Paired Electrolysis Enabled Annulation for

the Quinolyl-modification of Bioactive

Molecules

Shiqi You,^[a] Mengyao Ruan, ^[a] Cuifen Lu,^[a] Li Liu,^[a] Guichun Yang,^[a] Shengchun Wang, ^[b] Hesham Alhumade,^[c] Aiwen Lei* ^[b] and Meng Gao* ^[a]

Supporting Information

1. General Information	2
2. Synthesis of Starting Materials	3
2.1 Synthesis of starting materials dipeptides	3
2.2 Synthesis of Methyl (2,3-dioxoindoline-5-carbonyl)-L-valinate (6)	7
3. General Procedure	8
3.1 Reaction optimization	8
3.2 General procedure for cyclic voltammetry (CV)	9
3.3 Bioactive molecules scope and characterization	10
3.4 Gram-Scale Experiments	25
3.5 Polypeptide scope and characterization	25
3.6 Isatins, alkynes and selected small-molecule alcohols scope and characterization	27
3.7 PTL derivatives	40
3.8 Chemoselective transformations of quinoline-substituted bioactive molecule	43
4. References	45
5. Spectra	46
5.1 NMR spectra of Products	46
5.2 Fluorescence Measurement of selected Products	104

1. General Information

Unless otherwise stated, analytical grade solvents and commercially available reagents were used without further purification. All solvents were analytical reagent or better and were degassed prior to use. The instrument for electrolysis was dual display potentiostat (DJS-292B) (made in China). The anode electrode is carbon rod electrodes (Φ 6mm) and the cathode electrode is platinum plate electrodes (15 mm×15 mm×0.3 mm). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (boiling point is between 60-90°C). Gradient flash chromatography was conducted eluting with a continuous gradient from petroleum to the indicated solvent, and they are listed as volume/volume ratios. High resolution mass spectra (HRMS) for polypeptides were measured with an Agilent 6224 instrument and accurate masses were reported for the molecular ion + Hydrogen (M+H) or molecular ion + Sodium (M+Na). The ¹H. ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Advance III (400 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. For ¹H NMR, chemical shifts (δ) were given in ppm relatives to internal standard (TMS at 0 ppm, CDCl₃) at 7.26 ppm, MeOH- d_4 at 3.31 ppm). For ¹³C-NMR, chemical shifts (δ) were reported in ppm using solvent as internal standard (CDCl₃ at 77.00 ppm, MeOH-d₄ at 49.00 ppm). GC-MS spectra were recorded on a Varian GC-MS 3900-2100T and Shimadzu GCMS-QP2010SE.

2. Synthesis of Starting Materials

2.1 Synthesis of starting materials dipeptides^{[1][2]}

To a solution of Boc-L-serine **A** (410 mg, 2.0 mmol, 1.0 equiv.) in 40 mL CH₂Cl₂ was added HOBT (1-hydroxybenzotriazole) (3.0 mmol), HBTU (O-benzotriazole-*N*, *N*, *N'*, *N'*-tetramethyluronium-hexafluorophosphate) (3.0 mmol) and triethylamine (2.4 mmol). The mixture was stirred for 30 min at room temperature, and then, peptide **B** (2.0 mmol) was added to the solution. The reaction was stirred overnight. After regular workup, the reaction mixture washed by saturated NaHCO₃ solution (40 mL x 3), 2M hydrochloric acid solution (40 mL x 3) and H₂O (40 mL x 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The resulting crude product was purified by flash chromatography (DCM/MeOH) to afford corresponding dipeptides **3aa-3ag**.

Dipeptide **3aa Boc-Ser-Gly-Ome**, white solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.94 (s, 1H), 6.63 (s, 1H), 4.76 (s, 1H), 4.48 (dt, J = 11.0, 7.0 Hz, 1H), 3.99 – 3.87 (m, 2H), 3.68 (s, 3H), 3.72 - 3.56 (m, 2H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.09, 170.46, 156.35, 79.55, 62.00, 55.00, 52.34, 41.60, 28.27.

Dipeptide **3ab Boc-Ser-Ala-Ome**, colorless oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.75 (s, 1H), 6.66 (d, J = 11.0 Hz, 1H), 4.71 (s, 1H), 4.52 (dt, J = 11.0, 7.0 Hz, 1H), 4.32 (dq, J = 9.7, 6.8 Hz, 1H), 3.70 (s, 3H), 3.71 – 3.63 (m, 1H), 3.61 (dt, J = 12.3, 6.7 Hz, 2H), 1.40 (s, 9H), 1.33 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 173.13, 171.17, 156.35, 79.55, 62.02, 54.55, 52.61, 48.27, 28.27, 17.76.

Dipeptide **3ac Boc-Ser-Val-Ome**, colorless oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.63 (d, J = 11.7 Hz, 1H), 6.65 (d, J = 11.0 Hz, 1H), 4.67 (s, 1H), 4.52 (dt, J = 11.0, 7.1 Hz, 1H), 4.08 (dd, J = 11.8, 7.0 Hz, 1H), 3.66 (s, 3H), 3.71 – 3.63 (m, 1H), 3.59 (dt, J = 12.5, 6.9 Hz, 1H), 2.14 (h, J = 6.8 Hz, 1H), 1.39 (s, 9H), 1.01 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 173.42, 171.40, 156.33, 79.55, 62.06, 57.90, 54.59, 52.40, 30.38, 28.28, 19.05.

Dipeptide **3ad Boc-Ser-Met-Ome**, yellow oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.63 (d, J = 11.0 Hz, 1H), 6.67 (d, J = 11.0 Hz, 1H), 4.78 (s, 1H), 4.52 (dt, J = 11.0, 7.0 Hz, 1H), 4.26 (dt, J = 11.0, 7.0 Hz, 1H), 3.71(s, 3H), 3.68 – 3.58 (m, 2H), 2.61 (td, J = 7.1, 1.4 Hz, 2H), 2.07 (s, 3H), 2.12 – 1.93 (m, 2H), 1.40 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 173.06, 171.23, 156.30, 79.55, 62.05, 54.47, 52.47, 51.60, 31.22, 30.82, 28.29, 14.82.

Dipeptide **3ae Boc-Ser-Phe-Ome**, white solid, ¹H NMR (400 MHz, Chloroform-d) δ 7.65 (d, J = 11.4 Hz, 1H), δ 7.23(d, J = 7.4 Hz, 2H), 7.04 (d, J=6.3 Hz, 3H)., 6.65 (d, J = 11.0 Hz, 1H), 4.77 (s, 1H), 4.58 – 4.48 (m, 2H), 3.68 (s, 3H), 3.67 – 3.56 (m, 2H), 3.03 – 2.92 (m, 2H), 1.40 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.56, 156.33, 136.71, 129.17, 128.60, 127.16, 79.34, 62.09, 54.49, 53.66, 52.35, 37.79, 28.30.

Dipeptide **3af Methyl**(*R*)-2-((*R*)-2-((tert-butoxycarbonyl)amino)-3-hydroxypropanamido)-2phenylacetate, colorless oil, ¹H NMR (400 MHz, Chloroform-d) δ 7.64 (d, J = 10.8 Hz, 1H), 7.43 – 7.40 (m, 2H), 7.39 – 7.28 (m, 3H), 6.67 (d, J = 11.0 Hz, 1H), 5.51 (d, J = 8.9 Hz, 0H), 4.72 (s, 1H), 4.57 (dt, J = 11.0, 7.1 Hz, 1H), 3.74 (s, 3H), 3.72 – 3.63 (m, 1H), 3.65 – 3.56 (m, 1H), 1.40 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.45, 170.84, 156.32, 136.83, 128.91, 128.49, 128.02, 79.44, 62.11, 55.43, 54.80, 52.92, 28.30.

Dipeptide **3ag Methyl**(*S*)-2-((*R*)-2-((*tert*-butoxycarbonyl)amino)-3-hydroxypropanamido)-3chloropropanoate, colorless oil, ¹H NMR (400 MHz, Chloroform-d) δ 7.68 (d, J = 10.6 Hz, 1H), 6.65 (d, J = 11.0 Hz, 1H), 4.74 (s, 1H), 4.55 – 4.92 (m, 2H), 3.86 (dd, J = 12.5, 7.0 Hz, 1H), 3.76 (dd, J = 12.4, 7.1 Hz, 1H), 3.70 (s, 2H), 3.69 – 3.56 (m, 2H), 1.40 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.78, 171.07, 156.31, 79.55, 62.08, 54.71, 54.08, 52.43, 45.98, 28.27.

In a round bottomed flask, equipped with a stir bar, peptide **A** (2.0 mmol), HOBT (1-hydroxybenzotriazole) (3.0 mmol), HBTU (O-benzotriazole-*N*, *N*, *N'*, *N'*-tetramethyluronium-hexafluorophosphate) (3.0 mmol), dichloromethane (40 mL) and triethylamine (2.4 mmol) were combined and added. The mixture was stirred for 30 min at room temperature, and then, peptide **B** (2.0 mmol) was added to the solution. The reaction was stirred overnight. After regular workup, the reaction mixture washed by saturated NaHCO₃ solution (40 mL x 3), 2M hydrochloric acid solution (40 mL x 3) and H₂O (40 mL x 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The resulting crude product was purified by flash chromatography (DCM/ MeOH) to afford corresponding dipeptides **3ah**.

Dipeptide **3ah Methyl** ((*R*)-2-((*tert*-butoxycarbonyl)amino)pent-4-enoyl)-D-serinate, colorless oil, ¹H NMR (500 MHz, Chloroform-d) δ 7.36 (d, J = 12.1 Hz, 1H), 6.35 (d, J = 10.4 Hz, 1H), 5.80 – 5.71 (m, 1H), δ 5.10 (dd, J = 13.3, 4.7 Hz, 1H), 4.33 – 4.21 (m, 3H), 4.19 (t, J = 6.7 Hz, 1H), 3.84 – 3.74 (m, 3H), 3.69 (s, 3H), 2.52 – 2.39 (m, 3H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 172.15, 155.42, 133.00, 118.57, 79.55, 64.87, 54.59, 53.61, 52.64, 35.89, 28.32.

2.2 Synthesis of Methyl (2,3-dioxoindoline-5-carbonyl)-L-valinate (6)^[3]

L-Valine Methyl Ester Hydrochloride (2.0 mmol), HATU (3.0 mmol) and DIPEA (3.0 mmol) were dissolved in DCM (20 mL) and the solution was stirred at 0 °C under an argon atmosphere for 10min. Then, 2,3-Dioxoindoline-5-carboxylic Acid (2.0 mmol) in DCM (10 mL) was added dropwise, and the reaction mixture was stirred overnight at 0 °C to room temperature. The solvent was removed by reduced pressure, and the crude product was purified by silica gel chromatography with CH₂Cl₂/MeOH to get the product **5**, a yellow solid. Yield was 95%. ¹H NMR (400 MHz, Methanol-d4) δ 8.09 – 8.02 (m, 1H), 7.92 – 7.79 (m, 1H), 6.97 (dd, J = 21.8, 8.2 Hz, 1H), 4.49 – 4.45 (m, 1H), 3.75 (s, 3H), 2.28 – 2.21 (m, 1H), 1.02 (dd, J = 11.5, 6.8 Hz, 6H). ¹³C NMR (101 MHz, Methanol-d4) δ 183.37, 172.46, 167.37, 160.07, 153.03, 128.82, 123.90, 123.40, 117.69, 111.91, 58.88, 51.27, 30.34, 18.30, 17.88.

3. General Procedure

3.1. Reaction optimization

In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, isatin (0.3 mmol), dimethyl but-2-ynedioate (0.45 mmol), serine residue (0.45 mmol), "Bu₄NBF₄ (0.15 mmol) and KI (0.06 mmol) were combined and added. Then, solvent (6 mL) were injected into the tubes via syringes. The bottle was equipped with carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolysis at constant current under room temperature. When the reaction was finished, the solvent was removed by reduced pressure and the crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate= 5:1). A summary of optimization results is presented in **Table S1** below.

Table S1. Investigation of the reaction conditions

Entry	Variation from Standard Conditions ^[a]	Yield (%)
1	none	85
2	Without KI	N.D.
3	CH ₂ Cl ₂ as the solvent	Trace
4	5mL CH ₃ CN, 1 mL H ₂ O was used	35
5	Carbon as cathode	70
6	ⁿ Bu ₄ NPF ₆ instead of ⁿ Bu ₄ NBF ₄	74
7	"Bu ₄ ClO ₄ instead of "Bu ₄ NBF ₄	63
8	KI as electrolyte	89
9	I ₂ instead of KI	N.D.
10	0.1 equiv. KI was added	67
11	10 mA, 90 mins	76
12	without electric current	N.R.

^aReaction conditions: Undivided cell, carbon rod anode, Pt cathode, 1a (0.3 mmol), 2a (1.5 equiv.),
3a (1.5 equiv.), "Bu₄NBF₄ (0.5 equiv.), KI (0.2 equiv.), 6 mL MeCN, air, rt, 5 mA, 100 mins. Yields of isolated products are shown. N.D. = Not Detected. N.R. = No Reaction.

3.2 General procedure for cyclic voltammetry (CV)

Cyclic voltammetry was performed in a three-electrode cell connected to a schlenk line at room temperature. The working electrode was a steady glassy carbon disk electrode, the counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution and separated from a reaction by a salt bridge. The cyclic voltammetry (CV) experiments on 0.015 M **"Bu₄NBF₄** with 0.003 M substrate and 20 mol% **KI** with 0.003 M substrate were performed, respectively. The scan rate is 0.1 V/s. The positive scan range was from 0 V to 2.0 V and 0 V to -2.0 V.

Figure S1. As shown in this graphic, the cyclic voltammograms showed irreversible reduction waves for isatin (1a).

Figure S2. These results illustrated that two oxidation peak of KI was observed at 0.82 V and 1.22V while the oxidation peaks of "Bu₄BF₄ and substrate were not observed.

3.3 Bioactive molecules scope and characterization

General procedure for bioconjugated product (4a): In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, isatin (0.3 mmol), dimethyl but-2-ynedioate (0.45 mmol), serine residue (0.45 mmol), ^{*n*}Bu₄NBF₄ (0.15 mmol) and KI (0.06 mmol) were combined and added. Then, CH₃CN (6 mL) were injected into the tubes via syringes. The bottle was equipped with carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolysis at a constant current of 5 mA under room temperature for 100 mins. After completion of the reaction, as indicated by TLC and LC-MS, the pure product (yield: 85%, 124.95 mg) was obtained by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate= 5:1).

Detailed descriptions for products:

(*S*)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)2,3-dimethyl quinoline-2,3,4-tricarboxylate (4a): light yellow solid (Yield: 85 %, 124.95 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.24 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.87 (t, J = 7.7 Hz, 1H), 7.71 (t, J = 7.6 Hz, 1H), 5.56 (d, J = 8.4 Hz, 1H), 4.80 (d, J = 3.3 Hz, 2H), 4.68 (s, 1H), 4.02 (s, 3H), 3.95 (s, 3H), 3.74 (s, 3H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.39, 169.83, 165.85, 165.75, 164.98, 155.30, 147.97, 147.60, 139.85, 132.41, 130.50, 130.23, 125.51, 123.62, 80.46, 66.25, 53.50, 52.91, 52.84, 52.54, 28.25. HRMS (ESI) cald. for (M+H)⁺ C₂₃H₂₇N₂O₁₀: 491.1587 found,491.1589.

(S)-4-(2-((tert-butoxycarbonyl)amino)-3-((2-methoxy-2-oxoethyl)amino)-3-oxopropyl)2,3dimethyl quinoline-2,3,4-tricarboxylate (4aa): light yellow oil (Yield: 53 %, 86.97 mg), 1H NMR (400 MHz, Chloroform-d) δ 8.25 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.89 (t, J = 7.1 Hz, 1H), 7.74 (t, J = 7.7 Hz, 1H), 7.11 (s, 1H), 5.67 (dd, J = 47.0, 7.7 Hz, 2H), 4.96 – 4.74 (m, 2H), 4.03 (s, 3H), 3.97 (s, 3H), 3.62 (s, 2H), 2.77 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.94, 169.38, 168.99, 165.73, 165.09, 155.70, 147.90, 147.65, 139.86, 132.49, 130.54, 130.38, 125.62, 123.64, 122.35, 80.63, 65.79, 53.71, 53.54, 52.97, 52.30, 38.61, 28.28. HRMS (ESI) cald. for (M+H)+ C₂₅H₃₀N₃O₁₁:548.1836 found,548.1839.

4-((*S*)-2-((tert-butoxycarbonyl)amino)-3-(((*R*)-1-methoxy-1-oxopropan-2-yl)amino)-3oxopropyl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4ab): light yellow solid (Yield: 61 %, 102.48 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.26 (d, J = 4.1 Hz, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.88 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.73 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.02 (d, J = 7.2 Hz, 1H), 5.61 (s, 1H), 4.90 (dd, J = 11.0, 4.5 Hz, 1H), 4.65 (dd, J = 11.0, 5.1 Hz, 1H), 4.58 (s, 1H), 4.54 – 4.48 (m, 1H), 4.04 (s, 3H), 3.98 (s, 3H), 3.60 (s, 3H), 1.45 (s, 9H), 1.29 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.66, 167.44, 165.35, 164.13, 154.41, 146.77, 146.61, 139.08, 131.43, 129.46, 129.29, 124.76, 122.62, 121.43, 79.94, 64.73, 52.64, 52.51, 51.38, 47.28, 27.23, 17.13. HRMS (ESI) cald. for (M+H)+ C₂₆H₃₂N₃O₁₁:5618.1992 found,561.1988.

4-((S)-2-((tert-butoxycarbonyl)amino)-3-(((R)-1-methoxy-3-methyl-1-oxobutan-2yl)amino)-3-oxopropyl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4ac): white solid (Yield: 58 %, 102.46 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.89 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.74 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 6.95 (d, J = 8.6 Hz, 1H), 5.68 (s, 1H), 4.92 (dd, J = 11.0, 4.6 Hz, 1H), 4.70 (dd, J = 11.0, 4.9 Hz, 1H), 4.58 (s, 1H), 4.45 (dd, J = 8.8, 5.0 Hz, 1H), 4.05 (s, 3H), 4.00 (s, 3H), 3.58 (s, 3H), 2.02 (dt, J = 13.3, 6.6 Hz, 1H), 1.47 (s, 9H), 0.70 (d, J = 6.5 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.64, 168.87, 166.43, 165.72, 165.18, 155.49, 147.80, 147.62, 140.32, 132.49, 130.47, 130.30, 125.78, 123.58, 122.30, 80.86, 65.69, 64.89, 57.30, 53.67, 53.52, 52.05, 31.14, 28.26, 18.65, 17.40. HRMS (ESI) cald. for (M+H)+ C₂₈H₃₆N₃O₁₁:590.2305, found, 590.2300.

4-((*S*)-**2**-((tert-butoxycarbonyl)amino)-**3**-(((*R*)-**1**-methoxy-**4**-(methylthio)-**1**-oxobutan-**2**yl)amino)-**3**-oxopropyl) **2**,**3**-dimethyl quinoline-**2**,**3**,**4**-tricarboxylate (**4**ad): yellow solid (Yield: 62 %, 115.46 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.29 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.91 (t, J = 7.7 Hz, 1H), 7.77 (t, J = 7.7 Hz, 1H), 7.15 (d, J = 7.9 Hz, 1H), 5.70 (s, 1H), 4.93 (dd, J = 11.0, 4.4 Hz, 1H), 4.72 (dd, J = 11.0, 4.9 Hz, 1H), 4.66 (dt, J = 7.7, 3.8 Hz, 1H), 4.61 (d, J = 8.6 Hz, 1H), 4.06 (s, 3H), 4.02 (s, 3H), 3.62 (s, 3H), 2.29 (d, J = 6.5 Hz, 2H), 2.10 – 2.02 (m, 1H), 1.92 – 1.87 (m, 1H), 1.84 (s, 3H), 1.48 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.63, 168.78, 166.59, 165.67, 165.16, 155.42, 147.66, 140.09, 132.49, 130.53, 130.39, 128.78, 127.46, 125.70, 123.61, 80.87, 65.76, 53.72, 53.54, 52.45, 51.67, 31.38, 29.69, 29.58, 28.27, 15.16. HRMS (ESI) cald. for (M+Na)+ C₂₈H₃₅N₃NaO₁₁S:644.1885, found, 644.1910.

4-((S)-2-((tert-butoxycarbonyl)amino)-3-(((R)-1-methoxy-1-oxo-3-phenylpropan-2-

yl)amino)-3-oxopropyl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4ae): white solid (Yield: 53 %, 101.26 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 8.3 Hz, 1H), 7.89 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.74 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.13 (s, 1H), 7.00 (d, J = 7.4 Hz, 2H), 6.95 – 6.84 (m, 3H), 5.58 (s, 1H), 4.88 (dd, J = 11.0, 4.2 Hz, 1H), 4.81 – 4.76 (m, 1H), 4.67 (dd, J = 11.0, 4.9 Hz, 1H), 4.56 (s, 1H), 4.05 (s, 3H), 3.97 (s, 3H), 3.59 (s, 3H), 3.00 (t, J = 6.3 Hz, 2H), 1.44 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.20, 168.57, 166.25, 165.75, 165.19, 155.39, 147.91, 147.66, 140.24, 135.47, 132.51, 130.50, 130.32, 129.02, 128.33, 126.98, 125.77, 123.64, 122.28, 80.81, 65.67, 60.41, 53.64, 53.53, 53.44, 52.27, 37.69, 28.24. HRMS (ESI) cald. for (M+H)+ C₃₂H₃₆N₃O₁₁:638.2305, found, 638.2310.

4-((*S***)-2-((tert-butoxycarbonyl)amino)-3-(((***R***)-2-methoxy-2-oxo-1-phenylethyl)amino)-3oxopropyl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4f): light yellow oil (Yield: 50 %, 93.45 mg), ¹H NMR (400 MHz, Chloroform-d) \delta 8.28 (d, J = 8.2 Hz, 1H), 7.96 – 7.86 (m, 2H), 7.68 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.33 (s, 1H), 7.16 (d, J = 7.1 Hz, 2H), 7.07 (t, J = 7.3 Hz, 1H), 7.00 (t, J = 7.3 Hz, 2H), 5.72 (s, 1H), 5.48 (d, J = 7.2 Hz, 1H), 4.89 (dd, J = 11.0, 4.2 Hz, 1H), 4.70 (dd, J = 11.0, 4.7 Hz, 1H), 4.62 (s, 1H), 4.06 (s, 3H), 3.96 (s, 3H), 3.61 (s, 3H), 1.46 (s, 9H). ¹³C - 14 -** NMR (101 MHz, Chloroform-d) δ 170.59, 168.35, 166.44, 165.75, 155.47, 147.65, 135.92, 132.51, 130.41, 130.33, 128.61, 128.36, 126.91, 125.78, 123.60, 80.91, 65.85, 56.49, 53.68, 53.54, 53.41, 52.80, 28.25. HRMS (ESI) cald. for (M+H)+ C₃₁H₃₄N₃O₁₁:624.2149, found, 624.2140.

4-((S)-2-((tert-butoxycarbonyl)amino)-3-(((S)-3-chloro-1-methoxy-1-oxopropan-2-

yl)amino)-3-oxopropyl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4ag): yellow oil (Yield: 61 %, 110.64 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.26 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.88 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.73 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 7.31 (d, J = 7.7 Hz, 1H), 5.68 (s, 1H), 4.92 (dq, J = 6.6, 3.8, 3.0 Hz, 2H), 4.77 – 4.59 (m, 2H), 4.04 (s, 4H), 3.99 (s, 3H), 3.88 – 3.78 (m, 2H), 3.66 (s, 3H), 1.46 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 168.99, 168.69, 166.17, 165.79, 165.21, 155.44, 148.04, 147.64, 140.29, 132.48, 130.48, 130.24, 125.72, 123.61, 122.14, 80.98, 65.48, 53.67, 53.50, 53.20, 52.97, 44.59, 28.24. HRMS (ESI) cald. for (M+H)+ C₂₆H₃₁ClN₃O₁₁:596.1642, found, 596.1662.

4-((*R*)-2-((*S*)-2-((tert-butoxycarbonyl)amino)pent-4-enamido)-3-methoxy-3-oxopropyl)2,3dimethyl quinoline-2,3,4-tricarboxylate (4ah): yellow oil (Yield: 62 %, 109.15 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.24 (d, J = 8.4 Hz, 1H), 7.94 – 7.83 (m, 2H), 7.72 (td, J = 7.6, 7.1, 1.1 Hz, 1H), 7.25 (d, J = 4.5 Hz, 1H), 5.78 – 5.66 (m, 1H), 5.22 (s, 1H), 5.12 – 5.01 (m, 3H), 4.97 (s, 1H), 4.69 (dd, J = 11.2, 2.8 Hz, 1H), 4.29 (s, 1H), 4.02 (s, 3H), 3.98 (s, 3H), 3.73 (s, 3H), 2.58 (dt, J = 12.6, 6.0 Hz, 1H), 2.47 (dt, J = 14.3, 7.1 Hz, 1H), 1.37 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.72, 169.15, 166.13, 165.80, 165.01, 155.38, 148.13, 147.63, 140.35, 132.93, 132.53, 130.53, 130.28, 125.49, 123.53, 121.88, 118.95, 80.00, 65.49, 53.89, 53.81, 53.51, 53.00, 51.74, 36.90, 28.22. HRMS (ESI) cald. for (M+H)+ C₂₈H₃₄N₃O₁₁:588.2149, found, 588.2158.

2,3-dimethyl 4-((tetrahydrofuran-2-yl)methyl) quinoline-2,3,4-tricarboxylate (4aj): light yellow liquid (Yield: 80 %, 89.30 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.23 (d, J = 8.4 Hz, 1H), 8.09 (d, J = 8.3 Hz, 1H), 7.84 (ddd, J = 8.3, 6.8, 1.1 Hz, 1H), 7.70 (ddd, J = 8.1, 6.7, 0.9 Hz, 1H), 4.52 (dd, J = 11.4, 3.5 Hz, 1H), 4.35 (dd, J = 11.4, 6.6 Hz, 1H), 4.22 (qd, J = 6.9, 3.6 Hz, 1H), 4.01 (s, 3H), 3.93 (s, 3H), 3.85 (q, J = 7.5, 6.8 Hz, 1H), 3.76 (q, J = 7.7, 7.2 Hz, 1H), 2.03 (dt, J = 12.3, 6.3 Hz, 1H), 1.87 (p, J = 6.5, 5.6 Hz, 2H), 1.66 (dq, J = 12.2, 7.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.89, 165.75, 165.45, 147.78, 147.58, 140.18, 132.22, 130.46, 130.16, 125.80, 123.83, 123.02, 75.96, 68.47, 68.39, 53.49, 53.35, 27.95, 25.70. HRMS (ESI) cald. for (M+H)+ C₁₉H₂₀NO₇:374.1195, found, 374.1193.

4-cinnamyl 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4ak): yellow liquid (Yield: 72 %,

89.30 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.28 (d, J = 8.1 Hz, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.87 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.73 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.42 (d, J = 7.1 Hz, 2H), 7.33 (t, J = 7.3 Hz, 2H), 7.28 (d, J = 7.1 Hz, 1H), 6.79 (d, J = 15.9 Hz, 1H), 6.41 (dt, J = 15.9, 6.6 Hz, 1H), 5.12 (d, J = 7.7 Hz, 2H), 4.04 (s, 3H), 3.89 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 166.02, 165.68, 165.21, 147.61, 139.79, 135.82, 135.72, 132.22, 130.61, 130.27, 128.76, 128.48, 126.75, 125.65, 123.87, 123.40, 121.63, 67.29, 53.58, 53.35. HRMS (ESI) cald. for (M+H)+ C₂₃H₂₀NO₆:406.1246,found, 406.1243.

2,3-dimethyl 4-((4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)methyl) quinoline-2,3,4tricarboxylate (4al): yellow liquid (Yield: 72 %, 101.32 mg), ¹H NMR (400 MHz, Chloroformd) δ 8.27 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.90 – 7.85 (m, 1H), 7.73 (t, J = 7.7 Hz, 1H), 5.90 (s, 1H), 4.83 (d, J = 5.6 Hz, 2H), 4.70 (d, J = 10.1 Hz, 2H), 4.04 (s, 3H), 3.94 (s, 3H), 2.23 – 2.10 (m, 9H), 2.03 – 1.94 (m, 1H), 1.85 (d, J = 16.5 Hz, 1H), 1.71 (s, 3H), 1.48 (ddd, J = 20.1, 12.7, 8.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.94, 165.73, 165.38, 149.26, 147.76, 147.63, 140.20, 132.14, 131.65, 130.58, 130.11, 127.88, 125.67, 123.90, 123.13, 108.96, 70.95, 53.50, 53.26, 40.62, 30.51, 27.23, 26.50, 20.76. HRMS (ESI) cald. for (M+H)+ C₂₄H₂₆NO₆: 424.1755, found, 424.1760.

2,3-dimethyl 4-((1R,2S,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl) quinoline-2,3,4-

tricarboxylate (4am): yellow solid (Yield: 40%, 50.72 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 8.5 Hz, 1H), 7.99 (d, J = 8.5 Hz, 1H), 7.87 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.72 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 5.06 (t, J = 5.8 Hz, 1H), 4.04 (s, 3H), 3.93 (s, 3H), 2.03 (d, J = 5.8 Hz, 2H), 1.84 – 1.69 (m, 2H), 1.63 (td, J = 12.1, 11.6, 3.8 Hz, 1H), 1.26 (d, J = 13.1 Hz, 2H), 0.93 (s, 3H), 0.83 (d, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.91, 165.66, 165.26, 148.13, 147.59, 141.15, 132.14, 130.58, 129.96, 125.47, 123.83, 122.31, 84.40, 53.48, 53.20, 48.95, 47.07, 45.13, 38.59, 33.85, 27.01, 20.01, 19.78, 11.76. HRMS (ESI) cald. for (M+H)+ C₂₄H₂₈NO₆:426.1872,found, 426.1877.

4-((1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl) **2**,3-dimethyl quinoline-2,3,4-tricarboxylate (**4an**): yellow solid (Yield: 42%, 53.82 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.28 (d, J = 8.1 Hz, 1H), 8.02 (d, J = 9.1 Hz, 1H), 7.88 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.74 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 5.11 (td, J = 10.9, 4.4 Hz, 1H), 4.05 (s, 3H), 3.95 (s, 3H), 2.37 (d, J = 11.7 Hz, 1H), 1.96 (td, J = 7.0, 2.6 Hz, 1H), 1.74 (d, J = 12.5 Hz, 2H), 1.68 – 1.56 (m, 2H), 1.47 (t, J = 11.6 Hz, 1H), 1.21 – 1.11 (m, 2H), 1.00 (d, J = 6.5 Hz, 3H), 0.88 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.84, 165.20, 147.73, 147.58, 140.73, 132.02, 130.66, 130.01, 125.47, 123.92, 122.84, 77.63, 53.49, 53.17, 46.87, 40.54, 34.08, 31.56, 25.80, 23.03, 22.09, 20.80, 15.96. HRMS (ESI) cald. for (M+H)+ C₂₄H₃₀NO₆:428.2028, found, 428.2022.

(*E*)-4-(3,7-dimethylocta-2,6-dien-1-yl) 2,3-diethyl quinoline-2,3,4-tricarboxylate (4ao): yellow liquid (Yield: 70 %, 95.02 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.26 (d, J = 8.3 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.86 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.71 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 5.49 (t, J = 7.2 Hz, 1H), 5.12 – 5.06 (m, 1H), 4.98 (d, J = 7.2 Hz, 2H), 4.50 (q, J = 7.1 Hz, 2H), 4.40 (q, J = 7.2 Hz, 2H), 2.10 (p, J = 8.5, 7.5 Hz, 4H), 1.79 (s, 3H), 1.66 (s, 3H), 1.59 (s, 3H), 1.41 (dt, J = 22.3, 7.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.66, 165.55, 165.30, 148.69, 147.63, 144.15, 140.57, 132.04, 132.01, 130.50, 129.79, 125.62, 123.81, 123.54, 122.63, 117.13, 63.46, 62.64, 62.45, 39.61, 26.29, 25.68, 17.70, 16.65, 14.13, 13.95. HRMS (ESI) cald. for (M+H)+ C₂₆H₃₂NO₆:454.2185, found, 454.2194.

2,3-dimethyl 4-((7*S***,11***R***,***Z***)-3,7,11,15-tetramethylhexadec-2-en-1-yl) quinoline-2,3,4-tricarboxylate (4ap): yellow liquid (Yield: 65 %, 115.92 mg), ¹H NMR (400 MHz, Chloroform-d) \delta 8.26 (d, J = 8.5 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.87 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.72 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 5.48 (t, J = 7.3 Hz, 1H), 4.98 (d, J = 7.3 Hz, 2H), 4.04 (s, 3H), 3.93 (s, 3H), 2.05 (t, J = 7.1 Hz, 2H), 1.78 (s, 3H), 1.52 – 1.35 (m, 4H), 1.32 – 1.19 (m, 8H), 1.18 –**

0.97 (m, 7H), 0.85 – 0.81 (m, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.90, 165.72, 165.45, 147.74, 147.61, 144.79, 140.30, 132.08, 130.55, 130.02, 125.71, 123.94, 123.10, 116.88, 63.57, 53.47, 53.15, 39.97, 39.36, 37.42, 37.34, 37.28, 36.68, 32.78, 32.69, 27.97, 25.09, 24.79, 24.46, 22.72, 22.63, 19.74, 19.69, 16.54. HRMS (ESI) cald. for (M+H)+ C₃₄H₅₀NO₆:568.3633,found, 568.3645.

2,3-dimethyl 4-(((2*S***,3***S***,4***S***,5***S***,6***R***)-3,4,5-triacetoxy-6-methoxytetrahydro-2H-pyran-2yl)methyl) quinoline-2,3,4-tricarboxylate (4aq): yellow oil (Yield: 53%, 93.82 mg), ¹H NMR (400 MHz, Chloroform-d) \delta 8.27 (d, J = 8.5 Hz, 1H), 8.11 (d, J = 9.2 Hz, 1H), 7.89 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.76 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 5.52 – 5.47 (m, 1H), 5.04 – 4.99 (m, 1H), 4.95 (d, J = 3.5 Hz, 1H), 4.86 – 4.82 (m, 2H), 4.52 (d, J = 4.2 Hz, 2H), 4.13 – 4.09 (m, 1H), 4.03 (s, 3H), 3.95 (s, 3H), 3.34 (s, 3H), 2.04 (d, J = 4.4 Hz, 6H), 1.97 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) \delta 170.17, 170.06, 169.68, 165.74, 165.71, 165.19, 147.83, 147.66, 139.72, 132.33, 130.55, 130.22, 125.79, 123.77, 123.06, 96.68, 70.73, 69.85, 69.03, 66.94, 64.59, 55.71, 53.51, 53.36, 20.70, 20.66. HRMS (ESI) cald. for (M+H)+ C₂₇H₃₀NO₁₄:592.1622,found, 592.1618.**

4-((3*R*,3a*R*,6*R*,6a*R*)-6-hydroxyhexahydrofuro[3,2-b]furan-3-yl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4ar): yellow solid (Yield: 67%, 53.82 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.24 (t, J = 8.3 Hz, 2H), 7.87 (ddd, J = 8.6, 6.9, 1.5 Hz, 1H), 7.73 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 5.49 (q, J = 5.9 Hz, 1H), 4.91 (t, J = 5.3 Hz, 1H), 4.52 (t, J = 5.2 Hz, 1H), 4.29 (s, 1H), 4.18 (dd, J = 9.9, 6.1 Hz, 1H), 4.03 (s, 3H), 4.00 – 3.94 (m, 2H), 3.93 (s, 3H), 3.85 (d, J = 5.8 Hz, 1H), 3.46 (dd, J = 9.1, 7.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.81, 164.88, 147.79, 147.64, 139.90, 132.42, 130.38, 130.22, 126.07, 123.81, 122.63, 95.16, 81.77, 80.46, 76.23, 73.61, 72.18, 70.78, 53.51, 53.30. HRMS (ESI) cald. for (M+H)+ C₂₀H₂₀NO₉: 418.1093, found, 418.1095.

4-(((2S,3S,5R)-3-azido-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-

vl)tetrahydrofuran-2-vl)methyl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4as): vellow solid (Yield: 48%, 77.47 mg), ¹H NMR (400 MHz, Chloroform-d) δ 9.18 (s, 1H), 8.30 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.91 (t, J = 7.7 Hz, 1H), 7.75 (t, J = 7.2 Hz, 1H), 7.01 (s, 1H), 6.21 – 6.11 (m, 1H), 4.84 (dd, J = 12.3, 3.7 Hz, 1H), 4.69 (dd, J = 12.3, 3.1 Hz, 1H), 4.39 (q, J = 6.4 Hz, 1H), 4.11 (dt, J = 6.4, 3.4 Hz, 1H), 4.05 (s, 3H), 3.94 (s, 3H), 2.49 - 2.33 (m, 2H), 1.35 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 166.04, 165.59, 165.30, 163.52, 150.19, 147.89, 147.66, 139.89, 135.20, 132.65, 130.79, 130.56, 125.23, 123.47, 122.70, 111.50, 84.89, 81.22, 64.57, 59.50. 53.59. 37.35, 29.69, 11.78. HRMS (ESI) cald. for (M+H)+C₂₄H₂₃N₆O₉:539.1482, found, 539.1485.

4-(4-((4-ethoxyphenyl)amino)-4-oxobutan-2-yl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (**4at):** light yellow solid (Yield: 48%, 111.07 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.21 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.88 (s, 1H), 7.79 (t, J = 7.7 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.33 (d, J = 9.0 Hz, 2H), 6.76 (d, J = 9.0 Hz, 2H), 5.88 – 5.75 (m, 1H), 4.04 (s, 3H), 3.97 (t, J = 7.0 Hz, 2H), 3.93 (s, 3H), 2.79 – 2.63 (m, 2H), 1.53 (d, J = 6.4 Hz, 3H), 1.37 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 167.21, 166.48, 165.77, 164.88, 155.73, 147.59, 147.52, 140.73, 132.33, 130.89, 130.36, 130.25, 125.73, 123.62, 122.41, 121.55, 114.64, 71.37, 63.68, 53.46, 43.55, 19.56, 14.38. HRMS (ESI) cald. for (M+H)+ C₂₆H₂₇N₂O₈:495.1723,found, 495.1728.

4-(2-(1-(sec-butoxycarbonyl)piperidin-2-yl)ethyl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4au): yellow oil (Yield: 67%, 100.32 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.29 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 7.6 Hz, 1H), 7.90 (t, J = 8.4 Hz, 1H), 7.77 (t, J = 8.3 Hz, 1H), 4.72 (q, J = 6.2 Hz, 1H), 4.46 (s, 2H), 4.06 (s, 3H), 3.96 (s, 3H), 2.86 (t, J = 12.6 Hz, 1H), 2.26 (ddd, J = 13.7, 9.8, 6.8 Hz, 1H), 1.92 (dt, J = 13.8, 6.5 Hz, 1H), 1.64 (q, J = 12.4 Hz, 8H), 1.48 – 1.40 (m, 2H), 1.16 (d, J = 6.1 Hz, 2H), 0.88 – 0.82 (m, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.94, 165.75, 165.48, 155.56, 147.74, 147.62, 140.35, 132.22, 130.55, 130.19, 125.84, 123.84, 123.04, 73.15, 73.08, 64.52, 53.52, 53.22, 47.76, 39.00, 32.15, 31.92, 29.37, 29.00, 19.73, 9.66. HRMS (ESI) cald. for (M+H)+ C₂₆H₃₃N₂O₈:501.2192,found, 501.2188.

2,3-dimethyl 4-(2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl) quinoline-2,3,4-tricarboxylate (**4av):** yellow solid (Yield: 60%,79.47 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 8.5 Hz, 1H), 7.97 (s, 1H), 7.89 (dd, J = 8.5, 4.2 Hz, 1H), 7.71 (d, J = 3.7 Hz, 2H), 4.81 (t, J = 5.3 Hz, 2H), 4.70 (t, J = 5.3 Hz, 2H), 4.03 (s, 3H), 3.88 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.68, 165.68, 165.04, 151.23, 147.99, 147.64, 139.55, 133.24, 132.99, 132.59, 130.67, 130.47, 125.11, 123.35, 122.57, 64.69, 53.56, 53.43, 44.76, 14.28. HRMS (ESI) cald. for (M+H)+ C₂₀H₁₉N₄O₈ : 443.1158, found, 443.1161.

.CI

(Z)-4-(2-(4-(4-chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethyl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4aw): white solid (Yield: 73%,142.02 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.29 – 8.22 (m, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.83 (t, J = 7.3 Hz, 1H), 7.58 (t, J = 7.7 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.29 (d, J = 7.3 Hz, 3H), 7.15 (q, J = 6.9 Hz, 5H), 6.82 (d, J = 8.7 Hz, 2H), 6.60 (d, J = 8.7 Hz, 2H), 4.83 – 4.70 (m, 2H), 4.23 – 4.15 (m, 2H), 4.03 (s, 3H), 3.85 (s, 3H), 3.41 (t, J = 7.3 Hz, 2H), 2.92 (t, J = 7.4 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.83, 165.75, 165.41, 156.43, 147.85, 147.61, 142.77, 141.63, 140.92, 140.01, 135.63, 135.56, 132.26, 131.87, 130.50, 130.21, 129.58, 129.41, 128.42, 128.26, 127.06, 126.67, 125.77, 123.78, 123.04, 113.56, 65.17, 64.71, 53.53, 53.38, 42.86, 38.54. HRMS (ESI) cald. for (M+H)+ C₃₈H₃₃ClNO₇:650.1940,found, 650.1948.

4-((3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-

tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)2,3-dimethylquinoline-2,3,4-

tricarboxylate (4ax): yellow solid (Yield: 52%, 87.37 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.25 (d, J = 8.2 Hz, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.86 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.72 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 5.48 (d, J = 5.2 Hz, 1H), 5.03 (tt, J = 11.4, 4.8 Hz, 1H), 4.02 (s, 3H), 3.94 (s, 3H), 2.56 (ddd, J = 13.1, 5.1, 2.1 Hz, 1H), 2.48 – 2.40 (m, 2H), 2.17 – 2.05 (m, 3H), 1.97 – 1.89 (m, 3H), 1.82 (t, J = 9.3 Hz, 2H), 1.70 – 1.60 (m, 4H), 1.56 – 1.41 (m, 3H), 1.33 – 1.24 (m, 2H), 1.03 (s, 3H), 0.86 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 220.91, 165.85, 164.80, 147.76, 147.58, 140.53, 139.29, 132.12, 130.57, 130.08, 125.53, 123.81, 122.64, 120.81, 76.63, 53.46, 53.15, 51.67, 50.12, 47.50, 37.84, 36.87, 36.75, 35.82, 31.44, 31.39, 30.78, 30.76, 27.58, 21.86, 20.33, 19.30, 13.54. HRMS (ESI) cald. for (M+H)+ C₃₃H₃₈NO₇:560.2604, found, 560.26048.

2,3-dimethyl 4-((8*R*,9*S*,10*R*,13*S*,14*S*,17*S*)-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl) quinoline-2,3,4-tricarboxylate (4ay): yellow solid (Yield: 54%, 85.37 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.28 (d, J = 8.2 Hz, 1H), 8.00 (d, J = 7.8 Hz, 1H), 7.89 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.74 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 5.74 (s, 1H), 5.04 – 4.96 (m, 1H), 4.05 (s, 3H), 3.94 (s, 3H), 2.50 – 2.25 (m, 5H), 2.07 – 1.92 (m, 2H), 1.91 – 1.56 (m, 8H), 1.50 – 1.24 (m, 4H), 1.15 – 0.95 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 199.41, 170.69, 165.81, 165.79, 147.93, 147.61, 140.77, 132.12, 130.65, 130.05, 125.50, 124.05, 123.83, 122.72, 85.35, 53.68, 53.52, 53.26, 50.15, 42.79, 38.61, 36.65, 35.73, 35.39, 33.94, 31.45, 29.71, 27.31, 23.58, 20.56. HRMS (ESI) cald. for (M+H)+ C₃₁H₃₄NO₇:532.2291, found, 532.2286.

3.4 Gram-Scale Experiments

General procedure for Gram-Scale Experiments: In an oven-dried undivided three-necked bottle (50 mL) equipped with a stir bar, isatin (3 mmol), dimethyl but-2-ynedioate (4.5 mmol), serine residue (4.5 mmol), "Bu₄NBF₄ (1.5 mmol) and KI (0.9 mmol) were combined and added. Then, CH₃CN (20 mL) were injected into the tubes via syringes. The bottle was equipped with carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolysis at constant current of 5 mA under room temperature overnight. The solvent was removed under vacuum. The crude product was purified by flash column chromatography on silica gel to afford pure product.

3.5 Polypeptide scope and characterization :

The procedure for the bioconjugated product (4ai): In an oven-dried undivided three-necked bottle (15 mL) equipped with a stir bar, polypeptides (5 mg), isatin (10 mg), but-2-ynedioate(12 μ L), "Bu₄NBF₄ (5 mg), KI (2 mg) and CH₃CN (0.75 mL) were combined and added. The bottle was equipped carbon paper (10 mm×10 mm×0.1 mm) as the anode and platinum plate (10 mm×10

 $mm \times 0.3 mm$) as the cathode. The reaction mixture was stirred and electrolysis at constant current of 5 mA under room temperature for 30 min. After completion of the reaction, the solution was analyzed by TOF-LC/MS spectroscopy. The reaction was analyzed by reverse phase HPLC using a gradient of 70% to 60% buffer B over 20 minutes on an Agilent Zorbax SB-Aq 5µm column of 250 mm length. HPLC analysis used buffers A (water) and B (acetonitrile + 0.1% TFA). Conversion reported as a % conversion as determined.

bioconjugated product 4ai : Ac-S(Quinoline)AGMF-Ome

HPLC: >99% conversion.

After the reaction finished, there are four peaks that elute at 60% buffer B (acetonitrile + 0.1% TFA) with retention times of 7.493 min , 8.280 min, 10.713 min and 11.327 min. Polypeptide **3ai** is a peak that elutes at 60% buffer B (acetonitrile + 0.1% TFA) with a retention time of 7.020 min. **HRMS (ESI-TOF)** calcd for $C_{39}H_{47}N_6O_{13}S$, [M+H]+, 839.2922, found 839.2928. calcd for $C_{39}H_{46}N_6NaO_{13}S$, [M+Na]+, 861.2741, found 861.2736.

HPLC Spectra:

Normalized UV-VIS Spectra of Reactants and Products:

3.6 Isatins, alkynes and selected small-molecule alcohols scope and characterization.

General procedure for quinoline-substituted product: In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, isatin (0.3 mmol), dimethyl but-2-ynedioate (0.45 mmol), alcohol (0.45 mmol), ^{*n*}Bu₄NBF₄ (0.15 mmol) and KI (0.03 mmol) were combined and added. Then, CH₃CN (6 mL) were injected into the tubes via syringes. The bottle was equipped with carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolysis at a constant current of 5 mA under room temperature for 100 min. After completion of the reaction, as indicated by TLC and GC-MS, the pure product was obtained by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate).

We tested various other alkynes, including phenylacetylene, methyl 3-phenylpropiolate and methyl propiolate, no reaction occurred under standard conditions and led to full recovery of the starting material. We have also tested the substrates the containing amine group. Unfortunately, the reaction was messy and no product could be obtained.

Detailed descriptions for products:

(S)-4-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)2,3-dimethyl8-methylquinoline-2,3,4-tricarboxylate (4ba):yellow oil (Yield: 74%, 110.67 mg), ¹H NMR (400MHz, Chloroform-d) δ 7.73 (dd, J = 17.0, 7.7 Hz, 2H), 7.62 – 7.56 (m, 1H), 5.55 (d, J = 8.4 Hz,1H), 4.81 (t, J = 3.9 Hz, 2H), 4.69 (s, 1H), 4.01 (s, 3H), 3.96 (s, 3H), 3.74 (s, 3H), 2.81 (s, 3H),1.43 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.86, 166.36, 165.81, 165.47, 155.29,147.32, 146.88, 140.46, 138.99, 132.50, 129.81, 123.57, 123.27, 121.05, 80.41, 66.16, 53.43,53.21, 52.89, 28.28, 17.96. HRMS (ESI) cald. for (M+H)+ C₂₄H₂₉N₂O₁₀:505.1777,found,505.1766.

(*S*)-4-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl) 2,3-dimethyl 6,8dimethylquinoline-2,3,4-tricarboxyla (4bb): yellow solid (Yield: 65%, 100.67 mg), ¹H NMR (400 MHz, Chloroform-d) δ 7.53 (d, J = 15.7 Hz, 2H), 5.56 (d, J = 8.4 Hz, 1H), 4.81 (d, J = 3.4 Hz, 2H), 4.69 (s, 1H), 4.01 (s, 3H), 3.96 (s, 3H), 3.75 (s, 3H), 2.77 (s, 3H), 2.52 (s, 3H), 1.44 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.90, 166.43, 166.07, 165.63, 155.33, 146.21, 145.63, 140.43, 139.46, 138.46, 134.91, 123.72, 122.01, 121.29, 80.41, 66.12, 53.39, 53.16, 52.90, 52.87, 28.29, 22.04, 17.84. HRMS (ESI) cald. for (M+H)+ C₂₅H₃₁N₂O₁₀:519.1973,found, 519.1984.

(*S*)-4-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl) 2,3-dimethyl 7methoxyquinoline-2,3,4-tricarboxylate (4bc): light yellow solid (Yield: 76%, 118.17 mg), ¹H NMR (400 MHz, Chloroform-d) δ 7.83 (d, J = 9.3 Hz, 1H), 7.53 (d, J = 2.5 Hz, 1H), 7.34 (dd, J = 9.3, 2.6 Hz, 1H), 5.55 (d, J = 8.3 Hz, 1H), 4.79 (t, J = 3.3 Hz, 2H), 4.68 (s, 1H), 4.02 (s, 3H), 3.94 (s, 6H), 3.75 (s, 3H), 1.43 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.86, 166.05, 165.89, 165.25, 162.94, 155.28, 150.01, 148.81, 139.84, 126.59, 123.78, 119.70, 118.88, 108.07, 80.43, 66.21, 55.95, 53.45, 53.38, 52.91, 52.86, 28.28. HRMS (ESI) cald. for (M+H)+ C₂₄H₂₉N₂O₁₁:521.1727,found, 521.1731.

(S)-4-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)2,3-dimethyl7-chloroquinoline-2,3,4-tricarboxylate (4bd): yellow solid (Yield: 75%, 117.57 mg), ¹H NMR(400 MHz, Chloroform-d) δ 8.24 (s, 1H), 7.94 (d, J = 9.0 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 5.52(d, J = 7.8 Hz, 1H), 4.81 (d, J = 3.0 2H), 4.69 (s, 1H), 4.03 (s, 3H), 3.96 (s, 3H), 3.76 (s, 3H), 1.43(s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.79, 165.53, 165.45, 164.60, 155.23, 149.17, 147.98, 139.79, 138.81, 131.25, 129.39, 126.89, 122.62, 122.13, 80.52, 66.44, 53.59, 52.97, 52.82, 28.27. HRMS (ESI) cald. for (M+H)+ C₂₃H₂₆ClN₂O₁₀: 525.1198, found, 525.1201.

(S)-4-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)2,3-dimethyl6-chloroquinoline-2,3,4-tricarboxylate (4be):yellow oil (Yield: 71%, 110.15 mg), ¹H NMR (400MHz, Chloroform-d) δ 8.19 (d, J = 9.0 Hz, 1H), 8.00 (s, 1H), 7.81 (d, J = 11.3 Hz, 1H), 5.56 –5.48 (m, 1H), 4.81 (d, J = 3.2 Hz, 2H), 4.70 (s, 1H), 4.03 (s, 3H), 3.97 (s, 3H), 3.78 (s, 3H), 1.43(s, 9H). 13C NMR (101 MHz, Chloroform-d) δ 169.76, 165.71, 165.32, 164.40, 155.24, 147.78, 145.98, 138.36, 136.77, 133.39, 132.05, 124.45, 124.42, 124.04, 80.51, 66.56, 53.63, 53.61, 53.02, 52.79, 28.26. HRMS (ESI) cald. for (M+H)+ C₂₃H₂₆ClN₂O₁₀:525.1198, found, 525.1194.

(S)-4-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)2,3-dimethyl8-chloroquinoline-2,3,4-tricarboxylate(4bf):light yellow solid(Yield: 67%, 103.74 mg), ¹HNMR (400 MHz, Chloroform-d) δ 8.00 (d, J = 7.5 Hz, 1H), 7.91 (d, J = 9.4 Hz, 1H), 7.66 (t, J =8.3, 1H), 5.50 (d, J = 8.2 Hz, 1H), 4.88 – 4.76 (m, 2H), 4.70 (s, 1H), 4.05 (s, 3H), 3.98 (s, 3H),3.76 (s, 3H), 1.44 (s, 9H).¹³C NMR (101 MHz, Chloroform-d) δ 169.78, 165.51, 165.46, 164.74,155.24, 148.63, 144.06, 140.50, 135.17, 132.43, 129.96, 125.11, 124.52, 123.10, 80.53, 66.46,53.65, 53.55, 52.97, 52.84, 28.29. HRMS (ESI) cald. for (M+H)+ C₂₃H₂₆ClN₂O₁₀:525.1198,found,525.1196.

(S)-4-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)2,3-dimethyl7-bromoquinoline-2,3,4-tricarboxylate (4bg):yellow solid (Yield: 67%, 118.95 mg), ¹H NMR(400 MHz, Chloroform-d) δ 8.38 (s, 1H), 7.82 (d, J = 9.0 Hz, 1H), 7.74 (d, J = 9.0 Hz, 1H), 5.55(d, J = 8.2 Hz, 1H), 4.77 (t, J = 3.9 Hz, 2H), 4.66 (s, 1H), 3.99 (s, 3H), 3.93 (s, 3H), 3.72 (s, 3H),1.38 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.77, 165.50, 165.35, 164.49, 155.22,149.01, 147.97, 139.80, 133.69, 132.67, 127.10, 126.80, 122.73, 122.33, 80.42, 66.40, 53.58,53.55, 52.93, 52.79, 28.24. HRMS (ESI) cald. for (M+H)+ C₂₃H₂₆BrN₂O₁₀: 569.0771,found,569.0776.

(S)-4-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)2,3-dimethyl6-fluoroquinoline-2,3,4-tricarboxylate (4bh):yellow oil (Yield: 72%, 118.95 mg), ¹H NMR (400MHz, Chloroform-d) δ 8.25 (dd, J = 9.2, 5.3 Hz, 1H), 7.68 – 7.61 (m, 2H), 5.52 (d, J = 8.2 Hz,1H), 4.83 – 4.74 (m, 2H), 4.68 (s, 1H), 4.01 (s, 3H), 3.96 (s, 3H), 3.76 (s, 3H), 1.41 (s, 9H). ¹⁹FNMR (376 MHz, Chloroform-d) δ -105.46. ¹³C NMR (101 MHz, Chloroform-d) δ 169.76, 165.88,165.31, 164.48, 162.65 (d, J = 254.6 Hz), 155.22, 146.83 (d, J = 2.8 Hz), 144.74, 138.40 (d, J =6.2 Hz), 133.37 (d, J = 9.5 Hz), 124.98 (d, J = 10.9 Hz), 124.26, 122.85 (d, J = 26.1 Hz), 109.40(d, J = 24.5 Hz), 80.49, 66.44, 53.58, 53.56, 52.95, 52.78, 28.22. HRMS (ESI) cald. for (M+H)+C_{23H25}FN₂O₁₀:508.1493,found, 508.1487.

(*S*)-4-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl) 2,3-dimethyl 6iodoquinoline-2,3,4-tricarboxylate (4bi): light yellow oil (Yield: 75%, 138.56 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.39 (d, J = 1.7 Hz, 1H), 8.12 (d, J = 10.8 Hz, 1H), 7.95 (d, J = 8.9 Hz, 1H), 5.53 (d, J = 7.3 Hz, 1H), 4.81 (d, J = 3.2 Hz, 2H), 4.70 (s, 1H), 4.03 (s, 3H), 3.97 (s, 3H), 3.79 (s, 3H), 1.43 (s, 9H). 13C NMR (101 MHz, Chloroform-d) δ 169.76, 165.64, 165.38, 164.41, 155.26, 148.06, 146.51, 141.28, 138.11, 134.33, 131.78, 125.07, 123.69, 97.34, 80.53, 66.59, 53.64, 53.61, 53.09, 52.79, 28.30. HRMS (ESI) cald. for (M+H)+ C₂₃H₂₆IN₂O₁₀:617.0632,found, 617.0635.

(S)-4-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl) 2,3-dimethyl 8-(trifluoromethyl)quinoline-2,3,4-tricarboxylate (4bj): white solid (Yield: 66%, 110.45 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.21 (dd, J = 18.8, 7.8 Hz, 2H), 7.79 (t, J = 7.9 Hz, 1H), 5.51 (d, J = 8.2 Hz, 1H), 4.83 (td, J = 11.5, 3.4 Hz, 2H), 4.70 (s, 1H), 4.03 (s, 3H), 3.98 (s, 3H), 3.76 (s, 3H), 1.43 (s, 9H). ¹⁹F NMR (376 MHz, Chloroform-d) δ -60.17. ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.77, 165.56, 165.28, 164.60, 155.24, 149.09, 144.19, 140.15, 130.65 (q, J = 5.3 Hz), 129.86, 128.96 (q, J = 124.0 Hz), 128.70, 124.05, 123.17 (q, J = 274.0 Hz), 122.75, 80.53, 66.48, 53.68, 53.48, 52.96, 52.84, 28.27. HRMS (ESI) cald. for (M+H)+ C₂₄H₂₆F₃N₂O₁₀:559.1540, found, 559.1538.

(S)-4-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)2,3-dimethyl6-nitroquinoline-2,3,4-tricarboxylate (4bk): yellow solid (Yield: 71%, 112.57 mg), ¹H NMR (400MHz, Chloroform-d) δ 9.00 (d, J = 2.3 Hz, 1H), 8.64 (dd, J = 9.3, 2.4 Hz, 1H), 8.43 (d, J = 9.3 Hz,1H), 5.54 (d, J = 7.8 Hz, 1H), 4.88 (t, J = 2.9 Hz, 2H), 4.73 (s, 1H), 4.07 (s, 3H), 4.01 (s, 3H), 3.80(s, 3H), 1.44 (s, 9H).¹³C NMR (101 MHz, Chloroform-d) δ 169.69, 165.08, 164.93, 163.82,155.23, 151.03, 149.25, 147.77, 141.09, 132.54, 125.60, 124.82, 123.10, 122.49, 80.64, 66.97,53.85, 53.10, 52.81, 51.76, 28.25. HRMS (ESI) cald. for (M+H)+ C₂₃H₂₆N₃O₁₂:536.1516,found,536.1518.

(*S*)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl) 2,3-diethyl quinoline-2,3,4tricarboxylate (4bl): light yellow oil (Yield: 81%, 125.57 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.25 (d, J = 8.5 Hz, 1H), 7.97 – 7.84 (m, 2H), 7.72 (t, J = 7.6 Hz, 1H), 5.55 (d, J = 8.1 Hz, 1H), 4.82 (d, J = 3.2 Hz, 2H), 4.69 (s, 1H), 4.46 (dq, J = 28.1, 7.1 Hz, 4H), 3.75 (s, 3H), 1.43 (t, J = 5.5 Hz, 12H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 193.54, 169.60, 164.79, 164.54, 155.24, 147.51, 147.18, 144.74, 138.02, 134.60, 131.70, 131.55, 130.94, 130.50, 129.51, 129.30, 125.38, 124.23, 80.34, 66.12, 62.77, 52.81, 52.60, 28.32, 21.81, 13.73. HRMS (ESI) cald. for (M+H)+ C₂₅H₃₁N₂O₁₀:519.1979,found, 519.1978.

(S)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl) 2,3-di-tert-butyl quinoline-2,3,4-tricarboxylate (4bm): light yellow solid (Yield: 60%, 103.24 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.23 (d, J = 8.4 Hz, 1H), 7.87 – 7.77 (m, 2H), 7.67 (t, J = 7.6 Hz, 1H), 5.49 (d, J = 8.1 Hz, 1H), 4.84 (qd, J = 11.2, 3.3 Hz, 2H), 4.72 (s, 1H), 3.74 (s, 3H), 1.66 (s, 9H), 1.58 (s, 9H), 1.44 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.85, 165.69, 165.13, 164.20, 155.20, 150.59, 147.41, 139.73, 131.74, 130.53, 129.37, 125.19, 123.27, 122.83, 84.05, 83.65, 80.48, 65.92. 53.45. 52.96. 28.30. 28.09. 27.95. HRMS (ESI) cald. for (M+H)+C₂₉H₃₉N₂O₁₀:575.2605, found, 575.2603.

(*S*)-2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl 2,3-dibenzoylquinoline-4carboxylate (4bn): white solid ((Yield: 65%, 113.47 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.26 (d, J = 8.4 Hz, 1H), 8.21 (d, J = 8.2 Hz, 1H), 8.06 (d, J = 7.1 Hz, 2H), 7.93 – 7.89 (m, 1H), 7.80 (t, J = 7.9 Hz, 3H), 7.61 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.40 (t, J = 7.7 Hz, 2H), 5.21 (d, J = 8.3 Hz, 1H), 4.58 – 4.43 (m, 2H), 4.22 (d, J = 11.7 Hz, 1H), 3.67 (s, 3H), 1.46 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 194.55, 192.72, 169.65, 164.71, 155.18, 154.51, 146.71, 137.80, 136.95, 135.25, 133.75, 133.69, 132.25, 131.74, 131.21, 130.75, 130.39, 129.29, 128.70, 128.30, 125.51, 123.56, 80.41, 66.08, 52.86, 52.54, 28.33. HRMS (ESI) cald. for (M+H)+ C₃₃H₃₁N₂O₈:583.2080,found, 583.2084.

(S)-4-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)2-ethyl3-(4-methylbenzoyl)quinoline-2,4-dicarboxylate (4bo):light yellow oil (Yield: 71%, 120.12 mg), ¹HNMR (400 MHz, Chloroform-d) δ 8.36 (d, J = 8.5 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.90 (t, J =7.2 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.65 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 5.26 (d, J= 8.1 Hz, 1H), 4.59 - 4.48 (m, 2H), 4.36 (dd, J = 10.7, 2.5 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.66(s, 3H), 2.40 (s, 3H), 1.45 (s, 9H), 1.16 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 193.54, 169.60, 164.79, 164.54, 155.24, 147.51, 147.18, 144.74, 138.02, 134.60, 131.70, 131.55, 130.94, 130.50, 129.51, 129.30, 125.38, 124.23, 80.34, 66.12, 62.77, 52.81, 52.60, 28.32, 21.81, 120.24

(S)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)3-ethyl2-(trifluoromethyl)quinoline-3,4-dicarboxylate:light yellow oil (Yield: 80%, 123.12 mg), ¹HNMR (400 MHz, Chloroform-d) δ 8.24 (d, J = 8.5 Hz, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.90 (t, J =7.7 Hz, 1H), 7.76 (t, J = 7.7 Hz, 1H), 5.54 (d, J = 8.2 Hz, 1H), 4.81 (d, J = 3.3 Hz, 2H), 4.71 (s,1H), 4.46 (t, J = 7.1 Hz, 2H), 3.76 (s, 3H), 1.43 (s, 9H), 1.40 (t, J = 7.2 Hz, 3H). ¹³C NMR (101MHz, Chloroform-d) δ 169.76, 165.01, 164.69, 155.23, 146.86, 143.92 (q, J = 35.3 Hz), 140.00,132.44, 130.67, 130.50, 125.38, 123.84, 122.56, 119.48, 80.44, 67.89, 63.18, 52.92, 52.83, 28.22,13.75. HRMS (ESI) cald. for (M+H)+ C₂₃H₂₆F₃N₂O₈:515.1641, found, 515.1648.

4-(3-chloropropyl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4ca): light yellow oil (Yield: 70%, 76.62 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 8.5 Hz, 1H), 8.03 (d, J = 8.5 Hz, 1H), 7.89 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.74 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 4.64 (t, J = 6.0 Hz, 2H), 4.04 (s, 3H), 3.96 (s, 3H), 3.66 (t, J = 6.2 Hz, 2H), 2.24 (p, J = 6.1 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.90, 165.75, 165.37, 147.83, 147.60, 140.16, 132.33, 130.61, 130.25, 125.54, 123.74, 122.83, 63.26, 53.59, 53.43, 40.91, 31.18. HRMS (ESI) cald. for (M+H)+ C₁₇H₁₇CINO₆:366.0744,found, 366.0739.

4-allyl 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4cb): yellow oil (Yield: 67%, 66.12 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.28 (d, J = 8.5 Hz, 1H), 8.08 (d, J = 9.0 Hz, 1H), 7.88 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.74 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 6.05 (ddt, J = 17.2, 10.4, 6.0 Hz, 1H), 5.46 (dq, J = 17.2, 1.4 Hz, 1H), 5.36 (dq, J = 10.4, 1.1 Hz, 1H), 4.95 (dt, J = 6.0, 1.3 Hz, 2H), 4.05 (s, 3H), 3.94 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.95, 165.68, 165.10, 147.69, 147.63, 139.82, 132.16, 130.93, 130.61, 130.18, 125.61, 123.87, 123.32, 119.98, 67.30, 53.51, 53.25. HRMS (ESI) cald. for (M+H)+ C₁₇H₁₆NO₆:330.0978,found, 330.0979.

4-(hept-6-yn-1-yl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (**4cc**): yellow liquid (Yield: 56%, 64.23 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.27 (dd, J = 8.3, 3.4 Hz, 1H), 8.05 (dd, J = 8.5, 4.2 Hz, 1H), 7.88 (td, J = 8.4, 7.6, 4.1 Hz, 1H), 7.73 (td, J = 7.0, 3.5 Hz, 1H), 4.47 (d, J = 4.1 Hz, 2H), 4.04 (s, 3H), 3.95 (s, 3H), 2.23 (t, J = 3.9, 2H), 1.97 – 1.90 (m, 1H), 1.84 – 1.72 (m, 2H), 1.57 (s, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.90, 165.75, 165.53, 147.80, 147.61, 140.38, 132.18, 130.58, 130.11, 125.64, 123.84, 122.98, 84.03, 68.63, 66.70, 53.52, 53.26, 27.97, 27.95, 25.01, 18.27. HRMS (ESI) cald. for (M+H)+ C₂₁H₂₂NO₆:384.1447, found, 384.1445.

4-(2-azidoethyl) 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4cd): yellow solid (Yield: 60 %, 64.23 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.23 (d, J = 8.5 Hz, 1H), 8.00 (d, J = 8.4 Hz,

1H), 7.85 (ddd, J = 8.4, 7.0, 1.2 Hz, 1H), 7.70 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 4.57 (t, J = 5.2 Hz, 2H), 4.01 (s, 3H), 3.94 (s, 3H), 3.64 (t, J = 5.1, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.78, 165.67, 165.27, 148.06, 147.61, 140.01, 132.38, 130.51, 130.24, 125.49, 123.59, 122.56, 64.67, 53.48, 53.35, 49.44. HRMS (ESI) cald. for (M+H)+ C₁₆H₁₅N₄O₆:359.0986,found, 359.0987.

2,3-diethyl 4-(2-hydroxyethyl) quinoline-2,3,4-tricarboxylate (4ae): yellow oil (Yield: 60%, 64.05 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.33 – 8.24 (m, 1H), 8.06 (d, J = 9.1 Hz, 1H), 7.89 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.74 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 4.61 (t, J = 4.5 Hz, 2H), 4.51 (q, J = 7.2 Hz, 2H), 4.43 (q, J = 7.2 Hz, 2H), 3.98 (d, J = 3.6Hz, 2H), 2.66 (s, 1H), 1.45 (t, J = 7.2 Hz, 3H), 1.39 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, Chloroform-d) δ 165.99, 165.61, 165.46, 148.47, 147.55, 140.48, 132.27, 130.38, 130.05, 125.60, 123.59, 122.31, 68.23, 62.92, 62.73, 60.54, 14.12, 13.88. HRMS (ESI) cald. for (M+H)+ C₁₈H₂₀NO₇:362.1240, found, 362.1236.

4-(**2**-(**2**-methoxyethoxy)ethyl) **2**,**3**-dimethyl quinoline-2,**3**,**4**-tricarboxylate (**4**cf) : yellow oil (Yield: 56%, 65.42 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.25 (d, J = 8.2 Hz, 1H), 8.09 (d, J = 8.5 Hz, 1H), 7.86 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.71 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 4.65 – 4.61 (m, 2H), 4.50 (q, J = 7.1 Hz, 2H), 4.41 (q, J = 7.2 Hz, 2H), 3.86 – 3.82 (m, 2H), 3.68 – 3.65 (m, 2H), 3.56 – 3.52 (m, 2H), 3.35 (s, 3H), 1.43 (t, J = 7.2 Hz, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.69, 165.58, 165.25, 148.75, 147.64, 140.51, 132.10, 130.43, 129.86, 125.87, 123.75, 122.55, 71.92, 70.57, 68.68, 65.48, 62.65, 62.55, 59.06, 14.12, 13.94.

2,3-dimethyl 4-((trimethylsilyl)methyl) quinoline-2,3,4-tricarboxylate (4cg): yellow solid (Yield: 55%, 61.74 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 8.5 Hz, 1H), 8.01 (d, J = 7.9 Hz, 1H), 7.87 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.72 (ddd, J = 8.3, 7.0, 1.1 Hz, 1H), 4.15 (s, 2H), 4.04 (s, 3H), 3.94 (s, 3H), 0.12 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 166.50, 165.95, 165.85, 147.89, 147.65, 140.82, 132.15, 130.62, 130.06, 125.72, 123.99, 123.12, 60.36, 53.54, 53.35, -3.02. HRMS (ESI) cald. for (M+H)+ C₁₈H₂₂NO₆Si : 376.1216,found, 376.1213.

2,3-dimethyl 4-(2,2,2-trifluoroethyl) quinoline-2,3,4-tricarboxylate (4ch): yellow solid (Yield: 60%, 66.89 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.28 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 9.0 Hz, 1H), 7.90 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.75 (ddd, J = 8.3, 7.0, 1.1 Hz, 1H), 4.81 (q, J = 8.3 Hz, 2H), 4.04 (s, 3H), 3.94 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-d) δ -73.20. ¹³C NMR (101 MHz, Chloroform-d) δ 165.66, 165.51, 164.00, 148.04, 147.67, 138.50, 132.52, 130.68, 130.52, 125.14, 123.48, 122.91, 122.62 (q, J = 277.1 Hz), 61.92 (q, J = 37.3 Hz), 53.54, 53.44. HRMS (ESI) cald. for (M+H)+ C₁₆H₁₃F₃NO₆:372.0689,found, 372.0690.

2,3-dimethyl 4-phenyl quinoline-2,3,4-tricarboxylate (**4ci**): yellow liquid (Yield: 42%, 46.01mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.33 (d, J = 8.5 Hz, 1H), 8.21 (d, J = 8.5 Hz, 1H),

- 40 -

7.94 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.80 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.49 (dd, J = 8.7, 7.1 Hz, 2H), 7.38 – 7.31 (m, 3H), 4.08 (s, 3H), 3.98 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.81, 165.75, 150.38, 147.99, 147.74, 132.40, 130.73, 130.42, 129.83, 126.75, 125.47, 123.82, 123.02, 121.21, 53.56, 53.50. HRMS (ESI) cald. for (M+H)+ C₂₀H₁₆NO₆:366.0978,found, 366.0980.

4-benzyl 2,3-dimethyl quinoline-2,3,4-tricarboxylate (4cj): yellow oil (Yield : 67%, 74.73mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.26 (d, J = 8.5 Hz, 1H), 8.04 – 8.00 (m, 1H), 7.87 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.70 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.46 (dd, J = 7.9, 1.6 Hz, 2H), 7.42 – 7.35 (m, 3H), 5.49 (s, 2H), 4.03 (s, 3H), 3.70 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.84, 165.71, 165.26, 147.74, 147.60, 139.83, 134.48, 132.21, 130.58, 130.19, 128.93, 128.90, 128.78, 125.60, 123.86, 123.17, 68.51, 53.56, 53.08. HRMS (ESI) cald. for (M+H)+ C₂₁H₁₈NO₆: 380.1134,found, 380.1132.

3.7 PTL derivatives.

Synthesis of PTL derivatives: In a round bottomed flask, equipped with a stir bar, Parthenolide (PTL) (2.0 mmol), SeO₂ (0.4 mmol), t-BuOOH (70% in water, 3 mmol) dissolved in DCM (20 mL). The mixture was stirred for 36 h at room temperature. The resulting crude product was

purified by flash chromatography (dichloromethane : ethyl ether, containing 0.5% of NEt₃) to afford MMB as a white solid^[4]. Then, in an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, isatins (0.3 mmol), MMB (0.45 mmol), alkyne (0.45 mmol), "Bu₄NBF₄ (0.15 mmol) and KI (0.03 mmol) were combined and added. Then, CH₃CN (6 mL) were injected into the tubes via syringes. The bottle was equipped with carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolysis at a constant current of 5 mA under room temperature for 100 min. After completion of the reaction, as indicated by TLC and LC-MS, the pure product was obtained by flash column chromatography on silica gel (eluent: dichloromethane : ethyl ether).

PTL derivative (PTL-OMe) **5a** : light yellow oil (Yield: 50%, 73.83 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.29 (d, J = 8.1 Hz, 1H), 8.00 (d, J = 8.5 Hz, 1H), 7.90 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.75 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 6.13 (d, J = 3.5 Hz, 1H), 5.85 (t, J = 8.2 Hz, 1H), 5.49 (d, J = 3.2 Hz, 1H), 5.06 (d, J = 12.1 Hz, 1H), 4.84 (d, J = 12.2 Hz, 1H), 4.05 (s, 3H), 3.92 (s, 3H), 3.84 (t, J = 9.3 Hz, 1H), 2.89 – 2.78 (m, 2H), 2.53 – 2.41 (m, 2H), 2.40 – 2.29 (m, 2H), 2.27 – 2.14 (m, 2H), 1.73 – 1.61 (m, 1H), 1.54 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.24, 166.01, 165.68, 165.37, 147.71, 147.61, 140.15, 138.43, 134.24, 132.47, 132.41, 130.73, 130.33, 125.34, 123.68, 122.93, 120.39, 80.93, 69.26, 63.36, 59.94, 53.60, 53.32, 42.71, 36.54, 25.50, 24.24, 23.93, 17.99. HRMS (ESI) cald. for (M+H)+ C₂₉H₃₀NO₉:536.1921, found, 536.1923.

PTL derivative (PTL-CF₃) **5b** : light yellow oil (Yield: 42%, 75.98 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.21 (dd, J = 15.9, 7.9 Hz, 2H), 7.80 (t, J = 7.9 Hz, 1H), 6.14 (d, J = 3.5 Hz, 1H), 5.84 (t, J = 8.2 Hz, 1H), 5.52 (d, J = 3.1 Hz, 1H), 5.05 (d, J = 12.1 Hz, 1H), 4.85 (d, J = 12.2 Hz, 1H), 4.03 (s, 3H), 3.92 (s, 3H), 3.84 (t, J = 9.3 Hz, 1H), 2.88 – 2.77 (m, 2H), 2.56 – 2.42 (m, 2H), 2.41 – 2.29 (m, 2H), 2.19 (ddd, J = 29.8, 9.7, 6.1 Hz, 2H), 1.72 – 1.63 (m, 1H), 1.53 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-d) δ -60.12. ¹³C NMR (101 MHz, Chloroform-d) δ 169.23, 165.48, 165.38, 164.91, 148.85, 144.13, 140.47, 138.51, 134.10, 132.61, 130.66 (q, J = 5.3 Hz), 129.68, 129.15 (q, J = 30.8 Hz), 128.81, 124.08, 123.19 (q, J = 274.0 Hz), 123.16, 120.35, 80.94, 69.37, 63.32, 59.93, 53.51, 53.44, 42.69, 36.51, 25.37, 24.09, 23.92, 17.94. HRMS (ESI) cald. for (M+H)+ C₃₀H₂₉F₃NO₉:604.1794, found, 604.1793.

PTL derivative (PTL-OPh) **5c :** light yellow oil (Yield: 40%, 73.36 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.26 (d, J = 8.9 Hz, 2H), 8.03 (d, J = 7.3 Hz, 2H), 7.91 (t, J = 8.0 Hz, 1H), 7.79 (dd, J = 22.1, 7.7 Hz, 3H), 7.60 (t, J = 7.4 Hz, 1H), 7.48 (dt, J = 22.0, 7.6 Hz, 3H), 7.36 (d, J = 7.7 Hz, 2H), 6.07 (d, J = 3.4 Hz, 1H), 5.55 (t, J = 7.8 Hz, 1H), 5.38 (d, J = 3.1 Hz, 1H), 4.56 (d, J = 12.3 Hz, 1H), 4.47 (d, J = 12.3 Hz, 1H), 3.74 (t, J = 9.3 Hz, 1H), 2.71 – 2.54 (m, 2H), 2.26 (td, J = 13.5, 4.4 Hz, 1H), 2.20 – 2.00 (m, 5H), 1.46 (s, 3H), 1.44 – 1.32 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 194.31, 192.75, 169.26, 164.99, 154.36, 146.74, 138.45, 138.14, 137.17, 135.27,

133.76, 133.63, 133.59, 132.29, 132.25, 131.79, 131.14, 130.85, 130.47, 129.10, 128.74, 128.33, 125.37, 123.68, 120.22, 80.86, 68.97, 63.24, 59.86, 42.51, 36.47, 25.44, 24.18, 23.83, 17.92. HRMS (ESI) cald. for (M+H)+ C₃₉H₄₀NO₉:628.2335,found, 628.2330.

In vitro antitumor activity of PTL derivatives in human cancer cell lines: The in vitro antiproliferative activity of was evaluated in three human cancer cell lines using the CCK-8 (Cell Counting Kit-8) assay, including U87MG (glioblastoma), MGC803 (gastric carcinoma), HCT116 (colorectal carcinoma). Parthenolide (PTL) was used as the experiment control.

IC ₅₀ (µM)	PTL	5a (PTL-Ome)	5b (PTL-OPh)	5c (PTL-CF ₃)
MGC803	> 50	5.985 ± 0.744	5.105 ± 0.578	7.498 ± 0.661
HCT116	11.050 ± 0.857	2.288 ± 1.022	2.420 ± 0.814	5.118 ± 1.026
U87MG	23.760 ± 0.783	8.323 ± 0.761	21.620 ± 0.872	6.295 ± 0.946

It could be seen in the graph that all synthesized compounds showed moderate to significant potency toward three cancer cell lines.

3.8 Chemoselective transformations of quinoline-substituted bioactive molecule.

Synthesis of Product 7:

In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, compounds **6** (0.3 mmol), dimethyl but-2-ynedioate (0.45 mmol), peptides (0.45 mmol), ^{*n*}Bu₄NBF₄ (0.15 mmol) and KI (0.03 mmol) were combined and added. Then, CH₃CN (6 mL) were injected into the tubes

via syringes. The bottle was equipped with carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolysis at a constant current of 5 mA under room temperature for 100 min. After completion of the reaction, as indicated by TLC and LC-MS, the pure product was obtained by flash column chromatography on silica gel (eluent: CH₂Cl₂/MeOH).

4-((*S*)-2-((tert-butoxycarbonyl)amino)-3-(((*R*)-1-methoxy-1-oxo-3-phenylpropan-2yl)amino)-3-oxopropyl) 2,3-dimethyl 6-(((*S*)-1-methoxy-3-methyl-1-oxobutan-2yl)carbamoyl)quinoline-2,3,4-tricarboxylate (7): light yellow oil (Yield: 48%, 114.13 mg), ¹H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H), 8.36 (dd, J = 8.8, 1.9 Hz, 1H), 8.28 (d, J = 8.8 Hz, 1H), 7.15 – 7.07 (m, 5H), 4.76 (ddd, J = 17.5, 9.3, 5.0 Hz, 2H), 4.63 – 4.50 (m, 3H), 4.02 (s, 3H), 3.96 (s, 3H), 3.75 (s, 3H), 3.51 (s, 3H), 3.08 (dd, J = 13.9, 5.5 Hz, 1H), 2.95 (dd, J = 13.9, 8.2 Hz, 1H), 2.29 (dq, J = 14.1, 7.0 Hz, 1H), 1.32 (s, 9H), 1.06 (dd, J = 10.2, 6.8 Hz, 6H). ¹³C NMR (101 MHz, Methanol-d4) δ 172.20, 171.44, 169.56, 167.55, 165.56, 165.34, 164.51, 156.08, 149.78, 148.50, 141.20, 136.37, 130.98, 129.92, 128.79, 128.03, 126.44, 122.75, 122.71, 79.78, 65.85, 59.30, 53.56, 52.86, 52.58, 51.28, 51.22, 36.80, 31.68, 30.28, 29.38, 29.35, 29.08, 22.34, 18.33, 18.03, 13.05. HRMS (ESI) cald. for (M+H)+ C₃₉H₄₇N₄O₁₄:795.3089,found, 795.3093.

Synthesis of Product 10:

In a round bottomed three-necked flask, equipped with a stir bar, compounds 8 (1 equiv., 260 mg), 6-Ethynyl-4,4-dimethylthiochroman 9 (2.5equiv. 254 mg), CuI (10 mol%, 10 mg), and Pd(PPh₃)₄ (10mol%, 115 mg) were dissolved in anhydrous THF (5 mL) under N₂ atmosphere. Then, Et₃N (5 mL) were injected into the solution via syringes. The reaction mixture was stirred at 50 °C for 5 h. When the reaction was finished, the solvent was removed by reduced pressure and the crude product **10** (Yield: 82%, 255 mg) was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate=1:1).

2,3-dimethyl 4-(2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl) 7-((4,4-dimethylthiochroman-6-yl)ethynyl)quinoline-2,3,4-tricarboxylate (10): yellow oil (Yield: 82%, 255 mg), ¹H NMR (400 MHz, Chloroform-d) δ 8.32 (d, J = 1.2 Hz, 1H), 7.96 (s, 1H), 7.73 (dd, J = 8.7, 1.6 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.55 (d, J = 1.7 Hz, 1H), 7.20 (dd, J = 8.1, 1.8 Hz, 1H), 7.05 (d, J = 8.2 Hz, 1H), 4.79 (t, J = 5.3 Hz, 2H), 4.68 (t, J = 5.3 Hz, 2H), 4.01 (s, 3H), 3.86 (s, 3H), 3.06 – 2.98 (m, 2H), 2.32 (s, 3H), 1.96 – 1.89 (m, 2H), 1.33 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.60, 165.48, 164.86, 151.23, 148.85, 147.55, 142.25, 139.32, 138.38, 134.62, 133.25, 132.88, 132.73, 129.97, 129.19, 128.34, 126.66, 125.07, 122.60, 122.28, 117.35, 95.35, 95.22, 87.42,

64.79, 53.52, 53.44, 44.73, 37.05, 32.98, 29.93, 23.24, 14.31. HRMS (ESI) cald. for (M+H)+ C₃₃H₃₁N₄O₈S:643.1863,found, 643.1860.

4. References

[1] R. A. Serwa, J.-M. Swiecicki, D. Homann, C. P. R. Hackenberger, Phosphoramidate-peptide synthesis by solution- and solid-phase Staudinger-phosphite reactions. *J. Pept. Sci.* **2010**, *16*, 563–567.

[2] Alam J, Keller T H, Loh T P. Functionalization of peptides and proteins by Mukaiyama aldol reaction. *J. Am. Chem. Soc.* **2010**, *132*, 9546-9548.

[3] Gu, K., Liu, Y., Guo, Z., Lian, C., Yan, C., Shi, P., ... & Zhu, W. H. In situ ratiometric quantitative tracing of intracellular leucine aminopeptidase activity via an activatable near-infrared fluorescent probe. *ACS Appl. Mater. Inter.* **2016**, *8*, 26622-26629.

[4] Bravo, F., McDonald, F. E., Neiwert, W. A., & Hardcastle, K. I. Alkene Substituents for Selective Activation of *Endo*-Regioselective Polyepoxide Oxacyclizations. *Org. Lett.* **2004**, *6*, 4487-4489.

5. Spectra

5.1. NMR Spectra of Products

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

- 60 -

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 f1 (ppm)

5.2 Fluorescence Measurement of selected Products

6. X-ray single-crystal data

4an : CCDC-2079883

CCDC-2079883	
Formula	$C_{24}H_{29}NO_6$
Formula weight	427.48
Temperature / K	100
Crystal system	Monoclinic
space group	P 1 21 1
a∕Å	8.42220(10)
b∕Å	8.60860(10)
c∕Å	15.5730(2)
<i>a</i> / °	90
eta / °	93.6740(10)
γ/ °	90
V / Å3	1126.77(2)
Z	2
$Dx (g/cm^3)$	1.260
μ / mm ⁻¹	0.741

	F (000)	456.0	
Datablock:	Reflections collected Independent reflections <i>R</i> int GOF Final R indices ($I > 2\sigma(I)$) R indices (all data)	21426 4277 0.0351 1.040 0.0278,0.0717 0.0284,0.0723	
Bond precision:	C-C = 0.0023 A	Wavelength=1.	54184
Cell:	a=8.4222(1) b=8.6086(1) c=15.5730(2) alpha=90 beta=93.674(1) gamma=90		
Temperature:	100 K		
	Calculated	Reported	
Volume	1126.77(2)	1126.77(2)	
Space group	P 21 D 2mb	$P \perp Z \perp \perp$ $P \perp Z \perp \perp$	
Mail group Moiety formula	Р ZYD С24 H29 N Об	Р 2УД С24 н29 м об	
Sum formula	C_{24} H29 N 06	C24 H29 N 06	
Mr	427.48	427.48	
Dx,g cm-3	1.260	1.260	
Z	2	2	
Mu (mm-1)	0.741	0.741	
F000	456.0	456.0	
F000'	457.46	10 10 10	
n, K, Imax Nrof	10,10,19 45731 24471	10,10,19	
Tmin.Tmax	0 837.0 929	4277 0 890 1 000	
Tmin'	0.801	,	
Correction metho	d= # Reported T Limit	s: Tmin=0.890 Tmax	x=1.000
AbsCorr = MULTI-	SCAN		
Data completenes	s= 1.75/0.94	Theta(max) = 73.9	84
R(reflections)= 77)	0.0278(4190)	wR2(reflect	ions)= 0.0723
s = 1.040	Npar= 2	85	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.
Alert level G PLAT791_ALERT_4_G Model has Chirality at C22 (Sohnke SpGr) PLAT791_ALERT_4_G Model has Chirality at C23 (Sohnke SpGr) S Verify PLAT791_ALERT_4_G Model has Chirality at C26 (Sohnke SpGr) R Verify PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 Note PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. Info PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by C Check

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
0 ALERT level C = Check. Ensure it is not caused by an omission or oversight
6 ALERT level G = General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
4 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check