Supporting Information

Stepwise assembly and reversible structural transformation of ligated titanium coated bismuth-oxo cores: shell morphology engineering for enhanced chemical fixation of CO_2

Qing-Rong Ding,^{a,b} Yinghua Yu,^a Changsheng Cao,^a Jian Zhang^a and Lei Zhang^{*a}

^{*a*} State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

^b University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China

E-mail: LZhang@fjirsm.ac.cn

Materials and Methods. All reagents and solvents employed are commercially available and are used as received without further purification. Bismuth subsalicylate was bought from Alfa Aesar. $Ti(O^{i}Pr)_{4}$ (96%) was bought from Admas-beta. Salicylic acid, piperazine, cis-4-cyclohexene-1,2-dicarboxylic acid, di(trimethylolpropane), 2,2'-biphenol, epichlorohydrin, propylene oxide, 1,2-epoxybutane, styrene oxide, cyclohexene oxide, dibromomethane and chloroform-d were bought from Energy Chemical. The phase purity of products was confirmed by PXRD using a Rigaku Dmax2500 diffractometer with Cu Ka radiation (λ = 1.54056 Å) with a step size of 5°/min. Thermogravimetric analyses (TGA) were performed using a NETSCHZ STA-449C thermoanalyzer with a heating rate of 10°C/min under a nitrogen atmosphere. Fourier transform infrared (FT-IR) spectra were recorded with a Spectrum One FT-IR Spectrometer in the 400-4000 cm⁻¹ range. The UV-vis diffuse reflection data were recorded at room temperature using a powder sample with BaSO4 as a standard on a Perkin-Elmer Lambda950 UVvis spectrophotometer and scanned at 200-800 nm in the reflectance mode with application of the Kubelka-Munk equation, $(F(R) = (1-R)^2/2R)$,¹ where *R* representing the reflectance. The solution-state UV-vis absorption spectra of nanoclusters before and after catalytic reaction were recorded using a Perkin-Elmer Lambda365 with 1 nm/s scan rate and scanned at 200-800 nm. The elemental analyses were performed on an EA1110 CHNS-0 CE elemental analyzer. The energy dispersive spectroscopy (EDS) analyses of single crystals were performed on a JEOL JSM6700F field-emission scanning electron microscope equipped with an Oxford INCA system. Inductively coupled plasma (ICP) analyses for Bi and Ti were conducted on an Ultima2 spectrometer. Routine ¹H NMR spectra were recorded on a Bruker AVANCE III (400 MHz for ¹H NMR).

Photocurrent measurement. Films of compounds were prepared by the solution coating method. The crystals (5 mg) were placed in 0.5 mL isopropanol and 10 μ L Nafion (5 wt.%) mixed solvent, then the mixture was ultrasonicated for 30 min to achieve a homogeneous ink. The 50 μ L solutions were transferred by pipette and then dropped on the cleaned FTO glass ($1.5 \times 4.0 \text{ cm}^2$, 50 Ω per square cm). The coating film was obtained after evaporation under ambient atmosphere. A 300 W (PLS-SXE300D) Xe lamp with a 420 nm cutoff filter, located 20 cm away from the surface of the FTO electrode, was employed as light source. The photocurrent experiments were performed on a CHI 760e electrochemical workstation (Chenhua, Shanghai, China) in a three-electrode system, with the sample coated FTO glass ($1.0 \text{ cm} \times 1.0 \text{ cm}$) as the working electrode, a Pt plate as the auxiliary electrode and an Ag/AgCl electrode as the reference electrode. 40ml aqueous solution of Na₂SO₄ ($0.2 \text{ mol } L^{-1}$) was used as the electrolyte solution first. All the tests were performed at the same bias potential of +0.8 V. The lamp was kept on continuously, and a manual shutter was used to block exposure of the sample to the light.

Catalytic reaction. In each reaction, 10 mmol epoxide substrate, 0.005 mmol catalysts, and 1mmol tetratert-butylammonium bromide (TBAB) were mixed in a 25 mL Schlenk tube. The Schlenk tube was solvent-free and purged with 1 atm CO_2 at room temperature for 24 h or 48 h with 550 rpm stirring. After reaction, the products were collected and analyzed by ¹H NMR (400 MHz, CDCl₃) to study its conversion ratio using dibromomethane as an internal standard. The mixed solution after reaction was added to a large amount of ethanol, and further centrifuged to isolate the spent catalyst, which was washed with ethanol several times. After that, the catalyst was reintroduced into the system to restart a new recycle reaction or other characterization.

Synthesis of [Ti₆Bi₃₈O₄₅(SAC)₁₈(HSAC)₁₂]·2(H₂O)·4(NBA)·11(DMF) (PTC-281)

Bismuth subsalicylate (0.362 g, 1.0 mmol), salicylic acid (0.138 g, 1.0 mmol), dimethylformamide (4 ml) and 1-butanol (4 ml) were mixed at room temperature and then dropwise $Ti(O^{i}Pr)_{4}$ (0.5 ml, 1.6 mmol) was added. The resultant solution was heated at 80 °C for three days in a glass vial with a polyethylene

screw cap, and then cooled to room temperature, yellow rodlike crystals of PTC-281 were obtained (yield: ~60% based on $Ti(O^{i}Pr)_{4}$). EA (%) calculated for $C_{259}H_{253}N_{11}O_{152}Ti_{6}Bi_{38}$ (14180.26): C, 21.94; H, 1.80; N, 1.09. Found: C, 21.65; H, 1.62; N, 1.21. FT-IR (KBr pellet, cm⁻¹): 3446(w) 2952(w) 1595(s) 1453(s) 1375(s) 1347(s) 1243(m) 1137(m) 1041(w) 890(m) 829(w) 758(m) 706(w) 669(w) 640(w) 546(s).

Synthesis of H₂[Ti₁₄Bi₃₈O₅₀(SAC)₃₀(EtO)₁₂]·12(DMF) (PTC-282)

PTC-281 (0.200 g), salicylic acid (0.276 g, 2.0 mmol), piperazine (0.086 g, 0.1 mmol), dimethylformamide (4 ml) and ethyl acetate (4 ml) were mixed at room temperature and then dropwise $Ti(O^{i}Pr)_{4}$ (0.5 ml, 1.6 mmol) was added. The resultant solution was heated at 80 °C for one night in a glass vial with a polyethylene screw cap, and then cooled to room temperature, yellow block crystals of PTC-282 were obtained. EA (%) calculated for $C_{270}H_{266}N_{12}O_{164}Ti_{14}Bi_{38}$ (14914.37): C, 21.74; H, 1.80; N, 1.13. Found: C, 21.87; H, 1.64; N, 1.23. FT-IR (KBr pellet, cm⁻¹): 1648(s) 1595(s) 1533(w) 1455(s) 1344(s) 1239(m) 1140(w) 1103(w) 1099(w) 1032(w) 887(m) 834(m) 763(m) 706(w) 672(w) 639(w) 589(w) 456(w).

Synthesis of [Ti₁₆Bi₃₈O₅₁(SAC)₂₈(HSAC)₂(DEA)₄(PhO)₁₀]·2(CH₃CN) (PTC-283)

PTC-281 (0.200 g), salicylic acid (0.138 g, 2.0 mmol), acetonitrile (4 ml) and phenol (4 ml) were mixed at room temperature and then diethanolamine (30 μ L, 0.3 mmol), Ti(OⁱPr)₄ (0.5 ml, 1.6 mmol) were added. The resultant solution was heated at 80 °C for one night in a glass vial with a polyethylene screw cap, and then cooled to room temperature, yellow block crystals of PTC-283 were obtained. EA (%) calculated for C₂₉₀H₂₁₀N₆O₁₅₉Ti₁₆Bi₃₈(15030.27): C, 23.17; H, 1.41; N, 0.56. Found: C, 23.31; H, 1.34; N, 0.63. FT-IR (KBr pellet, cm⁻¹): 1642(w) 1597(s) 1533(w) 1455(s) 1344(s) 1236(m) 1140(w) 1103(w) 1033(w) 892(m) 838(m) 759(w) 706(w) 680(w) 643(w) 527(w) 456(w).

Synthesis of [Ti₁₆Bi₃₈O₄₄(SAC)₃₄(DPC)₆(PhO)₈]·4(CH₃CN) (PTC-284)

PTC-281 (0.200 g), salicylic acid (0.138 g, 2.0 mmol), cis-4-cyclohexene-1,2-dicarboxylic acid (0.068 g, 0.4 mmol), acetonitrile (4 ml) and phenol (4 ml) were mixed at room temperature and then dropwise Ti(OⁱPr)₄ (0.5 ml, 1.6 mmol) was added. The resultant solution was heated at 80 °C for one night in a glass vial with a polyethylene screw cap, and then cooled to room temperature, red spininess crystals of PTC-284 were obtained. EA (%) calculated for $C_{342}H_{236}N_4O_{178}Ti_{16}Bi_{38}$ (15956.97): C, 25.74; H, 1.49; N, 0.35. Found: C, 25.81; H, 1.40; N, 0.28. FT-IR (KBr pellet, cm⁻¹): 1642(w) 1597(s) 1575(s) 1522(w) 1455(s) 1343(m) 1236(s) 1140(w) 1028(w) 892(m) 838(m) 759(m) 705(w) 672(w) 643(w) 585(w) 527(w).

Synthesis of [Ti₁₈Bi₃₈O₅₀(SAC)₂₄(DTPP)₆(DMT)₆][OⁱPr]₂·12(DMF) (PTC-285)

PTC-281 (0.200 g), salicylic acid (0.138 g, 2.0 mmol), di(trimethylolpropane) (0.250 g, 2.0 mmol), 2,2'-biphenol (0.068 g, 0.4 mmol), dimethylformamide (4 ml) and n-propanol (4 ml) were mixed at room temperature and then dropwise $Ti(O^{i}Pr)_{4}$ (0.5 ml, 1.6 mmol) was added. The resultant solution was heated at 80 °C for one night in a glass vial with a polyethylene screw cap, and then cooled to room temperature, orange cube crystals of PTC-285 were obtained. EA (%) calculated for $C_{354}H_{374}N_{12}O_{178}Ti_{18}Bi_{38}$ (16444.38): C, 25.85; H, 2.29; N, 1.02. Found: C, 25.78; H, 2.30; N, 1.12. FT-IR (KBr pellet, cm⁻¹): 1605(s) 1579(s) 1575(s) 1543(w) 1460(s) 1348(s) 1277(w) 1244(s) 1140(m) 1079(s) 1031(w) 957(w) 892(m) 834(m) 706(w) 676(w) 643(w) 539(w) 457(w).

Synthesis of H₂[Ti₂₀Bi₃₈O₅₀(SAC)₃₀(DTPP)₆(CH₃O)₁₂]·4(DMF) (PTC-286)

PTC-281 (0.200 g), salicylic acid (0.138 g, 2.0 mmol), di(trimethylolpropane) (0.250 g, 2.0 mmol), dimethylformamide (4 ml) and methanol (4 ml) were mixed at room temperature and then dropwise $Ti(O^{i}Pr)_{4}$ (0.5 ml, 1.6 mmol) was added. The resultant solution was heated at 80 °C for one night in a glass vial with a polyethylene screw cap, and then cooled to room temperature, yellow block crystals of

PTC-286 were obtained. EA (%) calculated for $C_{306}H_{318}N_4O_{186}Ti_{20}Bi_{38}$ (15926.30): C, 23.08; H, 2.02; N, 0.35. Found: C, 23.22; H, 2.11; N, 0.43. FT-IR (KBr pellet, cm⁻¹): 3427(w) 3066(w) 2960(w) 2855(w) 1600(s) 1579(s) 1547(w) 1460(s) 1343(s) 1238(m) 1140(m) 1079(w) 1028(w) 954(w) 892(m) 834(m) 706(w) 676(w) 643(w) 539(w) 457(w).

General Methods for X-ray Crystallography. Crystallographic data of PTC-281 to 286 were collected on ROD diffractometer which is equipped with a gallium micro-focus metaljet X-ray sources ($\lambda = 1.3405$ Å) at 100 K. The structures were solved with the dual-direct methods using *ShelxT* and refifined with the full-matrix least-squares technique based on F^2 using the *SHELXL*-2014² program package and Olex-2³ software. Non-hydrogen atoms were refined anisotropically, and all hydrogen atoms bond C were generated geometrically. Some disordered solvent molecules are removed by using the SQUEEZE⁴ routine of PLATON.⁵ The details of the SQUEEZE corrections, including the volume of void space and electron counts, are provided in the cif file. The cluster core of PTC-285 is a +2 cation. According to the reactants added in the synthesis of PTC-285 and also the elemental analysis results, we speculate that the peripheral counter anions are two free OⁱPr groups in the cavity. Unfortunately, due to the weak diffraction, these counter anions could not be crystallographically defined. The X-ray crystallographic Data Centre (CCDC) under deposition numbers CCDC 2104507, 2104508, and 2104511 to 2104515 for PTC-281, PTC-281R, and PTC-282 to PTC-286. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>http://www.ccdc.cam.ac.uk/data_request/cif</u>.

- (1) W. W. Wendlandt, H. G. Hecht, Interscience publishers: New York, 1966, 46, 593.
- (2) D. Leggas, O. V. Tsodikov, Acta Crystallogr A Found Adv. 2015, 71, 319-324.
- (3) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
- (4) A. L. Spek, Acta Crystallogr C Struct Chem. 2015, 71, 9-18.
- (5) A. L. Spek, Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.

	PTC-281	PTC-281R	PTC-282
Cryst. formula	$C_{254}H_{244}N_{11}O_{149}Ti_6Bi_{38}$	$C_{240}H_{202}N_{10}O_{145}Ti_6Bi_{38}$	$C_{252}H_{222}N_6O_{158}Ti_{14}Bi_{38}$
\mathbf{M}_{r}	14063.23	13774.74	14474.18
T/K	100.4(7)	104.2(3)	99.97(11)
Crystal system	Triclinic	Monoclinic	Trigonal
Space group	<i>P</i> -1	C2/c	R-3c
a/Å	23.6421(2)	31.6643(3)	24.8265(5)
b/Å	23.6421(2)	33.3838(3)	24.8265(5)
c/Å	38.8128(3)	35.4595(3)	120.4773(15)
α (°)	107.5720(10)	90	90
β (°)	91.1110(10)	91.5690(10)	90
γ (°)	114.4930(10)	90	120
V/Å ³	18711.2(3)	37469.3(6)	64308(3)
Z	2	4	6
Dc/mg m ⁻³	2.496	2.442	2.242
μ/mm^{-1}	25.023	24.973	22.612
Indepreflns $[I > 2\sigma(I)]$	64356	33048	12593
F(000)	12646.0	24632.0	39012.0
GOF	1.072	1.029	1.069
CCDC No.	2104507	2104508	2104511
$\mathbb{R}_{1^{a}}, \mathbb{W}\mathbb{R}_{2^{b}}[I > 2\sigma(I)]$	0.0493, 0.1277	0.0866, 0.2288	0.0831, 0.2302
R_1^a , w R_2^b (all data)	0.0602, 0.1333	0.0946, 0.2414	0.0966, 0.2439

 Table S1. Crystallographic data and structure refinement summary for PTC-281 and PTC-282

 ${}^{a}R_{1} = \Sigma(||F_{o}| - |F_{c}||)/\Sigma|F_{o}|. {}^{b}wR_{2} = [\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})^{2}/\Sigma w(F_{o}^{2})]^{1/2}.$

	РТС-283	РТС-284	РТС-285
Cryst. formula	$C_{290}H_{210}N_6O_{159}Ti_{16}Bi_{38}$	$C_{342}H_{236}N_4O_{178}Ti_{16}Bi_{38}$	$C_{312}H_{276}O_{164}Ti_{18}Bi_{38}$
\mathbf{M}_{r}	15030.27	15956.97	15452.75
T/K	110.01(10)	100.00(14)	100.01(11)
Crystal system	Monoclinic	Monoclinic	Trigonal
Space group	$P2_{1}/n$	I2/a	R-3
a/Å	22.5953(2)	25.2403(1)	39.6442(16)
b/Å	37.4685(3)	43.6932(2)	39.6442(16)
c/Å	23.2719(2)	49.0721(3)	23.6456(15)
α(°)	90	90	90
β (°)	98.1640(10)	96.6720(10)	90
γ (°)	90	90	120
V/Å ³	19502.6(3)	53751.6(5)	32184(3)
Z	2	4	3
Dc/mg m ⁻³	2.559	1.972	2.392
µ/mm ⁻¹	25.087	18.253	23.008
indep reflns $[I > 2\sigma(I)]$	34364	46869	12486
F(000)	13540.0	28984.0	21030.0
GOF	1.044	1.018	1.217
CCDC No.	2104512	2104513	2104514
R_1^a , w R_2^b [$I > 2\sigma(I)$]	0.0635, 0.1590	0.0669, 0.1720	0.1020, 0.3013
R_1^a , w R_2^b (all data)	0.0798, 0.1733	0.0896, 0.1947	0.1275, 0.3285

Table S2. Crystallographic data and structure refinement summary for PTC-283 to PTC-285

 ${}^{a}R_{1} = \Sigma(||F_{o}| - |F_{c}||)/\Sigma|F_{o}|. {}^{b}wR_{2} = [\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})^{2}/\Sigma w(F_{o}^{2})]^{1/2}.$

	PTC-286
Cryst. formula	$C_{306}H_{304}N_4O_{186}Ti_{20}Bi_{38}$
$M_{\rm r}$	15912.75
T/K	100.01(10)
Crystal system	Triclinic
Space group	<i>P</i> -1
a/Å	23.1533(5)
b/Å	23.5480(5)
c/Å	23.6018(5)
α (°)	117.688(2)
β (°)	115.545(2)
γ (°)	92.2502(17)
V/Å ³	9807.4(4)
Z	1
Dc/mg m ⁻³	2.694
µ/mm ⁻¹	25.420
indep reflns $[I > 2\sigma(I)]$	34316
F(000)	7250.0
GOF	1.037
CCDC No.	2104515
$\mathbb{R}_{1^{a}}, \mathbb{W}\mathbb{R}_{2^{b}}[I > 2\sigma(I)]$	0.0632, 0.1615
R_1^a , wR_2^b (all data)	0.0936, 0.1971

Table S3. Crystallographic data and structure refinement summary for PTC-286

 ${}^{a}R_{1} = \Sigma(||F_{o}| - |F_{c}||)/\Sigma|F_{o}|. {}^{b}wR_{2} = [\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})^{2}/\Sigma w(F_{o}^{2})]^{1/2}.$

Table S4. Bond valence sum (BVS) analysis of titanium and bridged oxygen atoms^[a] for PTC-281 to 286 PTC-281

P1C-281								
Ti1 4.255			Ti2 4.231			Ti3 4.315		
Ti1-O030	d=1.997(12)	0.611	Ti2-O037	d=2.010(11)	0.590	Ti3-O02D	d=2.041(10)	0.542
Ti1-O03B	d=2.014(12)	0.584	Ti2-O03S	d=1.976(11)	0.647	Ti3-O02E	d=1.890(10)	0.816
Ti1-O03C	d=2.025(12)	0.566	Ti2-O047	d=1.905(12)	0.784	Ti3-O02J	d=1.992(9)	0.619
Ti1-O03N	d=1.890(14)	0.816	Ti2-O04G	d=2.012(11)	0.587	Ti3-O02W	d=1.861(10)	0.883
Ti1-O03X	d=1.891(12)	0.814	Ti2-O04K	d=1.893(12)	0.809	Ti3-O02X	d=1.871(11)	0.859
Ti1-O04I	d=1.869(13)	0.864	Ti2-O04U	d=1.891(12)	0.814	Ti3-O032	d=2.006(9)	0.596
Ti4 4.280			Ti5 4.283			Ti6 4.264		
Ti4-O03Z	d=1.988(12)	0.626	Ti5-O02F	d=2.012(10)	0.587	Ti6-O02H	d=1.988(11)	0.626
Ti4-O041	d=1.998(12)	0.609	Ti5-0020	d=1.858(10)	0.890	Ti6-O02K	d=1.873(13)	0.854
Ti4-O043	d=1.884(15)	0.829	Ti5-O02S	d=2.026(10)	0.565	Ti6-O02M	d=2.026(11)	0.565
Ti4-O044	d=2.044(12)	0.538	Ti5-O02U	d=1.875(10)	0.850	Ti6-O02T	d=1.891(12)	0.814
Ti4-O04A	d=1.866(14)	0.871	Ti5-O02Z	d=2.010(10)	0.590	Ti6-O02Y	d=2.008(12)	0.593
Ti4-O04M	d=1.894(14)	0.807	Ti5-0030	d=1.897(11)	0.801	Ti6-O03W	d=1.892(12)	0.812
				PTC-282				
Ti1 4.716			Ti2 4.120			Ti3 4.241		
Til-O00Q	d=1.948(19)	0.663	Ti2-O00J	d=1.881(15)	0.836	Ti3-O00J	d=1.827(15)	0.929
Ti1-O00Q						TI: a		
	d=1.948(19)	0.663	Ti2-O00T	d=2.103(15)	0.459	000L=K	d=1.890(17)	0.779
Ti1-O00Q	d=1.948(19) d=1.948(19)	0.663	Ti2-O00T Ti2-O00U	d=2.103(15) d=1.955(17)	0.459 0.684	Ti3- O00L=K Ti3-O00L	d=1.890(17) d=1.92(2)	0.779
Ti1-000Q Ti1-000W	d=1.948(19) d=1.948(19) d=1.83(2)	0.663 0.663 0.909	Ti2-O00T Ti2-O00U Ti2-O00X	d=2.103(15) d=1.955(17) d=1.945(19)	0.459 0.684 0.703	Ti3- O00L=K Ti3-O00L Ti3-O00P	d=1.890(17) d=1.92(2) d=2.016(13)	0.779 0.752 0.560
Ti1-000Q Ti1-000W Ti1-000W	d=1.948(19) d=1.948(19) d=1.83(2) d=1.83(2)	0.663 0.663 0.909 0.909	Ti2-O00T Ti2-O00U Ti2-O00X Ti2-O00Y	d=2.103(15) d=1.955(17) d=1.945(19) d=1.85(2)	0.459 0.684 0.703 0.909	Ti3- O00L=K Ti3-O00L Ti3-O00P Ti3-O00V	d=1.890(17) $d=1.92(2)$ $d=2.016(13)$ $d=1.906(16)$	0.779 0.752 0.560 0.590
Ti1-O00Q Ti1-O00W Ti1-O00W Ti1-O00W	d=1.948(19) d=1.948(19) d=1.83(2) d=1.83(2) d=1.83(2)	0.663 0.663 0.909 0.909 0.909	Ti2-O00T Ti2-O00U Ti2-O00X Ti2-O00Y Ti2-O00Z	d=2.103(15) $d=1.955(17)$ $d=1.945(19)$ $d=1.85(2)$ $d=2.05(2)$	0.459 0.684 0.703 0.909 0.529	Ti3- O00L=K Ti3-O00L Ti3-O00P Ti3-O00V Ti3-O00Z	d=1.890(17) $d=1.92(2)$ $d=2.016(13)$ $d=1.906(16)$ $d=1.985(16)$	0.779 0.752 0.560 0.590 0.631
Ti1-O00Q Ti1-O00W Ti1-O00W Ti1-O00W	d=1.948(19) $d=1.948(19)$ $d=1.83(2)$ $d=1.83(2)$ $d=1.83(2)$	0.663 0.663 0.909 0.909 0.909	Ti2-O00T Ti2-O00U Ti2-O00X Ti2-O00Y Ti2-O00Z	d=2.103(15) d=1.955(17) d=1.945(19) d=1.85(2) d=2.05(2) PTC-283	0.459 0.684 0.703 0.909 0.529	Ti3- O00L=K Ti3-O00L Ti3-O00P Ti3-O00V Ti3-O00Z	d=1.890(17) $d=1.92(2)$ $d=2.016(13)$ $d=1.906(16)$ $d=1.985(16)$	0.779 0.752 0.560 0.590 0.631
Ti1-O00Q Ti1-O00W Ti1-O00W Ti1-O00W	d=1.948(19) d=1.948(19) d=1.83(2) d=1.83(2) d=1.83(2)	0.663 0.663 0.909 0.909 0.909	Ti2-O00T Ti2-O00U Ti2-O00X Ti2-O00Y Ti2-O00Z Ti2-O00Z	d=2.103(15) d=1.955(17) d=1.945(19) d=1.85(2) d=2.05(2) PTC-283	0.459 0.684 0.703 0.909 0.529	Ti3- O00L=K Ti3-O00L Ti3-O00P Ti3-O00V Ti3-O00Z	d=1.890(17) d=1.92(2) d=2.016(13) d=1.906(16) d=1.985(16)	0.779 0.752 0.560 0.590 0.631
Ti1-O00Q Ti1-O00W Ti1-O00W Ti1-O00W Ti1-000W Ti1 4.325 O00S	d=1.948(19) d=1.948(19) d=1.83(2) d=1.83(2) d=1.83(2)	0.663 0.663 0.909 0.909 0.909 0.909	Ti2-O00T Ti2-O00U Ti2-O00X Ti2-O00Y Ti2-O00Z Ti2-O00Z Ti2 4.181 O014	d=2.103(15) d=1.955(17) d=1.945(19) d=1.85(2) d=2.05(2) PTC-283	0.459 0.684 0.703 0.909 0.529 0.740	Ti3- O00L=K Ti3-O00L Ti3-O00P Ti3-O00V Ti3-O00Z Ti3 4.392 O016	d=1.890(17) $d=1.92(2)$ $d=2.016(13)$ $d=1.906(16)$ $d=1.985(16)$ $1.876(14)$	0.779 0.752 0.560 0.590 0.631
Ti1-O00Q Ti1-O00W Ti1-O00W Ti1-O00W Ti1-O00W Ti1 4.325 O00S O00U	d=1.948(19) d=1.948(19) d=1.83(2) d=1.83(2) d=1.83(2) 1.903(11) 2.078(11)	0.663 0.909 0.909 0.909 0.909 0.909 0.909	Ti2-O00T Ti2-O00U Ti2-O00X Ti2-O00Y Ti2-O00Z Ti2-O00Z Ti2-000Z O014 O01D	d=2.103(15) $d=1.955(17)$ $d=1.945(19)$ $d=1.85(2)$ $d=2.05(2)$ PTC-283 $1.926(11)$ $1.948(13)$	0.459 0.684 0.703 0.909 0.529 0.529 0.740 0.698	Ti3- O00L=K Ti3-O00L Ti3-O00V Ti3-O00Z Ti3-O00Z Ti3 4.392 O016 O01L	d=1.890(17) $d=1.92(2)$ $d=2.016(13)$ $d=1.906(16)$ $d=1.985(16)$ $1.876(14)$ $1.996(12)$	0.779 0.752 0.560 0.590 0.631 0.848 0.848
Ti1-O00Q Ti1-O00W Ti1-O00W Ti1-O00W Ti1-000W Ti1-000W O00S O00U O00Z	d=1.948(19) d=1.948(19) d=1.83(2) d=1.83(2) d=1.83(2) 1.903(11) 2.078(11) 2.103(11)	0.663 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909	Ti2-O00T Ti2-O00U Ti2-O00X Ti2-O00Y Ti2-O00Z Ti2-O00Z Ti2-000Z O014 O014 O01D O01P	d=2.103(15) d=1.955(17) d=1.945(19) d=1.85(2) d=2.05(2) PTC-283 1.926(11) 1.948(13) 2.015(11)	0.459 0.684 0.703 0.909 0.529 0.529 0.740 0.698 0.582	Ti3- O00L=K Ti3-O00L Ti3-O00P Ti3-O00V Ti3-O00Z Ti3-O00Z O016 O01L O010	d=1.890(17) $d=1.92(2)$ $d=2.016(13)$ $d=1.906(16)$ $d=1.985(16)$ $1.876(14)$ $1.996(12)$ $2.042(14)$	0.779 0.752 0.560 0.590 0.631 0.631 0.848 0.613 0.541
Ti1-O00Q Ti1-O00W Ti1-O00W Ti1-O00W Ti1-O00W Ti1-O00W O00S O00U O00Z O013	d=1.948(19) $d=1.948(19)$ $d=1.83(2)$ $d=1.83(2)$ $d=1.83(2)$ $1.903(11)$ $2.078(11)$ $2.103(11)$ $1.953(11)$	0.663 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909	Ti2-O00T Ti2-O00U Ti2-O00X Ti2-O00Y Ti2-O00Z Ti2-O00Z Ti2-O00Z Ti2 4.181 O014 O01A O01D O01P O01S	d=2.103(15) $d=1.955(17)$ $d=1.945(19)$ $d=1.85(2)$ $d=2.05(2)$ PTC-283 $1.926(11)$ $1.948(13)$ $2.015(11)$ $2.030(14)$	0.459 0.684 0.703 0.909 0.529 0.529 0.529 0.582 0.582	Ti3- O00L=K Ti3-O00L Ti3-O00P Ti3-O00V Ti3-O00Z Ti3-O00Z O016 O011L O010 O01R	d=1.890(17) $d=1.92(2)$ $d=2.016(13)$ $d=1.906(16)$ $d=1.985(16)$ $1.876(14)$ $1.996(12)$ $2.042(14)$ $2.002(12)$	0.779 0.752 0.560 0.590 0.631 0.631 0.848 0.613 0.541 0.603

O01J	1.946(12)	0.701	N02C	2.318(13)	0.256	O02E	1.853(15)	0.902
Ti4 4.198	<u> </u>		Ti5 4.446			Ti6 4.227		
O02J	1.917(16)	0.759	O02P	2.054(18)	0.524	O01H	2.015(14)	0.582
O02Y	1.87(2)	0.861	002Q	1.82(2)	0.934	O01W	2.023(14)	0.569
O03D	1.793(19)	1.061	O03D	1.930(18)	0.679	O01X	1.926(13)	0.740
003К	2.031(17)	0.557	003Q	1.83(2)	0.909	O021	1.918(13)	0.757
O58	1.83(2)	0.960	O048	2.122(19)	0.414	O02F	1.714(12)	1.313
			O16	1.69(2)	0.986	N02L	2.304(15)	0.266
Ti7 4.322			Ti8 4.232					
O01C	1.863(14)	0.878	O01B	1.861(14)	0.883			
O01F	1.843(14)	0.927	O01G	1.848(13)	0.914			
001Q	2.024(12)	0.568	O01T	1.875(13)	0.850			
O01Z	1.862(14)	0.880	O01U	2.038(12)	0.547			
O023	2.067(12)	0.506	O025	2.054(12)	0.524			
O02I	2.027(14)	0.563	O02K	2.061(13)	0.514			
PTC-284								
				110 201				
Ti1 4.006			Ti2 4.291			Ti3 4.330		
Til 4.006 Til-O01T	d=1.857(13)	0.892	Ti2 4.291 Ti2-O01E	d=2.070(13)	0.484	Ti3 4.330 Ti3-O02C	d=2.042(12)	0.541
Ti1 4.006 Ti1-O01T Ti1-O01V	d=1.857(13) d=2.048(12)	0.892	Ti2 4.291 Ti2-O01E Ti2-O01K	d=2.070(13) d=2.041(11)	0.484	Ti3 4.330 Ti3-O02C Ti3-O01B	d=2.042(12) d=1.848(12)	0.541
Til 4.006 Til-O01T Til-O01V Til-O01W	d=1.857(13) d=2.048(12) d=1.971(13)	0.892 0.165 0.655	Ti2 4.291 Ti2-O01E Ti2-O01K Ti2-O01L	d=2.070(13) d=2.041(11) d=1.860(13)	0.484 0.527 0.854	Ti3 4.330 Ti3-O02C Ti3-O01B Ti3-O021	d=2.042(12) d=1.848(12) d=2.030(11)	0.541 0.914 0.559
Til 4.006 Til-O01T Til-O01V Til-O01W Til-O01Z	d=1.857(13) d=2.048(12) d=1.971(13) d=1.863(12)	0.892 0.165 0.655 0.878	Ti2 4.291 Ti2-O01E Ti2-O01K Ti2-O01L Ti2-O01M	d=2.070(13) $d=2.041(11)$ $d=1.860(13)$ $d=1.995(12)$	0.484 0.527 0.854 0.595	Ti3 4.330 Ti3-O02C Ti3-O01B Ti3-O021 Ti3-O029	d=2.042(12) d=1.848(12) d=2.030(11) d=1.860(12)	0.541 0.914 0.559 0.885
Til 4.006 Til-O01T Til-O01V Til-O01W Til-O01Z Til-O026	d=1.857(13) d=2.048(12) d=1.971(13) d=1.863(12) d=2.051(12)	0.892 0.165 0.655 0.878 0.528	Ti2 4.291 Ti2-O01E Ti2-O01K Ti2-O01L Ti2-O01M Ti2-O020	d=2.070(13) $d=2.041(11)$ $d=1.860(13)$ $d=1.995(12)$ $d=1.879(13)$	0.484 0.527 0.854 0.595 0.812	Ti3 4.330 Ti3-O02C Ti3-O01B Ti3-O021 Ti3-O029 Ti3-O02H	d=2.042(12) $d=1.848(12)$ $d=2.030(11)$ $d=1.860(12)$ $d=1.868(14)$	0.541 0.914 0.559 0.885 0.866
Til 4.006 Til-O01T Til-O01V Til-O01W Til-O01Z Til-O026 Til-O02P	d=1.857(13) $d=2.048(12)$ $d=1.971(13)$ $d=1.863(12)$ $d=2.051(12)$ $d=1.860(14)$	0.892 0.165 0.655 0.878 0.528 0.885	Ti2 4.291 Ti2-O01E Ti2-O01K Ti2-O01L Ti2-O01M Ti2-O020 Ti2-O02C	d=2.070(13) $d=2.041(11)$ $d=1.860(13)$ $d=1.995(12)$ $d=1.879(13)$ $d=1.794(14)$	0.484 0.527 0.854 0.595 0.812 1.019	Ti3 4.330 Ti3-O02C Ti3-O01B Ti3-O021 Ti3-O029 Ti3-O02H Ti3-O02M	d=2.042(12) $d=1.848(12)$ $d=2.030(11)$ $d=1.860(12)$ $d=1.868(14)$ $d=2.026(13)$	0.541 0.914 0.559 0.885 0.866 0.565
Til 4.006 Til-O01T Til-O01V Til-O01W Til-O01Z Til-O026 Til-O02P Ti4 4.300	d=1.857(13) $d=2.048(12)$ $d=1.971(13)$ $d=1.863(12)$ $d=2.051(12)$ $d=1.860(14)$	0.892 0.165 0.655 0.878 0.528 0.885	Ti2 4.291 Ti2-O01E Ti2-O01K Ti2-O01L Ti2-O01M Ti2-O020 Ti2-O02C Ti5 4.310	d=2.070(13) $d=2.041(11)$ $d=1.860(13)$ $d=1.995(12)$ $d=1.879(13)$ $d=1.794(14)$	0.484 0.527 0.854 0.595 0.812 1.019	Ti3 4.330 Ti3-O02C Ti3-O01B Ti3-O021 Ti3-O029 Ti3-O02H Ti3-O02M Ti6 4.334	d=2.042(12) $d=1.848(12)$ $d=2.030(11)$ $d=1.860(12)$ $d=1.868(14)$ $d=2.026(13)$	0.541 0.914 0.559 0.885 0.866 0.565
Til 4.006 Til-O01T Til-O01V Til-O01W Til-O01Z Til-O02P Ti4 4.300 Ti4-O018	d=1.857(13) $d=2.048(12)$ $d=1.971(13)$ $d=1.863(12)$ $d=2.051(12)$ $d=1.860(14)$ $d=2.046(12)$	0.892 0.165 0.655 0.878 0.528 0.885	Ti2 4.291 Ti2-O01E Ti2-O01K Ti2-O01L Ti2-O01M Ti2-O020 Ti2-O02C Ti5 4.310 Ti5-O00Z	d=2.070(13) $d=2.041(11)$ $d=1.860(13)$ $d=1.995(12)$ $d=1.879(13)$ $d=1.794(14)$ $d=1.848(12)$	0.484 0.527 0.854 0.595 0.812 1.019 0.914	Ti3 4.330 Ti3-O02C Ti3-O01B Ti3-O021 Ti3-O029 Ti3-O02H Ti3-O02H Ti6 4.334 Ti6-O02Q	d=2.042(12) $d=1.848(12)$ $d=2.030(11)$ $d=1.860(12)$ $d=1.868(14)$ $d=2.026(13)$ $d=2.007(13)$	0.541 0.914 0.559 0.885 0.866 0.565
Til 4.006 Til-O01T Til-O01V Til-O01W Til-O01Z Til-O026 Til-O02P Ti4-0018 Ti4-O01R	d=1.857(13) $d=2.048(12)$ $d=1.971(13)$ $d=1.863(12)$ $d=2.051(12)$ $d=1.860(14)$ $d=2.046(12)$ $d=1.843(13)$	0.892 0.165 0.655 0.878 0.528 0.885 0.885 0.535	Ti2 4.291 Ti2-O01E Ti2-O01K Ti2-O01L Ti2-O01M Ti2-O020 Ti2-O02C Ti5 4.310 Ti5-O00Z Ti5-O01A	d=2.070(13) $d=2.041(11)$ $d=1.860(13)$ $d=1.995(12)$ $d=1.879(13)$ $d=1.794(14)$ $d=1.848(12)$ $d=2.082(11)$	0.484 0.527 0.854 0.595 0.812 1.019 0.914 0.485	Ti3 4.330 Ti3-O02C Ti3-O01B Ti3-O021 Ti3-O029 Ti3-O02H Ti3-O02H Ti6 4.334 Ti6 4.334 Ti6-O02Q Ti6-O02Z	d=2.042(12) $d=1.848(12)$ $d=2.030(11)$ $d=1.860(12)$ $d=1.868(14)$ $d=2.026(13)$ $d=2.007(13)$ $d=1.976(16)$	0.541 0.914 0.559 0.885 0.866 0.565 0.565
Ti1 4.006 Ti1-O01T Ti1-O01V Ti1-O01W Ti1-O01Z Ti1-O026 Ti1-O02P Ti4 4.300 Ti4-O018 Ti4-O01R Ti4-O024	d=1.857(13) $d=2.048(12)$ $d=1.971(13)$ $d=1.863(12)$ $d=2.051(12)$ $d=1.860(14)$ $d=1.843(13)$ $d=1.951(13)$	0.892 0.165 0.655 0.878 0.528 0.885 0.885 0.535 0.927 0.692	Ti2 4.291 Ti2-O01E Ti2-O01K Ti2-O01L Ti2-O01M Ti2-O020 Ti2-O02C Ti5 4.310 Ti5-O01A Ti5-O01F	d=2.070(13) $d=2.041(11)$ $d=1.860(13)$ $d=1.995(12)$ $d=1.879(13)$ $d=1.794(14)$ $d=1.848(12)$ $d=2.082(11)$ $d=1.842(12)$	0.484 0.527 0.854 0.595 0.812 1.019 0.914 0.485 0.929	Ti3 4.330 Ti3-O02C Ti3-O01B Ti3-O021 Ti3-O029 Ti3-O02H Ti3-O02H Ti6 4.334 Ti6 4.334 Ti6-O02Q Ti6-O02Z Ti6-O032	d=2.042(12) $d=1.848(12)$ $d=2.030(11)$ $d=1.860(12)$ $d=1.868(14)$ $d=2.026(13)$ $d=2.007(13)$ $d=1.976(16)$ $d=1.860(14)$	0.541 0.914 0.559 0.885 0.866 0.565 0.565 0.574 0.619 0.852
Til 4.006 Til-O01T Til-O01V Til-O01W Til-O01Z Til-O026 Til-O02P Ti4 4.300 Ti4-O018 Ti4-O01R Ti4-O024 Ti4-O027	d=1.857(13) $d=2.048(12)$ $d=1.971(13)$ $d=1.863(12)$ $d=2.051(12)$ $d=1.860(14)$ $d=1.843(13)$ $d=1.951(13)$ $d=1.980(11)$	0.892 0.165 0.655 0.878 0.528 0.885 0.885 0.885 0.927 0.692 0.640	Ti2 4.291 Ti2-O01E Ti2-O01K Ti2-O01L Ti2-O01M Ti2-O020 Ti2-O02C Ti5 4.310 Ti5-O01A Ti5-O01F Ti5-O01N	d=2.070(13) $d=2.041(11)$ $d=1.860(13)$ $d=1.995(12)$ $d=1.879(13)$ $d=1.794(14)$ $d=1.848(12)$ $d=2.082(11)$ $d=1.842(12)$ $d=1.991(11)$	0.484 0.527 0.854 0.595 0.812 1.019 0.914 0.485 0.929 0.621	Ti3 4.330 Ti3-O02C Ti3-O01B Ti3-O021 Ti3-O029 Ti3-O02H Ti3-O02H Ti6 4.334 Ti6 4.334 Ti6 4.334 Ti6 4.334 Ti6 -002Q Ti6-O02Z Ti6-O03N	d=2.042(12) $d=1.848(12)$ $d=2.030(11)$ $d=1.860(12)$ $d=1.868(14)$ $d=2.026(13)$ $d=1.976(16)$ $d=1.860(14)$ $d=2.073(14)$	0.541 0.914 0.559 0.885 0.866 0.565 0.565 0.574 0.619 0.852 0.479
Til 4.006 Til-O01T Til-O01V Til-O01W Til-O01Z Til-O026 Til-O02P Ti4 4.300 Ti4-O018 Ti4-O01R Ti4-O027 Ti4-O02A	d=1.857(13) $d=2.048(12)$ $d=1.971(13)$ $d=1.863(12)$ $d=2.051(12)$ $d=1.860(14)$ $d=1.843(13)$ $d=1.951(13)$ $d=1.980(11)$ $d=1.855(12)$	0.892 0.165 0.655 0.878 0.528 0.885 0.885 0.885 0.927 0.692 0.640 0.897	Ti2 4.291 Ti2-O01E Ti2-O01K Ti2-O01L Ti2-O01M Ti2-O020 Ti2-O02C Ti5 4.310 Ti5-O01A Ti5-O01F Ti5-O01Q	d=2.070(13) $d=2.041(11)$ $d=1.860(13)$ $d=1.995(12)$ $d=1.879(13)$ $d=1.794(14)$ $d=1.848(12)$ $d=2.082(11)$ $d=1.842(12)$ $d=1.991(11)$ $d=1.849(12)$	0.484 0.527 0.854 0.595 0.812 1.019 0.914 0.485 0.929 0.621 0.912	Ti3 4.330 Ti3-O02C Ti3-O01B Ti3-O021 Ti3-O029 Ti3-O02H Ti3-O02H Ti6 4.334 Ti6 4.334 Ti6 4.334 Ti6-O02Q Ti6-O02Z Ti6-O03X Ti6-O03S	d=2.042(12) $d=1.848(12)$ $d=2.030(11)$ $d=1.860(12)$ $d=1.868(14)$ $d=2.026(13)$ $d=2.007(13)$ $d=1.976(16)$ $d=1.860(14)$ $d=2.073(14)$ $d=1.821(17)$	0.541 0.914 0.559 0.885 0.866 0.565 0.565 0.574 0.619 0.852 0.479 0.939
Til 4.006 Til-O01T Til-O01V Til-O01Z Til-O01Z Til-O026 Til-O02P Ti4 4.300 Ti4-O018 Ti4-O01R Ti4-O024 Ti4-O027 Ti4-O02F	d=1.857(13) $d=2.048(12)$ $d=1.971(13)$ $d=1.863(12)$ $d=2.051(12)$ $d=1.860(14)$ $d=1.843(13)$ $d=1.951(13)$ $d=1.980(11)$ $d=1.855(12)$ $d=1.998(12)$	0.892 0.165 0.655 0.878 0.528 0.885 0.885 0.535 0.927 0.692 0.640 0.897 0.609	Ti2 4.291 Ti2-O01E Ti2-O01K Ti2-O01L Ti2-O01M Ti2-O020 Ti2-O02C Ti5 4.310 Ti5-O00Z Ti5-O01A Ti5-O01F Ti5-O01Q Ti5-O038	d=2.070(13) $d=2.041(11)$ $d=1.860(13)$ $d=1.995(12)$ $d=1.879(13)$ $d=1.794(14)$ $d=1.848(12)$ $d=2.082(11)$ $d=1.842(12)$ $d=1.849(12)$ $d=2.111(12)$	0.484 0.527 0.854 0.595 0.812 1.019 0.914 0.485 0.929 0.621 0.912 0.449	Ti3 4.330 Ti3-O02C Ti3-O01B Ti3-O021 Ti3-O029 Ti3-O024 Ti3-O024 Ti6-O024 Ti6-O022 Ti6-O032 Ti6-O038 Ti6-O038 Ti6-O04R	d=2.042(12) $d=1.848(12)$ $d=2.030(11)$ $d=1.860(12)$ $d=1.868(14)$ $d=2.026(13)$ $d=2.007(13)$ $d=1.976(16)$ $d=1.860(14)$ $d=2.073(14)$ $d=1.821(17)$ $d=1.850(16)$	0.541 0.914 0.559 0.885 0.866 0.565 0.565 0.574 0.619 0.852 0.479 0.939 0.871

Ti7-O02N	d=2.026(15)	0.542	Ti8-O02V	d=1.983(14)	0.595			
Ti7-O02R	d=1.887(17)	0.786	Ti8-O033	d=2.011(14)	0.551			
Ti7-O02X	d=2.056(15)	0.500	Ti8-O03I	d=1.851(17)	0.850			
Ti7-O030	d=1.989(17)	0.596	Ti8-O04U	d=1.960(15)	0.633			
Ti7-O066	d=1.85(2)	0.861	Ti8-O05W	d=2.075(13)	0.464			
Ti7-O3AA	d=1.795(18)	1.005						
				PTC-285				
Ti1 4.719			Ti2 4.385			Ti3 4.386		
Ti1 4.719 O00P	1.96(2)	0.640	Ti2 4.385 O00I	1.736(17)	1.182	Ti3 4.386 O00K	1.973(16)	0.624
Til 4.719 O00P O00S	1.96(2) 2.01(2)	0.640	Ti2 4.385 O00I O00J	1.736(17) 1.854(19)	1.182 0.854	Ti3 4.386 O00K O00T	1.973(16) 1.90(2)	0.624
Til 4.719 O00P O00S O00V	1.96(2) 2.01(2) 2.053(19)	0.640 0.559 0.499	Ti2 4.385 000I 000J 000Q	1.736(17) 1.854(19) 1.866(17)	1.182 0.854 0.832	Ti3 4.386 O00K O00T O00Y	1.973(16) 1.90(2) 1.994(17)	0.624 0.752 0.588
Til 4.719 O00P O00S O00V O017	1.96(2) 2.01(2) 2.053(19) 1.76(2)	0.640 0.559 0.499 1.099	Ti2 4.385 000I 000J 000Q 000W	1.736(17) 1.854(19) 1.866(17) 2.260(18)	1.182 0.854 0.832 0.300	Ti3 4.386 O00K O00T O00Y O010	1.973(16) 1.90(2) 1.994(17) 1.964(18)	0.624 0.752 0.588 0.636
Til 4.719 O00P O00S O00V O017 O01A	1.96(2) 2.01(2) 2.053(19) 1.76(2) 1.83(2)	0.640 0.559 0.499 1.099 0.909	Ti2 4.385 O00I O00J O00Q O00W O00Y	1.736(17) 1.854(19) 1.866(17) 2.260(18) 1.964(16)	1.182 0.854 0.832 0.300 0.640	Ti3 4.386 O00K O00T O00Y O010 O011	1.973(16) 1.90(2) 1.994(17) 1.964(18) 1.88(3)	0.624 0.752 0.588 0.636 0.773

[a] $V_i = \sum S_{ij} = \sum \exp[(r_1 - r_{ij})/B]$, where r_0 is the length of a single bond (here $r_1 = 1.815$ for Ti^{IV} -O, $r_1 = 1.791$ for Ti^{III} -O), r_1 is the bond length between atoms *i* and *j*; B is a constant, the "universal parameter" ~0.37 Å; S_{ij} is the valence of a bond between atoms *i* and *j*; *V_i* is the sum of all bond valences of the bonds formed by a given atom *i*.

	Ti (%)		Bi (%)	Ti / Bi		
	Calculated	Found	Calculated	Found	Calculated	Found	
PTC-281	2.03	2.00	56.00	56.03	6	6.25	
PTC-282	4.49	4.52	53.25	52.39	14	14.31	
РТС-283	5.10	5.04	52.84	51.53	16	16.23	
PTC-284	4.80	4.44	49.77	45.86	16	16.06	
PTC-285	5.24	5.43	48.28	49.26	18	18.29	
PTC-286	6.01	5.88	49.86	47.87	20	20.38	

Table S5. The summary of ICP-AES results

Figure S1. Structural illustration of Bi₃₈O₄₅ cluster core in PTC-281.

Figure S2. The coordination modes of the $[Ti(SAC)_3]$ metalloligands in all complexes.

Figure S3. The packing view of PTC-281 along the a and c-axis. All the H atoms are omitted for clarity. Color codes: green Ti; dark red Bi; black C; red O.

Figure S4. Illustration of the recrystallization process of PTC-281 to generate PTC-281R. 50 mg PTC-281 and 4 ml DMF were mixed at room temperature, then the resultant solution was heated at 80 °C for 24 h to get a yellow solution. After cooling to room temperature, yellow rod-like crystals were obtained in one day.

Figure S5. Scaling up synthesis of PTC-281. Bismuth subsalicylate (36.2 g), salicylic acid (13.8 g), dimethylformamide (150 ml) and 1-butanol (150 ml) were mixed at room temperature and then dropwise $Ti(O^{i}Pr)_{4}$ (10 ml) was added. The resultant solution was heated at 80 °C for three days, yellow rod-like crystals of PTC-281 were obtained.

Figure S6. (a) The core-shell structure of PTC-282, the shell is made up of six $[Ti_2(\mu_3-O)(SAC)_4(EtO)_2]$ units and two $[Ti(SAC)_3]$ metalloligands; (b) fourteen titanium atoms form a square cage; (c) the packing view of PTC-282 along the c-axis. Color codes: green Ti; dark red Bi; black C; red O.

Figure S7. (a) The core-shell structure of PTC-283, the shell is made up of two $[Ti_3(\mu_3-O)(SAC)_5(DEA)_2(Phenol)_2]$ units, two $[Ti_4(\mu_2-O)(SAC)_6((DEA)(Phenol)_3]$ units and two $[Ti(SAC)_3]$ metalloligands. Color codes: green Ti; dark red Bi; black C; red O.

Figure S8. The packing view of PTC-283 along the b and c-axis. Color codes: green Ti; dark red Bi; black C; red O.

Figure S9. (a) The core-shell structure of PTC-284, the shell is made up of two $[Ti_3((SAC)_6(DPC)_2(Phenol)]$ units, two $[Ti_4(SAC)_8((DPC)(Phenol)_3]$ units and two $[Ti(SAC)_3]$ metalloligands. Color codes: green Ti; dark red Bi; black C; red O.

Figure S10. ESR spectra of PTC-284 and PTC-285.

Figure S11. The packing view of PTC-284 along the a and b-axis. Color codes: green Ti; dark red Bi; black C; red O.

Figure S12. (a) The core-shell structure of PTC-285, the shell is made up of six $[Ti_2(\mu_3-O)(SAC)(DTPP)(DMT)]$ units and six $[Ti(SAC)_3]$ metalloligands; (b) and (c) the packing view of PTC-285 along the b and c-axis.

Figure S13. The core-shell structure of PTC-286, the shell is made up of six $[Ti_2(\mu_3-O)(SAC)(DTPP)(CH_3O)_2]$ units and eight $[Ti(SAC)_3]$ metalloligands.

Figure S14. The packing view of PTC-286 along the c- and b- axis. Color codes: green Ti; dark red Bi; black C; red O.

Figure S15. The simulated and experimental PXRD patterns for PTC-281 to PTC-283.

Figure S16. The simulated and recrystallization PXRD patterns for PTC-284 to PTC-286.

Figure S17. TGA curves of PTC-281 to PTC-284.

Figure S18. TGA curves of PTC-285 and PTC-286.

Figure S19. The EDS results of PTC-284 to PTC-286.

Figure S20. The absorption and bandgap spectra of PTC-281 and PTC-282.

Figure S21. The absorption and bandgap spectra of PTC-283 and PTC-284.

Figure S22. The absorption and bandgap spectra of PTC-285 and PTC-286.

Figure S23. Transient photocurrent responses of PTC-281 to PTC-284 irradiated by visible light in 0.2 M Na_2SO_4 electrolyte solution.

Figure S24. Photos of all samples after the catalytic reaction. Reaction conditions: 10 mmol epichlorohydrin, 0.005 mmol catalysts, 1 mmol nBu₄NBr, CO_2 (1 atm gauge pressure) and room temperature, for 24 h.

Figure S25. The solution-state UV-vis spectra of PTC-281 to PTC-284 before and after catalytic reaction. Reaction conditions: 10 mmol epichlorohydrin, 0.005 mmol catalysts, 1 mmol nBu₄NBr, CO_2 (1 atm gauge pressure) and room temperature, for 24 h.

Figure S26. The solution-state UV-vis spectra of PTC-285 and PTC-286 before and after catalytic reaction. Reaction conditions: 10 mmol epichlorohydrin, 0.005 mmol catalysts, 1 mmol nBu₄NBr, CO_2 (1 atm gauge pressure) and room temperature, for 24 h.

Figure S27. The solid-state IR spectra of PTC-281 to PTC-284 before and after catalytic reaction. Reaction conditions: 10 mmol epichlorohydrin, 0.005 mmol catalysts, 1 mmol nBu₄NBr, CO_2 (1 atm gauge pressure) and room temperature, for 24 h.

Figure S28. The solid-state IR spectra of PTC-285 and PTC-286 before and after catalytic reaction. Reaction conditions: 10 mmol epichlorohydrin, 0.005 mmol catalysts, 1 mmol nBu₄NBr, CO_2 (1 atm gauge pressure) and room temperature, for 24 h.

Figure S29. Recyclability of the PTC-285 catalyst. Reaction conditions: 10 mmol propylene oxide, 0.005 mmol catalysts, 1 mmol nBu₄NBr, CO_2 (1 atm gauge pressure) and room temperature, for 48 h.

Figure S30. Proposed mechanism for cycloaddition of epoxides with CO_2 catalyzed by $Bi_{38}O_{44/45}$ ($@Ti_xL$ -oxo core-shell clusters.

Figure S31. ¹H NMR spectra after 24 h CO₂ cycloaddition reaction of epichlorohydrin with PTC-281 as catalyst. Peaks marked with * are for TBAB, with # is for CH_2Br_2 .

Figure S32. ¹H NMR spectra after 24 h CO_2 cycloaddition reaction of epichlorohydrin with PTC-282 as catalyst. Peaks marked with * are for TBAB, with # is for CH_2Br_2 .

Figure S33. ¹H NMR spectra after 24 h CO_2 cycloaddition reaction of epichlorohydrin with PTC-283 as catalyst. Peaks marked with * are for TBAB, with # is for CH_2Br_2 .

Figure S34. ¹H NMR spectra after 24 h CO₂ cycloaddition reaction of epichlorohydrin with PTC-284 as catalyst. Peaks marked with * are for TBAB, with # is for CH_2Br_2 .

Figure S35. ¹H NMR spectra after 24 h CO_2 cycloaddition reaction of epichlorohydrin with PTC-285 as catalyst. Peaks marked with * are for TBAB, with # is for CH_2Br_2 .

Figure S36. ¹H NMR spectra after 24 h CO₂ cycloaddition reaction of epichlorohydrin with PTC-286 as catalyst. Peaks marked with * are for TBAB, with # is for CH_2Br_2 .

Figure S37. ¹H NMR spectra after 48 h CO₂ cycloaddition reaction of propylene oxide with PTC-285 as catalyst. Peaks marked with * are for TBAB, with # is for CH₂Br₂.

Figure S38. ¹H NMR spectra after 48 h CO_2 cycloaddition reaction of propylene oxide with PTC-286 as catalyst. Peaks marked with * are for TBAB, with # is for CH_2Br_2 .

Figure S39. ¹H NMR spectra after 48 h CO_2 cycloaddition reaction of 1,2-epoxybutane with PTC-285 as catalyst. Peaks marked with * are for TBAB, with # is for CH_2Br_2 .

Figure S40. ¹H NMR spectra after 48 h CO_2 cycloaddition reaction of 1,2-epoxybutane with PTC-286 as catalyst. Peaks marked with * are for TBAB, with # is for CH_2Br_2 .

Figure S41. ¹H NMR spectra after 48 h CO₂ cycloaddition reaction of styrene oxide with PTC-285 as catalyst. Peak marked with * is for TBAB, with # is for CH₂Br₂.

Figure S42. ¹H NMR spectra after 48 h CO₂ cycloaddition reaction of styrene oxide with PTC-286 as catalyst. Peak marked with * is for TBAB, with # is for CH₂Br₂.

Figure S43. ¹H NMR spectra after 48 h CO₂ cycloaddition reaction of cyclohexene oxide with PTC-285 as catalyst. Peaks marked with * are for TBAB, with # is for CH₂Br₂.

Figure S44. ¹H NMR spectra after 48 h CO₂ cycloaddition reaction of cyclohexene oxide with PTC-286 as catalyst. Peaks marked with * are for TBAB, with # is for CH_2Br_2 .

No.	Compounds	Co-catalysts	T (°C)	P (MPa)	t (h)	Yield (%)	Ref.
1	PTC-285	TBAB 10 mol%	r. t.	0.1	48	99	This work
2	$Au_{19}Ag_4(S-Adm)_{15}$	TBAB 10 mol%	60	2	24	85	[6]
3	$Tb_2Zn_2(\mu_3-OH)_2L_4(NO_3)_4$	TBAB 7.2 mol%	r. t.	0.1	48	99	[7]
4	$Zn_4(OCOCF_3)_6O$	TBAI 3 mol%	25	0.1	6	94	[8]
5	Hexanuclear Ti-oxo cluster	TBAI 16 mol%	80	10	18	79	[9]
6	Bismuth methoxide	LiI 0.48 mol%	r. t.	1	24	98	[10]
7	Bi(III) porphyrin	TBAI 2.4 mol%	90	2	1	92.9	[11]
8	Cationic Bi(III) complex	TBAB 0.0125 mol%	120	3	1	97.5	[12]
9	Binuclear Bi(III) complex	TBAI 0.10 mol%	140	3	1	97.5	[13]
10	Bi-PCNN-224	TBAI 1.66 mol%, light irradiation	r. t.	1	6	99	[14]

Table S6. The summary of the conversion of CO_2 and epoxides by some typical cluster catalysts and Bi based materials

References

(6) G. Li, X. Sui, X. Cai, W. Hu, X. Liu, M. Chen, Y. Zhu, Angew. Chem. Int. Ed. 2021, 60, 10573 -10576.

(7) R. Zhang, L. Wang, C. Xu, H. Yang, W. Chen, G. Gao, W. Liu, Dalton Trans., 2018, 47, 7159-7165.

(8) Y. Yang, Y. Hayashi, Y. Fujii, T. Nagano, Y. Kita, T. Ohshima, K. Mashima, Catal. Sci. Technol. 2012, 2, 509.

(9) S. Kim, D. Sarkar, Y. Kima, M. H. Park, M. Yoon, Y. Kim, M. Kim, J. Ind. Eng. Chem. 2017, 53, 171-176.

(10) S.-F. Yin, S. Shimada, Chem. Commun. 2009, 9, 1136-1138.

(11) J. Peng, Y. Geng, H.-J. Yang, W. He, Z. Wei, J. Yang, C.-Y Guo, Molecular Catalysis., 2017, 432, 37-46.

(12) X. Zhang, W. Dai, S. Yin, S. Luo, C. T. Au, Front. Environ. Sci. Eng. China, 2009, 3, 32-37.

(13) R. H. Qiu, Z. G. Meng, S. F. Yin, X. X. Song, N. Y. Tan, Y. B. Zhou, K. Yu, X. H. Xu, S. L. Luo, C. T. Au, W. Y. Wong, *ChemPlusChem*, 2012, 77, 404-410.

(14) G. Zhai, Y. Liu, L. Lei, J. Wang, Z. Wang, Z. Zheng, P. Wang, H. Cheng, Y. Dai, B. Huang, ACS Catal. 2021, 11, 1988-1994.