat Film, NaCl) 3411, 2357, 2086, 1733, 1716, 1700, 1652, 1558, 1540, 1457, 678 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₆H₁₈NO $[M+H]^+: 240.1388$, found 240.1387.

This procedure has been adapted from a previous report.⁹ To a 1-dram vial equipped with a stir bar was added a solution of tetrahydroisoquinoline **5a** (5.0 mg, 0.02 mmol) in CH₂Cl₂ (0.4 mL, 0.05 M). The reaction mixture was cooled to 0 °C, and a solution of DIBAL (1.0 M in THF, 0.38 mL, 0.2 mmol) was added dropwise. After stirring for 1 hour, the reaction mixture showed complete consumption of starting material by TLC, and was quenched with MeOH, H₂O, and saturated aqueous Rochelle's salt and stirred for an additional hour. The reaction was then diluted with H₂O, extracted with CH₂Cl₂ (2 x 5 mL), and the collected organic layers were dried over Na₂SO₄ and concentrated under vacuum. The crude product was purified by column chromatography (30% EtOAc in hexanes) to afford **6a** as a clear oil (3.5 mg, 73% yield): $[\alpha]_D^{25}$ +115.8 (*c* 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.45 (m, 2H), 7.42 – 7.38 (m, 2H),

7.33 – 7.29 (m, 1H), 7.25 – 7.22 (m, 3H), 7.17 – 7.13 (m, 1H), 4.34 (dd, J = 12.2, 4.0 Hz, 1H), 3.93 (dd, J = 10.5, 5.3 Hz, 1H), 3.81 (dd, J = 10.8, 5.3 Hz, 1H), 3.72 (t, J = 10.6 Hz, 1H), 3.37 (dd, J = 16.5, 12.2 Hz, 1H), 2.92 (dd, J = 16.5, 4.0 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 134.5, 133.7, 129.5, 128.5, 127.9, 127.8, 127.4, 126.9, 126.7, 65.8, 63.4, 53.2, 35.7, 25.1; IR (Neat Film, NaCl) 3423, 3058, 3024, 2918, 2854, 2366, 1496, 1450, 1406, 1222, 1130, 1044, 774, 752, 699 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₂₀NO [M+H]⁺: 254.1545, found 254.1543.

Additional Optimization Results

Ć	Ph		[lr(cod)Cl] ₂ (1.25 mol %) <i>L1</i> (3 mol %) H ₂ (X bar), salt (7.5 mol %)		NH	Ph P(DM	P(XyI) ₂ Fe <u>i</u> Me
	1a	ЮН	9:1 CH ₂ Cl ₂ :a 23 °C,	cid (0.02 M) 18 h	он 2а		L1: SL-J418-1
-	entry	salt additive	acid	pressure	% conversion ^b	cis:trans ^b	% ee of trans ^c
	1	TBACI	AcOH	20 bar	75	1:2.3	90
	2	TBAI	AcOH	20 bar	>95	1.5:1	97
	3	TBAPF ₆	AcOH	20 bar	<10	-	-
	4	TBABF ₄	AcOH	20 bar	<10	-	-
	5	TBABPh ₄	AcOH	20 bar	<10	-	-
	6	LiBr	AcOH	20 bar	>95	1:2.3	91
	7	NaBr	AcOH	20 bar	90	1:2.3	89
	8	KBr	AcOH	20 bar	35	1:2.4	86
	9	TBABr	TFA	20 bar	<10	-	-
	10	TBABr	MsOH	20 bar	<10	-	-
	11	TBABr	AcOH	10 bar	>95	1:2.3	91
	12	TBABr	AcOH	60 bar	>95	1:2.6	93

Table S1. Additional Optimization Studies^a

^aConditions: 0.04 mmol *1a*, 1.25 mol % [Ir(cod)Cl]₂, 3 mol % ligand, 7.5 mol % salt additive, 20 bar H₂ in 0.5 mL 9:1 CH₂Cl₂:acid. ^bDetermined from crude ¹H NMR using trimethoxybenzene as a standard. ^cDetermined by chiral SFC analysis of Cbz-protected product.

Table S2. Additional Ligand Screen^a

^aConditions: 0.04 mmol *1a*, 1.25 mol % [Ir(cod)Cl]₂, 3 mol % ligand, 7.5 mol % TBABr, 20 bar H₂ in 0.5 mL 9:1 CH₂Cl₂:AcOH. Determined from crude ¹H NMR using trimethoxybenzene as a standard.

Deuterium Incorporation Experiments

Deuterium experiments were conducted according to general procedure 5 for the hydrogenation of isoquinoline 1a using deuterium gas instead of hydrogen gas, and/or d_4 -AcOH instead of protio acetic acid.

Due to the inseparable nature of the *cis*- and *trans*-diastereomers, the hydrogenated products were subsequently protected with benzyl chloroformate (6.3 μ L, 0.044 mmol, 1.1 equiv) in 1:1 saturated aq. NaHCO₃ and EtOAc (1 mL total). After the reaction showed full conversion of the hydrogenated product, the crude reaction mixture was washed with ethyl acetate and the collected organic layers were dried over Na₂SO₄ and concentrated under vacuum. Both the *cis*- and *trans*-isomers were isolated by preparative TLC (40% EtOAc in hexanes) of the Cbz-protected THIQ, then subsequently deprotected using 10 wt% Pd/C catalyst (1 mg) under a H₂ balloon in MeOH (0.1 M) to afford deuterium-labelled **2a**. The major *trans*-isomer was analyzed by ¹H and ²H NMR spectroscopy.

Proposed Catalytic Cycle

Figure S1. Based on preliminary mechanistic studies and literature precedent, a proposed catalytic cycle for the trans-selective asymmetric hydrogenation is described. Pre-formation of the chiral catalyst using [Ir(cod)Cl]₂, chiral ligand, and TBABr, followed by oxidative addition with H₂ delivers the halogen-bridged dinuclear Ir^{III} catalyst complex 7. Without the halide, the iridium bisphosphane catalysts tend to irreversibly form dimeric iridium hydride complexes that are catalytically inactive.¹⁰ Addition of the isoquinoline substrate then undergoes bidentate coordination to the metal to generate the corresponding mononuclear Ir^{III} complex 8, followed by a 1,2-hydride addition to establish the C1-stereocenter (9).¹¹ Isomerization and tautomerization of the substrate then enables a directed hydrogenation (10) guided by the hydroxymethyl group to deliver the hydride on the opposite face of the molecule. The addition of H₂ in the presence of acid regenerates the catalyst species and liberates the enantioenriched trans-THIQ product. Alternatively, based on our deuterium experiments, β -hydride elimination can also proceed from intermediate 11 to generate aldehyde intermediate 12, which is subsequently reduced to provide the same THIQ product. However, the possibility of β -hydride elimination occurring at other intermediates still cannot be ruled out, and further investigations of the mechanism are currently underway.

Table S3. Determination of Enantiomeric Excess

entry	compound	SFC analytic conditions	ee (%)
7	CF_3 CF_3 CF_3 CF_3 CF_3 CF_3	Chiralpak IC, λ = 210 nm 25% MeOH/CO2, 3.5 mL/min tʀ (min) minor 2.22, major 2.37	91
8	\sim	Chiralpak IC, λ = 210 nm 40% MeOH/CO2, 3.5 mL/min tя (min) minor 3.97, major 4.48	83
9	Fh N 5g	Chiralcel OJ-H, λ = 210 nm 45% MeOH/CO ₂ , 3.5 mL/min t _R (min) minor 5.72, major 6.80	75
10		Chiralpak IC, λ = 210 nm 40% MeOH/CO ₂ , 3.5 mL/min t _R (min) minor 4.21, major 4.61	89
11		Chirapak IC, λ = 210 nm 40% MeOH/CO ₂ , 3.5 mL/min t _R (min) minor 2.47, major 2.71	86
12	OMe OMe OMe OMe	Chiralpak AD-H, λ = 210 nm 40% MeOH/CO2, 3.5 mL/min tr (min) major 2.13, minor 2.74	87

entry	compound	SFC analytic conditions	ee (%)
13	$ \begin{array}{c} $	Chiralpak AD-H, λ = 210 nm 40% MeOH/CO2, 3.5 mL/min tR (min) minor 2.24, major 2.67	97
14	OMe N O SI	Chiralpak AD-H, λ = 210 nm 40% MeOH/CO2, 3.5 mL/min tr (min) minor 2.80, minor 3.30	95
15	F F F F F F F F F F	Chiralpak IC, λ = 210 nm 40% MeOH/CO ₂ , 3.5 mL/min t _R (min) minor 2.09, major 2.53	95
16	F O O CF_3 CF	Chiralpak IC, λ = 210 nm 40% MeOH/CO ₂ , 3.5 mL/min t _R (min) minor 1.43, major 1.60	92

X-Ray Crystal Structure Data for Hydrogenated Product 5a

The tetrahydroisoquinoline product **5a** (91% ee) was crystallized by slow evaporation from chloroform at 23 $^{\circ}$ C to provide crystals suitable for X-ray analysis.

Compound V21097 crystallizes in the orthorhombic space group $P2_12_12_1$ with one molecule in the asymmetric unit.

Table S4. Crystal data and structure refinement for V21097.

V21097		
C17 H15 N O2		
265.30		
100(2) K		
1.54178 Å		
Orthorhombic		
P212121		
a = 6.5620(8) Å	a = 90°.	
b = 14.2320(17) Å	$b = 90^{\circ}$.	
c = 14.4563(19) Å	$g = 90^{\circ}$.	
1350.1(3) Å ³		
4		
1.305 Mg/m ³		
0.687 mm ⁻¹		
560		
0.300 x 0.150 x 0.150	0.300 x 0.150 x 0.150 mm ³	
4.359 to 79.624°.	4.359 to 79.624°.	
-8<=h<=8, -17<=k<=1	-8<=h<=8, -17<=k<=18, -18<=l<=18	
23786		
	V21097 C17 H15 N O2 265.30 100(2) K 1.54178 Å Orthorhombic P2 ₁ 2 ₁ 2 ₁ a = 6.5620(8) Å b = 14.2320(17) Å c = 14.4563(19) Å 1350.1(3) Å ³ 4 1.305 Mg/m ³ 0.687 mm ⁻¹ 560 0.300 x 0.150 x 0.150 4.359 to 79.624°. -8<=h<=8, -17<=k<=1 23786	
Independent reflections	2903 [R(int) = 0.0368]	
--	---	
Completeness to theta = 67.679°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7543 and 0.6141	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2903 / 0 / 181	
Goodness-of-fit on F ²	1.106	
Final R indices [I>2sigma(I)]	R1 = 0.0314, wR2 = 0.0806	
R indices (all data)	R1 = 0.0317, wR2 = 0.0807	
Absolute structure parameter	0.04(5)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.157 and -0.228 e.Å ⁻³	

Table S5. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for V21097. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)	
C(1)	5632(2)	5374(1)	8245(1)	20(1)	
O(1)	7103(2)	4818(1)	8618(1)	26(1)	
O(2)	3839(2)	5236(1)	8370(1)	30(1)	
C(2)	9070(3)	5142(1)	8341(2)	39(1)	
C(3)	8729(2)	6082(1)	7842(1)	20(1)	
C(4)	9357(2)	6972(1)	8337(1)	18(1)	
C(5)	10846(3)	7016(1)	9020(1)	24(1)	
C(6)	11296(3)	7867(2)	9444(1)	32(1)	
C(7)	10246(3)	8669(2)	9192(1)	35(1)	
C(8)	8766(3)	8632(1)	8500(1)	28(1)	
C(9)	8329(2)	7787(1)	8060(1)	19(1)	
C(10)	6807(2)	7701(1)	7288(1)	19(1)	
C(11)	5305(2)	6893(1)	7469(1)	16(1)	
C(12)	3921(2)	6716(1)	6645(1)	16(1)	
C(13)	4020(3)	5903(1)	6111(1)	20(1)	
C(14)	2681(3)	5771(1)	5375(1)	22(1)	
C(15)	1261(3)	6451(1)	5150(1)	23(1)	

C(16)	1180(3)	7277(1)	5665(1)	22(1)
C(17)	2487(2)	7401(1)	6413(1)	19(1)
N(1)	6496(2)	6060(1)	7731(1)	19(1)

C(1)-O(2)	1.206(2)
C(1)-N(1)	1.352(2)
C(1)-O(1)	1.360(2)
O(1)-C(2)	1.428(2)
C(2)-C(3)	1.536(2)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-N(1)	1.474(2)
C(3)-C(4)	1.512(2)
C(3)-H(3)	1.0000
C(4)-C(5)	1.391(2)
C(4)-C(9)	1.401(2)
C(5)-C(6)	1.389(3)
C(5)-H(5)	0.9500
C(6)-C(7)	1.383(3)
C(6)-H(6)	0.9500
C(7)-C(8)	1.395(3)
C(7)-H(7)	0.9500
C(8)-C(9)	1.390(2)
C(8)-H(8)	0.9500
C(9)-C(10)	1.503(2)
C(10)-C(11)	1.537(2)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-N(1)	1.4693(19)
C(11)-C(12)	1.518(2)
C(11)-H(11)	1.0000
C(12)-C(13)	1.392(2)
C(12)-C(17)	1.395(2)
C(13)-C(14)	1.393(2)

Table S6. Bond lengths [Å] :	and angles [°] for V21097.
------------------------------	----------------------------

C(13)-H(13)	0.9500
C(14)-C(15)	1.382(3)
C(14)-H(14)	0.9500
C(15)-C(16)	1.391(2)
C(15)-H(15)	0.9500
C(16)-C(17)	1.391(2)
C(16)-H(16)	0.9500
C(17)-H(17)	0.9500
O(2)-C(1)-N(1)	127.52(16)
O(2)-C(1)-O(1)	122.54(15)
N(1)-C(1)-O(1)	109.93(14)
C(1)-O(1)-C(2)	110.03(13)
O(1)-C(2)-C(3)	106.31(14)
O(1)-C(2)-H(2A)	110.5
C(3)-C(2)-H(2A)	110.5
O(1)-C(2)-H(2B)	110.5
C(3)-C(2)-H(2B)	110.5
H(2A)-C(2)-H(2B)	108.7
N(1)-C(3)-C(4)	109.86(13)
N(1)-C(3)-C(2)	100.27(13)
C(4)-C(3)-C(2)	117.83(15)
N(1)-C(3)-H(3)	109.5
C(4)-C(3)-H(3)	109.5
C(2)-C(3)-H(3)	109.5
C(5)-C(4)-C(9)	120.26(15)
C(5)-C(4)-C(3)	124.42(15)
C(9)-C(4)-C(3)	115.32(14)
C(6)-C(5)-C(4)	120.11(17)
C(6)-C(5)-H(5)	119.9
C(4)-C(5)-H(5)	119.9
C(7)-C(6)-C(5)	119.90(17)
C(7)-C(6)-H(6)	120.1
C(5)-C(6)-H(6)	120.1
C(6)-C(7)-C(8)	120.27(17)
C(6)-C(7)-H(7)	119.9

C(8)-C(7)-H(7)	119.9
C(9)-C(8)-C(7)	120.30(17)
C(9)-C(8)-H(8)	119.9
C(7)-C(8)-H(8)	119.9
C(8)-C(9)-C(4)	119.13(15)
C(8)-C(9)-C(10)	123.21(15)
C(4)-C(9)-C(10)	117.66(14)
C(9)-C(10)-C(11)	111.16(13)
C(9)-C(10)-H(10A)	109.4
C(11)-C(10)-H(10A)	109.4
C(9)-C(10)-H(10B)	109.4
C(11)-C(10)-H(10B)	109.4
H(10A)-C(10)-H(10B)	108.0
N(1)-C(11)-C(12)	112.78(13)
N(1)-C(11)-C(10)	107.82(12)
C(12)-C(11)-C(10)	111.92(12)
N(1)-C(11)-H(11)	108.0
C(12)-C(11)-H(11)	108.0
C(10)-C(11)-H(11)	108.0
C(13)-C(12)-C(17)	118.59(15)
C(13)-C(12)-C(11)	122.95(14)
C(17)-C(12)-C(11)	118.46(14)
C(12)-C(13)-C(14)	120.40(15)
C(12)-C(13)-H(13)	119.8
C(14)-C(13)-H(13)	119.8
C(15)-C(14)-C(13)	120.71(15)
C(15)-C(14)-H(14)	119.6
C(13)-C(14)-H(14)	119.6
C(14)-C(15)-C(16)	119.42(15)
C(14)-C(15)-H(15)	120.3
C(16)-C(15)-H(15)	120.3
C(15)-C(16)-C(17)	119.92(15)
C(15)-C(16)-H(16)	120.0
C(17)-C(16)-H(16)	120.0
C(16)-C(17)-C(12)	120.94(15)
C(16)-C(17)-H(17)	119.5

C(12)-C(17)-H(17)	119.5	
C(1)-N(1)-C(11)	120.07(13)	
C(1)-N(1)-C(3)	111.82(13)	
C(11)-N(1)-C(3)	122.70(12)	

Symmetry transformations used to generate equivalent atoms:

Table S7. Anisotropic displacement paramet	ters (Å ² x 10 ³) for V21097. The anisotropic
displacement factor exponent takes the form:	$-2p^{2}[h^{2} a^{*2}U^{11} + + 2h k a^{*} b^{*} U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C(1)	20(1)	19(1)	20(1)	2(1)	2(1)	2(1)	
O(1)	22(1)	23(1)	34(1)	12(1)	1(1)	5(1)	
O(2)	20(1)	26(1)	43(1)	11(1)	7(1)	0(1)	
C(2)	20(1)	28(1)	68(1)	18(1)	-9(1)	-2(1)	
C(3)	14(1)	21(1)	25(1)	2(1)	1(1)	1(1)	
C(4)	14(1)	25(1)	16(1)	1(1)	5(1)	0(1)	
C(5)	16(1)	36(1)	20(1)	0(1)	2(1)	4(1)	
C(6)	20(1)	49(1)	26(1)	-11(1)	-6(1)	6(1)	
C(7)	27(1)	39(1)	39(1)	-21(1)	-7(1)	3(1)	
C(8)	23(1)	28(1)	35(1)	-10(1)	-6(1)	4(1)	
C(9)	16(1)	24(1)	18(1)	-3(1)	1(1)	0(1)	
C(10)	19(1)	17(1)	19(1)	2(1)	-1(1)	-1(1)	
C(11)	16(1)	17(1)	16(1)	2(1)	1(1)	1(1)	
C(12)	13(1)	19(1)	15(1)	3(1)	2(1)	-2(1)	
C(13)	20(1)	20(1)	18(1)	2(1)	2(1)	1(1)	
C(14)	25(1)	24(1)	18(1)	0(1)	3(1)	-6(1)	
C(15)	21(1)	32(1)	16(1)	5(1)	-2(1)	-8(1)	
C(16)	16(1)	27(1)	22(1)	8(1)	0(1)	1(1)	
C(17)	17(1)	20(1)	20(1)	2(1)	2(1)	0(1)	
N(1)	14(1)	20(1)	22(1)	6(1)	0(1)	0(1)	

U(eq)	
47	
47	
24	
29	
38	
42	
34	
22	
22	
20	
24	
27	
28	
26	
22	
	47 24 29 38 42 34 22 22 20 24 27 28 26 22

Table S8. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for V21097.

Table S9.	Torsion	angles	[°]	for	V21097.
-----------	---------	--------	-----	-----	---------

O(2)-C(1)-O(1)-C(2)	179.11(18)
N(1)-C(1)-O(1)-C(2)	-0.1(2)
C(1)-O(1)-C(2)-C(3)	8.0(2)
O(1)-C(2)-C(3)-N(1)	-11.7(2)
O(1)-C(2)-C(3)-C(4)	107.34(18)
N(1)-C(3)-C(4)-C(5)	138.89(15)
C(2)-C(3)-C(4)-C(5)	25.0(2)
N(1)-C(3)-C(4)-C(9)	-41.39(18)
C(2)-C(3)-C(4)-C(9)	-155.28(15)
C(9)-C(4)-C(5)-C(6)	1.2(2)
C(3)-C(4)-C(5)-C(6)	-179.11(16)
C(4)-C(5)-C(6)-C(7)	0.6(3)
C(5)-C(6)-C(7)-C(8)	-1.3(3)

C(6)-C(7)-C(8)-C(9)	0.2(3)
C(7)-C(8)-C(9)-C(4)	1.6(3)
C(7)-C(8)-C(9)-C(10)	-177.85(17)
C(5)-C(4)-C(9)-C(8)	-2.3(2)
C(3)-C(4)-C(9)-C(8)	178.00(15)
C(5)-C(4)-C(9)-C(10)	177.19(14)
C(3)-C(4)-C(9)-C(10)	-2.5(2)
C(8)-C(9)-C(10)-C(11)	-130.25(17)
C(4)-C(9)-C(10)-C(11)	50.33(18)
C(9)-C(10)-C(11)-N(1)	-48.40(16)
C(9)-C(10)-C(11)-C(12)	-172.99(12)
N(1)-C(11)-C(12)-C(13)	-9.5(2)
C(10)-C(11)-C(12)-C(13)	112.26(16)
N(1)-C(11)-C(12)-C(17)	170.44(13)
C(10)-C(11)-C(12)-C(17)	-67.77(18)
C(17)-C(12)-C(13)-C(14)	-1.4(2)
C(11)-C(12)-C(13)-C(14)	178.59(14)
C(12)-C(13)-C(14)-C(15)	1.3(2)
C(13)-C(14)-C(15)-C(16)	0.3(2)
C(14)-C(15)-C(16)-C(17)	-1.7(2)
C(15)-C(16)-C(17)-C(12)	1.5(2)
C(13)-C(12)-C(17)-C(16)	0.0(2)
C(11)-C(12)-C(17)-C(16)	-179.99(14)
O(2)-C(1)-N(1)-C(11)	17.7(3)
O(1)-C(1)-N(1)-C(11)	-163.14(14)
O(2)-C(1)-N(1)-C(3)	172.42(17)
O(1)-C(1)-N(1)-C(3)	-8.43(19)
C(12)-C(11)-N(1)-C(1)	-80.48(17)
C(10)-C(11)-N(1)-C(1)	155.43(14)
C(12)-C(11)-N(1)-C(3)	127.63(15)
C(10)-C(11)-N(1)-C(3)	3.6(2)
C(4)-C(3)-N(1)-C(1)	-112.36(15)
C(2)-C(3)-N(1)-C(1)	12.38(19)
C(4)-C(3)-N(1)-C(11)	41.6(2)
C(2)-C(3)-N(1)-C(11)	166.32(16)

Symmetry transformations used to generate equivalent atoms:

<u>Determination of Relative and Absolute Configuration of 2a by Vibrational Circular</u> <u>Dichroism (VCD):</u>

Experimental Protocol. A solution of the isolated *trans* isomer of **2a** (11 mg) was prepared in CDCl₃ (225 μ L; 49 mg/mL) and loaded into a front-loading SL-4 cell (International Crystal Laboratories) possessing BaF₂ windows and 100 μ m path length. Infrared (IR) and VCD spectra were acquired on a BioTools ChiralIR-2X VCD spectrometer as a set of 30 one-hour blocks (30 blocks, 3120 scans per block) at 4 cm⁻¹ resolution in dual PEM mode. A 15-minute acquisition of neat (–)- α -pinene control (separate 75 μ m BaF₂ cell) yielded a VCD spectrum in agreement with literature spectra and identical to those previously acquired on the same instrument. IR and VCD spectra were background corrected using a 30-minute block IR acquisition of the empty instrument chamber under gentle N₂ purge, and were solvent corrected using a 6-hour (6 blocks, 3120 scans per block) IR/VCD acquisition of CDCl₃ in the same 100 μ m BaF₂ cell as used for **2a**. The reported spectra represent the result of block averaging. The baseline of the resultant VCD spectrum (top left panel below) was vertically offset by a constant such that the y-value was zero at a frequency of 1000 cm-1 for ease of viewing and assignment.

Computational Protocol. The arbitrarily chosen (*R*,*R*) enantiomer of **2a** (ultimately corresponding to *ent-2a*) was subjected to an initial exhaustive stochastic molecular mechanicsbased conformational search (MMFF94 force field, 0.06 Å geometric RMSD cutoff, and 30 kcal/mol energy window) as implemented in MOE 2019.0102 (Chemical Computing Group, Montreal, CA). All conformers retained the (*R*,*R*) configuration and were subjected to geometry optimization, harmonic frequency calculation, and VCD rotational strength evaluation using density functional theory utilizing the B3PW91 functional, cc-pVTZ basis, and implicit IEFPCM chloroform solvation model. All calculations were performed with the *Gaussian 16* program system (Rev. C.01; Frisch *et al.*, Gaussian, Inc., Wallingford, CT). Resultant IEFPCM-B3PW91/cc-pVTZ harmonic frequencies were scaled by 0.98. All structurally unique conformers possessing all positive Hessian eigenvalues were Boltzmann weighted by relative free energy at 298.15 K. The predicted IR and VCD frequencies and intensities of the retained conformers were convolved using Lorentzian line shapes ($\gamma = 4$ cm⁻¹) and summed using the respective Boltzmann weights to yield the final predicted IR and VCD spectra. The predicted VCD spectrum of the (S,S) enantiomer (ultimately agreeing with the experimentally measured spectrum of isolated **2a**) was generated by inversion of sign. From alignment of the experimentally measured and theoretical IR spectra, in particular regions **A-E** corresponding to unambiguous regions of the experimental VCD spectrum (see below) the absolute configuration of the isolated and measured **2a** could be confidently assigned as (S,S).

Experimental (left) and theoretical (right) IR and VCD spectra of 2a.

References:

- Pangborn, A. M.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics. 1996, 15, 1518–1520.
- (2) Sheldrick, G. M. Acta Cryst. 1990, A46, 467-473.
- (3) Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.
- (4) Müller, P. Crystallography Reviews 2009, 15, 57-83.
- (5) Kim, A. N.; Ngamnithiporn, A.; Welin, E. R.; Daiger, M. T.; Grünanger, C. U.; Bartberger, M. D.; Virgil, S. C.; Stoltz, B. M. ACS Catal. 2020, 10, 3241–3248.
- (6) Legault, C. Y.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 8966-8967.
- (7) Xu, Z.; Xu, X.; O'Laoi, R.; Ma, H.; Zheng, J.; Chen, S.; Luo, L.; Hu, Z.; He, S.; Li, J.; Zhang, H.; Zhang, X. *Bioorg. Med. Chem.* 2016, *24*, 5861–5872.
- (8) Liu, C.-Y.; Angamuthu, V.; Chen, W.-C.; Hou, D.-R. Org. Lett. 2020, 22, 2246-2250.
- (9) Butora, G.; Hudlicky, T.; Fearnley, S. P.; Gum, A. G.; Stabile, M. R.; Abboud, K. *Tetrahedron Lett.* **1996**, *37*, 8155–8158.
- (10) Kita, Y.; Yamaji, K.; Higashida, K.; Sathaiah, K.; Iimuro, A.; Mashima, K. *Chem. Eur. J.* **2015**, *21*, 1915–1927.
- (11) Dorta, R.; Broggini, D.; Stoop, R.; Rüegger, H.; Spindler, F.; Togni, A. Chem. Eur. J. 2004, 10, 267–278.

¹³C NMR (100 MHz, CDCl₃) of compound S4I.

¹H NMR (400 MHz, CDCl₃) of compound **3f**.

SI 55

SI 61

SI 62

¹⁹F NMR (282 MHz, CDCl₃) of **5d**.

¹³C NMR (100 MHz, CDCl₃) of **5g**.

¹⁷⁰ 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 $^{\text{ppm}}$ $^{13}\text{C NMR} (100 \text{ MHz}, \text{CDCl}_3) \text{ of 5h.}$

¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ¹³C NMR (100 MHz, CDCl₃) of **5m**.

¹⁹F NMR (282 MHz, CDCl₃) of **5m**.

¹H NMR (400 MHz, CDCl₃) of compound **5n**.

¹⁹F NMR (282 MHz, CDCl₃) of **5n**.

SFC Traces of Racemic and Enantioenriched Compounds

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.928	BV	0.0710	1980.20166	435.95096	53.8603
2	2.256	VB	0.0792	1696.34778	334.17471	46.1397

Enantioenriched 2a•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	1.688	MM	0.0796	3905.88330	817.43951	96.8437
2	2.038	VB	0.0815	127.29790	24.16609	3.1563

Racemic 4e•Cbz

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	1.339	BV	0.0654	3562.84033	841.34003	49.4402
2	1.647	VB	0.0697	3643.52856	791.14252	50.5598

Enantioenriched 4e•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.951	BB	0.0532	1799.63599	535.01355	37.2214
2	4.283	BB	0.1396	3035.31348	341.70935	62.7786

Racemic 5a

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	3.707	BB	0.1015	3502.39062	541.37115	52.8660
2	4.125	BB	0.1114	3122.64380	436.64725	47.1340

Enantioenriched 5a

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime	Туре	Width	Area	Height	Area
	[min]		[m±n]	[IIIA0~S]	[IIIAO] 	
1	2.407	MM	0.0668	222.44351	55.51492	4.3600
2	2.610	VB	0.0746	4879.43848	1043.11670	95.6400

Racemic 5b

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.267	MM	0.1746	1256.77405	119.94225	48.9963
2	8.777	MM	0.1897	1308.26367	114.92722	51.0037

Enantioenriched 5b

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	7.517	BB	0.1605	109.86375	10.29189	2.2102
2	8.656	MM	0.2012	4860.83008	402.59357	97.7898

Racemic 5c

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	4.913	BV	0.1173	2155.09814	287.93854	53.9109
2	5.252	VB	0.1248	1842.42236	231.71597	46.0891

Enantioenriched 5c

Peak	RetTime	Туре	Width	Area	Height	Area
Ŧ	[min]		[min]	[mAU^S]	[mAU]	6
1	5.042	BB	0.1251	2841.96826	356.06854	97.7926
2	5.436	BB	0.1298	64.14865	7.64981	2.2074

Racemic 5d

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	2.388	VV	0.0630	2858.31030	709.17267	54.7573
2	2.581	VV	0.0679	2361.65356	551.95624	45.2427

Enantioenriched 5d

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	2.402	BV	0.0636	44.24749	10.85165	2.3018
2	2.592	VB	0.0654	1878.07214	443.49234	97.6982

Racemic 5e

Enantioenriched 5e

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	2.222	MM	0.0589	51.33008	14.52952	4.4192
2	2.370	VB	0.0618	1110.19238	282.54547	95.5808

Racemic 5f

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	3.962	BB	0.1038	1974.61340	296.26938	49.6855
2	4.481	BB	0.1192	1999.60779	261.47470	50.3145

Enantioenriched 5f

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	3.972	MM	0.1059	535.31372	84.21969	8.5046
2	4.481	BB	0.1237	5759.05176	732.42853	91.4954

Racemic 5g

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	5.721	BB	0.1560	3871.54150	389.45190	55.6158
2	6.795	BB	0.1833	3089.68970	262.50827	44.3842

Enantioenriched 5g

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	5.657	BB	0.1548	250.86575	25.05193	12.4672
2	6.733	MM	0.2019	1761.33459	145.37187	87.5328

Racemic 5h

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	4.145	VV	0.1063	3792.93726	565.46350	46.8336
2	4.520	VB	0.1178	4305.81396	572.19220	53.1664

Enantioenriched 5h

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	4.204	MM	0.1100	404.69440	61.30987	5.7254
2	4.606	VB	0.1253	6663.66309	851.73578	94.2746

Racemic 5i

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.461	BV	0.0685	1989.77161	459.68130	45.4962
2	2.703	VB	0.0750	2383.71631	505.36072	54.5038

Enantioenriched 5i

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.467	MM	0.0691	244.83684	59.04865	6.7569
2	2.710	BB	0.0762	3378.64526	701.71271	93.2431

Racemic 5j

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.131	VB .	0.0637	2812.75122	717.95227	44.7721
2	2.709	VB	0.0771	3469.62817	709.34265	55.2279

Enantioenriched 5j

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	2.134	BB	0.0607	1950.11230	508.64514	93.6326
2	2.743	MM	0.0713	132.61661	31.00001	6.3674

Racemic 5k

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	2.253	BB	0.0608	102.34369	26.65138	49.9903
2	2.688	BB	0.0704	102.38338	22.78030	50.0097

Enantioenriched 5k

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.237	BB	0.0852	28.60090	4.68965	1.5821
2	2.666	BB	0.0707	1779.20972	393.78354	98.4179

Racemic 51

Enantioenriched 51

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.804	MM	0.0740	45.38032	10.21401	2.2827
2	3.300	BB	0.0853	1942.64270	357.85828	97.7173

Racemic 5m

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	2.102	VV	0.0601	2910.37720	769.22076	48.1925
2	2.547	VB	0.0699	3128.68921	703.73804	51.8075

Enantioenriched 5m

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	2.085	VB	0.0584	106.31534	29.28596	2.6213
2	2.526	BB	0.0708	3949.48437	872.81018	97.3787

Racemic 5n

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.425	VV	0.0489	2372.91919	793.90009	48.1444
2	1.599	VB	0.0516	2555.83887	792.44293	51.8556

Enantioenriched 5n

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.425	BB	0.0455	79.36908	27.67383	4.1301
2	1.599	BB	0.0489	1842.37402	583.17084	95.8699