Supplementary Information

An Unexpected All-Metal Aromatic Tetranuclear Silver Cluster in Human

Copper Chaperone Atox1

Xiuxiu Wang ${ }^{\text {a, }}$, Zong-Chang Han ${ }^{\text {c }}$, Wei Wei*a, b, f, Hanshi Huc , Pengfei Li ${ }^{\text {d }}$, Peiqing Sun ${ }^{\text {b }}$, Xiangzhi Liu ${ }^{\text {a }}$, Zhijia Lv ${ }^{\text {, }, ~}$ Feng Wang ${ }^{\text {g }}$, Yi Cao ${ }^{\text {d }}$, Zijian Guo*, b, e, Jun $\mathrm{Li}^{* c, \mathrm{~h}}$ and Jing Zhao*a, b, e, f
a. State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
b. School of Life Sciences, Nanjing University, Nanjing 210023, China.
c. Department of Chemistry and Key Laboratory of Organic Optoelectronics \& Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
d. National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210023, China.
e. Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210023, China.
f. Shenzhen Research Institute, Nanjing University, Shenzhen, 518000, China.
g. Elias James Corey Institute of Biomedical Research, Wuxi Biortus Biosciences Co., Ltd, Jiangyin, 214437, China.
h. Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

Experimental

Protein Sample preparation for Single-molecule AFM. Glasses were first immersed into chromic acid for 2 h to remove impurities. After rinsing with Mili-Q water, glasses was covered by silane-PEG-NHS solution in DMSO (Nanocs inc, $5 \mathrm{kDa}, 1 \mathrm{mg} \mathrm{ml}^{-1}$) for 2 h . Glasses were rinsed with large amount of DMSO to remove the unreacted silane-PEG-NHS. Then glassed was covered by $\mathrm{NH}_{2}-\mathrm{BG}$ solution in $\operatorname{DMSO}\left(10 \mu \mathrm{~g} \mathrm{ml}^{-1}\right)$ for 2 h , so protein snap can directly bind to glasses. Finally, rinsing glasses with Mili-Q water to remove unreacted NH_{2}-BG. Glasses was used immediately after finishing the modification process. For cantilever was coated by Au, protein cys-Xmod-doc can directly bind on it.

Crystallization. Crystal screening was performed at 293 K by the sitting-drop vapour-diffusion method. A 200 nanolitre protein solution ($27 \mathrm{mg} / \mathrm{mL}$) was mixed with 200 nanolitre reservoir solution and equilibrated against 30 microlitre reservoir solution. Commercial crystallization kits from Hampton Research and Qiagen were used for crystal screening. Initial crystals of Atox1 were observed under the following condition: 0.2 M tri-sodium citrate, 20% (w/v) PEG 3350. Single crystals were obtained by further optimization of salt concentration and pH values. For heavy atom derivative crystals preparation, we added 5 mM AgNO3 to a cryo-protection solution (0.2 M tri-sodium citrate, 20% (w / v) PEG $3350,25 \%$ glycerol), soaked the crystals for about 4 hours and then the data were collected at home source diffraction system. For Crystal optimizing, protein was incubated with 5 mM TCEP and 5 mM AgNO 3 on ice for 3 hours. A 200 nanolitre protein solution ($29 \mathrm{mg} / \mathrm{mL}$) was mixed with 180 nanolitre reservoir solution and 20 nanolitre lysozyme seed, and equilibrated against 15 microlitre reservoir solution. Final crystals of Atox1 were observed under the following condition: $0.2 \mathrm{M} \mathrm{LiCl}, 0.1 \mathrm{M}$ Tris pH 8, 20% PEG 6,000 . For heavy atom derivative crystals preparation, we added 5 mM AgNO 3 and 5 mM TCEP to a reservoir solution ($0.2 \mathrm{M} \mathrm{LiCl}, 0.1 \mathrm{M}$ Tris $\mathrm{pH} 8,20 \%$ PEG 6,000), soaked the crystals for about 4 hours, and then added 5 mM AgNO3 to a cryo-protection solution. The data were collected at SSRF BL18U1.

The contents of the unit cell were analysed using the Matthews coefficient (Matthews, 1968). Molecular replacements were performed using MOLREP (Vagin \& Teplyakov, 2010) and Phaser (McCoy, 2007). The models were refined by iterative cycles of manual building using Coot (Emsley et al., 2010) followed by simulated annealing. Subsequent stages of refinement were carried out with REFMAC5 (Murshudov et al., 2011) within the CCP4 suite (Winn et al., 2011; Collaborative Computational Project, Number 4, 1994) and manual improvement in Coot. All structural representations were generated using PyMOL (DeLano, 2002) with subsequent ray tracing.

Protein expression. The DNA fragment encoding the Homo sapiens protein Atox1 protein was synthesis by Nanjing GenScript Biotechnology Corporation. The fusion protein $6 \times$ His-TEV-Atox 1 was sub-cloned into a pET28a vector by standard polymerase chain reaction (PCR) methods, and the resulting construct was subsequently transformed into BL21 (DE3) cells. The fusion protein was expressed in LB medium containing $50 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin after induction with 1 mM IPTG at $15^{\circ} \mathrm{C}$. To obtain purified Atox1, E.coli BL21 (DE3) cells containing the recombinant plasmid that had been cultured overnight were collected by centrifugation. The pellet was re-suspended in buffer (50 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.0,500$ mM NaCl and $5 \% \mathrm{v} / \mathrm{v}$ glycerol) and dissociated by microfluid. The supernatant was obtained by centrifuging the cell lysate at $20,000 \mathrm{rpm}$ and 277 K for 1 h . Standard Ni-affinity chromatography (His-Trap FF) was performed for preliminary purification of the His-tagged fusion protein from the supernatant. The enrichment fusion protein was digested by TEV
protease at 277 K overnight. Ni-affinity chromatography (His Trap HP) was used again to obtain Atox1, which was separated from the $6 \times$ His -TEV fusion protein. High purity Atox 1 was obtained after further purified by size-exclusion chromatography (Superdex 30) and was concentrated.

For the loop bypass mutant, the sequence of Coh-(GB1)4-Atox1-linker-Atox1-(GB1)4-Snap is as follows:

Coh:
MGTALTDRGMTYDLDPKDGSSAATKPVLEVTKKVFDTAADAAGQTVTVEFKVSGAEGKYATTGYHIYWDER LEVVATKTGAYAKKGAALEDSSLAKAENNGNGVFVASGADDDFGADGVMWTVELKVPADAKAGDVYPIDV AYQWDPSKGDLFTDNKDSAQGKLMQAYFFTQGIKSSSNPSTDEYLVKANATYADGYIAIKAGEP GB1:

MDTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE
ATOX1:
MPKHEFSVDMTCGGCAEAVSRVLNKLGGVKYDIDLPNKKVCIESEHSMDTLLATLKKTGKTVSYLGLE

Linker:

RSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSRS
Snap:
GGGMDKDCEMKRTTLDSPLGKLELSGCEQGLHEIKLLGKGTSAADAVEVPAPAAVLGGPEPLMQATAWLNA YFHQPEAIEEFPVPALHHPVFQQESFTRQVLWKLLKVVKFGEVISYQQLAALAGNPAATAAVKTALSGNPVPILI PCHRVVSSSGAVGGYEGGLAVKEWLLAHEGHRLGKPGLGPA

Cys-Xmod-Doc:
CGGNTVTSAVKTQYVEIESVDGFYFNTEDKFDTAQIKKAVLHTVYNEGYTGDDGVAVVLREYESEPVDITAEL TFGDATPANTYKAVENKFDYEIPVYYNNATLKDAEGNDATVTVYIGLKGDTDLNNIVDGRDATATLTYYAAT STDGKDATTVALSPSTLVGGNPESVYDDFSAFLSDVKVDAGKELTRFAKKAERLIDGRDASSILTFYTKSSVDQ YKDMAANEPNKLWDIVTGDA

Mass Spectrometry. Proteins were injected into a reverse phase HPLC (Agilent 1200 series HPLC, Agilent Technologies) with a ProSwift ${ }^{T M}$ RP-3U LC Column ($4.6 \times 50 \mathrm{~mm}$, SS, Thermo Scientific ${ }^{\mathrm{TM}}$). Positive ion Electrospray Ionization (ESI) mass spectra for intact protein were obtained with an Agilent 6224 mass spectrometer equipped with an ESI interface and a time-of-flight (TOF) mass detector (Agilent Technologies). Mass spectra were analyzed and deconvoluted using an Agilent software MassHunter version B.04.00 (Agilent Technologies).

Inductively coupled plasma mass spectrometry (ICP-MS) experiments. To confirm the binding condition of Atox1 fusion protein and Ag , we conducted ICP-MS detection in a 220μ l complex solution containing Atox1 fusion protein and Ag . As a result, we found that the molar ratio of $\mathrm{Ag}\left(0.278 \times 10^{-6} \mathrm{~mol}\right)$ and Atox1 $\left(0.064 \times 10^{-6} \mathrm{~mol}\right)$ was about 4.34 in Ag-Atox 1 complex.

Single-molecule AFM experiments. Single-molecule AFM experiments were carried out on a commercial AFM (Force Robot 300, JPK, Berlin, Germany). All the force-extension experiments were carried out in Tris- HCl buffer (25 mM Tris, $72 \mathrm{mM} \mathrm{NaCl})$. Protein sample $\left(0.1 \mathrm{mg} \mathrm{ml}^{-1}, 150 \mu \mathrm{l}\right)$ was directly deposited on a freshly cleaved glass surface for 2 h and was washed with buffer to remove unreacted protein. We modified the cantilever tip with cys-Xmod-doc. The gold-coated
cantilever was immersed in a protein solution $\left(0.1 \mathrm{mg} \mathrm{ml}^{-1}\right)$ for 1 hour at room temperature to allow the formation of goldthiol linkage. The physically adsorbed proteins were removed by rinsing the cantilever tip with deionized water for at least 5 times in an incubator. Then, the sample chamber was filled with 1 ml buffer before the measurement. The spring constant of the AFM cantilevers (Biolever-RC-150VB-70 from Olympus) was calibrated using the equipartition theorem before each experiment, with a typical value of $6 \mathrm{pN} \mathrm{nm}{ }^{-1}$. The pulling speed was $400 \mathrm{~nm} \mathrm{~s}^{-1}$ for all traces.

EPR measurement. 0.2 mM Atox1 was incubated with 10 molar equivalents of AgNO 3 in 20 mM Tris buffer containing 200 mM NaCl . Then the spin-trapping agent 5,5-dimethylpyrroline-N-oxide (DMPO) was added to the reaction mixture. After shaking for 1 minute, the sample was transferred to a quartz capillary tube. For MTSSL labeling, 0.2 mM Atox 1 was incubated with 10 molar equivalents of MTSSL overnight at $4^{\circ} \mathrm{C}$. Then the reaction mixture was added to Ni-NTA to remove free spin label. The continuous-wave electron paramagnetic resonance (CW-EPR) spectra were recorded on a Bruker A300 spectrometer (Bruker Biospin GmbH, Rheinstetten, Germany) at X-band (9.5 GHz).

Crystallization. Crystal screening was performed at 293 K by the sitting-drop vapour-diffusion method. A 200 nanolitre protein solution ($27 \mathrm{mg} / \mathrm{mL}$) was mixed with 200 nanolitre reservoir solution and equilibrated against 30 microlitre reservoir solution. Commercial crystallization kits from Hampton Research and Qiagen were used for crystal screening. Initial crystals of Atox1 were observed under the following condition: 0.2 M tri-sodium citrate, 20% (w/v) PEG 3350. Single crystals were obtained by further optimization of salt concentration and pH values. For heavy atom derivative crystals preparation, we added 5 mM AgNO3 to a cryo-protection solution (0.2 M tri-sodium citrate, 20% (w/v) PEG $3350,25 \%$ glycerol), soaked the crystals for about 4 hours and then the data were collected at home source diffraction system.

Crystal optimizing was performed at 293 K by the sitting-drop vapour-diffusion method. Protein was incubated with 5 mM TCEP and 5 mM AgNO3 on ice for 3 hours. A 200 nanolitre protein solution ($29 \mathrm{mg} / \mathrm{mL}$) was mixed with 180 nanolitre reservoir solution and 20 nanolitre lysozyme seed, and equilibrated against 15 microlitre reservoir solution. Final crystals of Atox 1 were observed under the following condition: $0.2 \mathrm{M} \mathrm{LiCl}, 0.1 \mathrm{M}$ Tris $\mathrm{pH} 8,20 \%$ PEG 6,000 . For heavy atom derivative crystals preparation, we added 5 mM AgNO 3 and 5 mM TCEP to a reservoir solution $(0.2 \mathrm{M} \mathrm{LiCl}, 0.1 \mathrm{M}$ Tris $\mathrm{pH} 8,20 \%$ PEG 6,000), soaked the crystals for about 4 hours, and then added 5 mM AgNO 3 to a cryo-protection solution. The data were collected at SSRF BL18U1.

The contents of the unit cell were analysed using the Matthews coefficient (Matthews, 1968). Molecular replacements were performed using MOLREP (Vagin \& Teplyakov, 2010) and Phaser (McCoy, 2007). The models were refined by iterative cycles of manual building using Coot (Emsley et al., 2010) followed by simulated annealing. Subsequent stages of refinement were carried out with REFMAC5 (Murshudov et al., 2011) within the CCP4 suite (Winn et al., 2011; Collaborative Computational Project, Number 4, 1994) and manual improvement in Coot. All structural representations were generated using PyMOL (DeLano, 2002) with subsequent ray tracing.

Theoretical Analyses and Computational Modeling.

In Figure 3, the electronic structure of $\mathrm{Ag}_{4}{ }^{2+}$ cluster based on the experimentally measured geometry (Figure 2) have been investigated using density functional theory (DFT) with Amsterdam Density Functional 2019 program. The calculations were done using PBE exchange-correlation functional and the TZP Slater basis sets. Frozen core
approximation was applied to the $\left[1 s^{2} \ldots 4 p^{6}\right]$ core of Ag , and Zeroth-Order Regular Approximation to the Dirac Equation (ZORA) was used to account for the scalar relativistic (SR) effect.

The constrained DFT geometry optimization was done at the level of SR-ZORA PBE/DZP with Grimme D3-BJ Dispersion Correction. The model of constrained geometry optimization adopted $\left[\mathrm{Ag}_{4}\right]^{q^{+}}$cluster inside the frozen experimental cavity, with size about $5 \AA$ around the $\left[\mathrm{Ag}_{4}\right]^{q^{+}}$core. The calculated molecular orbital (MO) energy levels and wavefunctions of $\mathrm{Ag}_{4}{ }^{2+}$ cluster are listed in Table S 3 -S5, which were analyzed using Hückel method based on three kinds of geometry structures with $T_{d}, D_{4 h}$ and $D_{2 h}$ symmetry. The MO energies and frontier MOs of optimized geometry structures with $\mathrm{T}_{\mathrm{d}}, \mathrm{D}_{4 \mathrm{~h}}$ and $\mathrm{D}_{2 \mathrm{~h}}$ symmetries and experimentally measured structure with C_{2} symmetry were studied by ADF 2019 program with level of PBE/TZP, frozen core approximation and ZORA scalar relativistic method.

The ELF color-filled map and multicenter bond index were calculated using Gaussian-16B and Multiwfn3.8 at the level of PBE0/def2-TZVP. The nucleus-independent chemical shift (NICS) of $\mathrm{Ag}_{4}{ }^{2+}$ cluster based on the experimentally measured geometry was studied using Multiwfn and Gaussian with level of B3LYP/def2-SVP.

Cartesian Coordinates of Geometry Structures

Experimental structure of $\mathrm{Ag}_{4}-(\text { Atox1 })_{2} 7 \mathrm{DC1}$:

Ag	-27.203000	46.371000	7.945000
Ag	-29.133000	45.802000	9.934000
Ag	-26.557000	46.744000	11.514000
Ag	-25.099000	48.131000	9.525000
N	-28.361000	48.860000	4.792000
C	-27.081000	49.589000	4.574000
C	-25.891000	48.627000	4.676000
C	-26.964000	50.740000	5.578000
O	-27.127000	50.312000	6.930000
H	-26.820000	51.001000	7.524000
H	-28.777896	49.166964	5.647553
H	-25.999884	51.192138	5.473347
N	-26.071000	47.402000	5.159000
C	-24.953000	46.440000	5.296000
C	-25.498000	45.017000	5.233000

O

C

S

H
$\begin{array}{llll}\mathrm{H} & -26.998000 & 47.118000 & 5.441000\end{array}$
$\begin{array}{llll}\text { H } & -24.248000 & 46.558000 & 4.473000\end{array}$
$\begin{array}{llll}\mathrm{H} & -23.226000 & 46.203000 & 6.487000\end{array}$
$\begin{array}{llll}\mathrm{N} & -24.615000 & 44.048000 & 5.170000\end{array}$
$\begin{array}{llll}\mathrm{H} & -23.638879 & 44.256229 & 5.231875\end{array}$
$\begin{array}{lllll}\mathrm{N} & -25.498000 & 42.692000 & 7.408000\end{array}$
$\begin{array}{lllll}\text { C } & -26.141000 & 42.143000 & 8.613000\end{array}$
$\begin{array}{lllll}\text { C } & -27.660000 & 42.282000 & 8.539000\end{array}$
$\begin{array}{llll}\text { O } & -28.391000 & 41.595000 & 9.364000\end{array}$
$\begin{array}{llll}\text { H } & -25.782175 & 42.669416 & 9.472669\end{array}$

H $\quad-24.658993 \quad 43.170734 \quad 7.666614$
$\begin{array}{lllll}\mathrm{N} & -28.155000 & 43.145000 & 7.656000\end{array}$
$\begin{array}{llll}\text { C } & -29.605000 & 43.435000 & 7.533000\end{array}$
$\begin{array}{llll}\text { C } & -30.366000 & 42.201000 & 7.022000\end{array}$
$\begin{array}{lllll}\text { O } & -31.598116 & 42.083025 & 7.249031\end{array}$
$\begin{array}{lllll}\text { C } & -29.860000 & 44.677000 & 6.684000\end{array}$
$\begin{array}{lllll}\mathrm{S} & -29.519000 & 46.245000 & 7.532000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.906000 & 44.674000 & 6.379000\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.514000 & 43.625000 & 7.041000\end{array}$

H $\quad-29.993000 \quad 43.662000 \quad 8.526000$

H $\quad-29.173000 \quad 44.624000 \quad 5.839000$
$\begin{array}{lllll}\mathrm{N} & -31.221000 & 40.627000 & 10.217000\end{array}$

C
$\begin{array}{lllll}\text { C } & -31.685000 & 42.966000 & 10.843000\end{array}$

H $\quad-31.594000 \quad 43.409000 \quad 11.835000$
$\begin{array}{llll}\mathrm{H} & -30.419820 & 41.001675 & 9.750384\end{array}$

H $\quad-32.124594 \quad 41.248882 \quad 12.004939$
$\begin{array}{lllll}\mathrm{H} & -32.419000 & 43.523000 & 10.261000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.719000 & 43.003000 & 10.339000\end{array}$
$\begin{array}{llll}\text { C } & -33.325000 & 48.376000 & 9.028000\end{array}$

C $\quad-31.958000 \quad 47.762000 \quad 8.859000$
$\begin{array}{lllll}\mathrm{N} & -30.957000 & 48.407000 & 9.735000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.670000 & 47.758000 & 10.454000\end{array}$
$\begin{array}{llll}\text { H } & -34.059238 & 47.741331 & 8.577457\end{array}$
$\begin{array}{llll}\mathrm{H} & -31.645000 & 47.875000 & 7.821000\end{array}$
$\begin{array}{llll}\mathrm{H} & -33.540104 & 48.486214 & 10.070345\end{array}$
$\begin{array}{llll}\mathrm{H} & -32.022000 & 46.709000 & 9.134000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.154000 & 48.677000 & 9.186000\end{array}$
$\begin{array}{llll}\text { H } & -27.840000 & 49.445000 & 9.220000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -28.104000 & 48.893000 & 10.664000\end{array}$
$\begin{array}{lllll}\mathrm{O} & -31.111000 & 46.252000 & 11.542000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -30.238000 & 45.932000 & 11.782000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -31.435000 & 45.761000 & 10.784000\end{array}$
$\begin{array}{lllll}\mathrm{N} & -28.134000 & 48.991000 & 14.667000\end{array}$
$\begin{array}{llll}\text { C } & -29.405000 & 48.247000 & 14.885000\end{array}$
$\begin{array}{lllll}\text { C } & -29.167000 & 46.736000 & 14.783000\end{array}$
$\begin{array}{lllll}\text { C } & -30.460000 & 48.722000 & 13.881000\end{array}$
$\begin{array}{lllll}\text { O } & -30.008000 & 48.649000 & 12.529000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.047000 & 49.522000 & 12.131000\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.715817 & 48.692270 & 13.809163\end{array}$
$\begin{array}{lllll}\mathrm{H} & -31.334040 & 48.113718 & 13.985628\end{array}$
$\begin{array}{llll}\mathrm{N} & -28.016000 & 46.279000 & 14.300000\end{array}$

C $\quad-27.742000 \quad 44.830000 \quad 14.163000$
$\begin{array}{lllll}\text { C } & -26.237000 & 44.590000 & 14.226000\end{array}$
$\begin{array}{lllll}\text { O } & -25.502000 & 45.571000 & 14.221000\end{array}$

C $\quad-28.370000 \quad 44.300000 \quad 12.863000$

S $\quad-27.427000 \quad 44.616000 \quad 11.334000$
$\begin{array}{llll}\mathrm{H} & -29.351000 & 44.763000 & 12.753000\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.307000 & 46.940000 & 14.018000\end{array}$

H $\quad-28.197000 \quad 44.279000 \quad 14.986000$
$\begin{array}{llll}\mathrm{H} & -28.399000 & 43.216000 & 12.971000\end{array}$
$\mathrm{N} \quad-25.839000 \quad 43.341000 \quad 14.289000$
$\begin{array}{llll}\mathrm{H} & -26.507184 & 42.599581 & 14.227122\end{array}$
$\begin{array}{lllll}\mathrm{N} & -24.223000 & 43.428000 & 12.051000\end{array}$
$\begin{array}{lllll}\text { C } & -23.426000 & 43.710000 & 10.846000\end{array}$

C $\quad-22.787000 \quad 45.095000 \quad 10.920000$
$\begin{array}{lllll}\text { O } & -21.827000 & 45.385000 & 10.095000\end{array}$

H $\quad-24.061230 \quad 43.662325 \quad 9.986285$
$\begin{array}{llll}\mathrm{H} & -25.219626 & 43.373298 & 11.989804\end{array}$

N $\quad-23.287000 \quad 45.955000 \quad 11.803000$

C $\quad-22.813000 \quad 47.356000 \quad 11.926000$

C $\quad-21.364000 \quad 47.398000 \quad 12.437000$
$\begin{array}{lllll}\text { O } & -20.645759 & 48.406067 & 12.210060\end{array}$

C $\quad-23.761000 \quad 48.198000 \quad 12.775000$
$\begin{array}{llll}\mathrm{H} & -23.235000 & 49.103000 & 13.080000\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.023000 & 45.640000 & 12.418000\end{array}$
$\begin{array}{llll}\mathrm{H} & -22.816000 & 47.806000 & 10.933000\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.058000 & 47.576000 & 13.620000\end{array}$
$\begin{array}{llll}\mathrm{N} & -19.574000 & 47.352000 & 9.242000\end{array}$
$\begin{array}{lllll}\text { C } & -19.899000 & 48.589000 & 8.487000\end{array}$
$\begin{array}{llll}\text { C } & -21.367000 & 48.923000 & 8.616000\end{array}$
$\begin{array}{llll}\mathrm{H} & -21.697000 & 49.462000 & 7.728000\end{array}$
$\begin{array}{llll}\mathrm{H} & -20.357313 & 46.730866 & 9.217233\end{array}$
$\begin{array}{llll}\mathrm{H} & -19.660005 & 48.444394 & 7.454106\end{array}$
$\begin{array}{llll}\text { H } & -21.523000 & 49.544000 & 9.498000\end{array}$
$\begin{array}{llll}\mathrm{H} & -21.941000 & 48.002000 & 8.715000\end{array}$
$\begin{array}{lllll}\text { C } & -25.232000 & 53.048000 & 10.431000\end{array}$
$\begin{array}{llll}\text { C } & -25.384000 & 51.557000 & 10.600000\end{array}$
$\begin{array}{lllll}\mathrm{N} & -26.443000 & 51.013000 & 9.724000\end{array}$
$\begin{array}{llll}\mathrm{H} & -26.739000 & 50.112000 & 10.072000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -24.315127 & 53.366371 & 10.881427\end{array}$
$\begin{array}{llll}\mathrm{H} & -25.638000 & 51.342000 & 11.638000\end{array}$
$\begin{array}{llll}\mathrm{H} & -26.085000 & 50.911000 & 8.785000\end{array}$
$\begin{array}{llll}\mathrm{H} & -25.219998 & 53.289418 & 9.388660\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.440000 & 51.086000 & 10.325000\end{array}$
$\begin{array}{llll}\text { O } & -28.102000 & 48.675000 & 9.730000\end{array}$
$\begin{array}{llll}\text { O } & -24.500000 & 50.069000 & 7.917000\end{array}$
$\begin{array}{llll}\text { H } & -24.854000 & 49.476000 & 8.584000\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.476000 & 50.964000 & 8.264000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -28.631000 & 51.743000 & 10.887000\end{array}$
$\begin{array}{llll}\mathrm{H} & -28.219000 & 50.281000 & 11.276000\end{array}$

H $\quad-19.317839 \quad 49.400287 \quad 8.872961$
$\begin{array}{llll}\mathrm{H} & -18.781616 & 46.905970 & 8.825845\end{array}$

H $\quad-31.410458 \quad 39.645987 \quad 10.175530$
$\begin{array}{lllll}\mathrm{H} & -33.123137 & 41.430587 & 10.585878\end{array}$

H $\quad-24.918352 \quad 43.101477 \quad 5.060124$
$\begin{array}{llll}\mathrm{H} & -25.276182 & 41.946486 & 6.779506\end{array}$
$\begin{array}{llll}\text { H } & -25.887694 & 41.107471 & 8.704739\end{array}$
$\begin{array}{lllll}\mathrm{H} & -33.345573 & 49.336101 & 8.556107\end{array}$

H $\quad-28.983998 \quad 49.045776 \quad 4.032157$
$\begin{array}{llll}\mathrm{H} & -27.093978 & 50.003599 & 3.587674\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.713832 & 51.469906 & 5.354642\end{array}$

H $\quad-20.965998 \quad 46.570093 \quad 12.985693$
$\begin{array}{llll}\mathrm{H} & -23.767818 & 43.291125 & 12.930815\end{array}$
$\begin{array}{lllll}\mathrm{H} & -22.655830 & 42.972869 & 10.754481\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.867553 & 43.130722 & 14.398882\end{array}$
$\begin{array}{llll}\mathrm{H} & -29.848057 & 41.442364 & 6.473268\end{array}$
$\begin{array}{lllll}\mathrm{H} & -25.482274 & 48.523065 & 3.692618\end{array}$
$\begin{array}{llll}\mathrm{H} & -25.150599 & 49.102190 & 5.285017\end{array}$
$\begin{array}{llll}\text { H } & -29.281473 & 46.330082 & 15.766375\end{array}$

H $\quad-29.948755 \quad 46.33247314 .173964$
$\begin{array}{lllll}\mathrm{H} & -29.757537 & 48.465496 & 15.871345\end{array}$
$\begin{array}{lllll}\mathrm{H} & -27.507097 & 48.809032 & 15.424549\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.716503 & 49.736480 & 14.104463\end{array}$

Optimized structure of $\left[\mathrm{Ag}_{4}\right]^{4+}$ in constrained 7DC1 cavity :

Ag	-27.174248	46.886293	7.647061
Ag	-28.912106	45.580500	9.744174
Ag	-26.811643	46.856738	11.823799
Ag	-24.848644	47.709082	9.780124

$\begin{array}{lllll}\mathrm{N} & -28.361000 & 48.860000 & 4.792000\end{array}$
$\begin{array}{llll}\text { C } & -27.081000 & 49.589000 & 4.574000\end{array}$
$\begin{array}{llll}\text { C } & -25.891000 & 48.627000 & 4.676000\end{array}$
$\begin{array}{llll}\text { C } & -26.964000 & 50.740000 & 5.578000\end{array}$
$\begin{array}{llll}\text { O } & -27.127000 & 50.312000 & 6.930000\end{array}$
$\begin{array}{llll}\mathrm{H} & -26.820000 & 51.001000 & 7.524000\end{array}$
$\begin{array}{llll}\mathrm{H} & -28.777896 & 49.166964 & 5.647553\end{array}$
$\begin{array}{llll}\mathrm{H} & -25.999884 & 51.192138 & 5.473347\end{array}$
$\begin{array}{lllll}\mathrm{N} & -26.071000 & 47.402000 & 5.159000\end{array}$
$\begin{array}{lllll}\text { C } & -24.953000 & 46.440000 & 5.296000\end{array}$
$\begin{array}{llll}\text { C } & -25.498000 & 45.017000 & 5.233000\end{array}$
$\begin{array}{llll}\text { O } & -26.714000 & 44.871000 & 5.238000\end{array}$
$\begin{array}{lllll}\text { C } & -24.180000 & 46.719000 & 6.596000\end{array}$
$\begin{array}{llll}\mathrm{S} & -24.925000 & 46.060000 & 8.125000\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.091000 & 47.800000 & 6.706000\end{array}$
$\begin{array}{llll}\mathrm{H} & -26.998000 & 47.118000 & 5.441000\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.248000 & 46.558000 & 4.473000\end{array}$
$\begin{array}{llll}\mathrm{H} & -23.226000 & 46.203000 & 6.487000\end{array}$
$\begin{array}{llll}\mathrm{N} & -24.615000 & 44.048000 & 5.170000\end{array}$
$\begin{array}{llll}\text { H } & -23.638879 & 44.256229 & 5.231875\end{array}$
$\begin{array}{llll}\text { O } & -28.391000 & 41.595000 & 9.364000\end{array}$
$\begin{array}{llll}\text { H } & -25.782175 & 42.669416 & 9.472669\end{array}$

H $\quad-24.658993 \quad 43.170734 \quad 7.666614$
$\begin{array}{llll}\mathrm{N} & -28.155000 & 43.145000 & 7.656000\end{array}$
$\begin{array}{llll}\text { C } & -29.605000 & 43.435000 & 7.533000\end{array}$
$\begin{array}{llll}\text { C } & -30.366000 & 42.201000 & 7.022000\end{array}$
$\begin{array}{llll}\text { O } & -31.598116 & 42.083025 & 7.249031\end{array}$
$\begin{array}{lllll}\text { C } & -29.860000 & 44.677000 & 6.684000\end{array}$
$\begin{array}{lllll}\mathrm{S} & -29.519000 & 46.245000 & 7.532000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.906000 & 44.674000 & 6.379000\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.514000 & 43.625000 & 7.041000\end{array}$

H $\quad-29.993000 \quad 43.662000 \quad 8.526000$
$\begin{array}{llll}\text { H } & -29.173000 & 44.624000 & 5.839000\end{array}$
$\begin{array}{lllll}\mathrm{N} & -31.221000 & 40.627000 & 10.217000\end{array}$
$\begin{array}{lllll}\text { C } & -32.130000 & 41.528000 & 10.972000\end{array}$

C $\quad-31.685000 \quad 42.966000 \quad 10.843000$

H $\quad-31.594000 \quad 43.409000 \quad 11.835000$
$\begin{array}{llll}\mathrm{H} & -30.419820 & 41.001675 & 9.750384\end{array}$
$\begin{array}{llll}\mathrm{H} & -32.124594 & 41.248882 & 12.004939\end{array}$
$\begin{array}{lllll}\mathrm{H} & -32.419000 & 43.523000 & 10.261000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -30.719000 & 43.003000 & 10.339000\end{array}$
$\begin{array}{lllll}\text { C } & -33.325000 & 48.376000 & 9.028000\end{array}$

C $\quad-31.958000 \quad 47.762000 \quad 8.859000$
$\begin{array}{llll}\mathrm{H} & -30.670000 & 47.758000 & 10.454000\end{array}$
$\begin{array}{llll}\mathrm{H} & -34.059238 & 47.741331 & 8.577457\end{array}$
$\begin{array}{llll}\mathrm{H} & -31.645000 & 47.875000 & 7.821000\end{array}$
$\begin{array}{llll}\mathrm{H} & -33.540104 & 48.486214 & 10.070345\end{array}$
$\begin{array}{llll}\mathrm{H} & -32.022000 & 46.709000 & 9.134000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.154000 & 48.677000 & 9.186000\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.840000 & 49.445000 & 9.220000\end{array}$
$\begin{array}{llll}\mathrm{H} & -28.104000 & 48.893000 & 10.664000\end{array}$
$\begin{array}{lllll}\text { O } & -31.111000 & 46.252000 & 11.542000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.238000 & 45.932000 & 11.782000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -31.435000 & 45.761000 & 10.784000\end{array}$
$\begin{array}{lllll}\mathrm{N} & -28.134000 & 48.991000 & 14.667000\end{array}$

C $\quad-29.405000 \quad 48.247000 \quad 14.885000$
$\begin{array}{lllll}\text { C } & -29.167000 & 46.736000 & 14.783000\end{array}$
$\begin{array}{lllll}\text { C } & -30.460000 & 48.722000 & 13.881000\end{array}$
$\begin{array}{lllll}\text { O } & -30.008000 & 48.649000 & 12.529000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.047000 & 49.522000 & 12.131000\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.715817 & 48.692270 & 13.809163\end{array}$
$\begin{array}{llll}\mathrm{H} & -31.334040 & 48.113718 & 13.985628\end{array}$
$\begin{array}{lllll}\mathrm{N} & -28.016000 & 46.279000 & 14.300000\end{array}$
$\begin{array}{lllll}\text { C } & -27.742000 & 44.830000 & 14.163000\end{array}$

C $\quad-26.237000 \quad 44.590000 \quad 14.226000$
$\begin{array}{lllll}\text { O } & -25.502000 & 45.571000 & 14.221000\end{array}$

C $\quad-28.370000 \quad 44.300000 \quad 12.863000$

S $-27.427000 \quad 44.616000 \quad 11.334000$
$\begin{array}{llll}\mathrm{H} & -29.351000 & 44.763000 & 12.753000\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.307000 & 46.940000 & 14.018000\end{array}$
$\begin{array}{llll}\mathrm{H} & -28.197000 & 44.279000 & 14.986000\end{array}$
$\begin{array}{llll}\mathrm{H} & -28.399000 & 43.216000 & 12.971000\end{array}$
$\begin{array}{lllll}\mathrm{N} & -25.839000 & 43.341000 & 14.289000\end{array}$
$\begin{array}{llll}\mathrm{H} & -26.507184 & 42.599581 & 14.227122\end{array}$
$\begin{array}{lllll}\mathrm{N} & -24.223000 & 43.428000 & 12.051000\end{array}$

C $\quad-23.426000 \quad 43.710000 \quad 10.846000$

C $\quad-22.787000 \quad 45.095000 \quad 10.920000$
$\begin{array}{lllll}\mathrm{O} & -21.827000 & 45.385000 & 10.095000\end{array}$

H $\quad-24.061230 \quad 43.662325 \quad 9.986285$

H $\quad-25.219626 \quad 43.373298 \quad 11.989804$
$\begin{array}{llll}\mathrm{N} & -23.287000 & 45.955000 & 11.803000\end{array}$

C $\quad-22.813000 \quad 47.356000 \quad 11.926000$
$\begin{array}{llll}\text { C } & -21.364000 & 47.398000 & 12.437000\end{array}$
$\begin{array}{lllll}\text { O } & -20.645759 & 48.406067 & 12.210060\end{array}$

C $\quad-23.761000 \quad 48.198000 \quad 12.775000$

S $\quad-25.290000 \quad 48.687000 \quad 11.927000$
$\begin{array}{llll}\mathrm{H} & -23.235000 & 49.103000 & 13.080000\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.023000 & 45.640000 & 12.418000\end{array}$
$\begin{array}{llll}\mathrm{H} & -22.816000 & 47.806000 & 10.933000\end{array}$

H $\quad-24.058000 \quad 47.576000 \quad 13.620000$
$\begin{array}{llll}\mathrm{N} & -19.574000 & 47.352000 & 9.242000\end{array}$
$\begin{array}{lllll}\text { C } & -19.899000 & 48.589000 & 8.487000\end{array}$
$\begin{array}{lllll}\text { C } & -21.367000 & 48.923000 & 8.616000\end{array}$
$\begin{array}{llll}\mathrm{H} & -21.697000 & 49.462000 & 7.728000\end{array}$
$\begin{array}{llll}\mathrm{H} & -20.357313 & 46.730866 & 9.217233\end{array}$

H $\quad-19.660005 \quad 48.444394 \quad 7.454106$
$\begin{array}{llll}\mathrm{H} & -21.523000 & 49.544000 & 9.498000\end{array}$
$\begin{array}{llll}\mathrm{H} & -21.941000 & 48.002000 & 8.715000\end{array}$
$\begin{array}{lllll}\text { C } & -25.232000 & 53.048000 & 10.431000\end{array}$
$\begin{array}{llll}\text { C } & -25.384000 & 51.557000 & 10.600000\end{array}$
$\begin{array}{llll}\mathrm{N} & -26.443000 & 51.013000 & 9.724000\end{array}$
$\begin{array}{llll}\mathrm{H} & -26.739000 & 50.112000 & 10.072000\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.315127 & 53.366371 & 10.881427\end{array}$
$\begin{array}{llll}\mathrm{H} & -25.638000 & 51.342000 & 11.638000\end{array}$
$\begin{array}{llll}\mathrm{H} & -26.085000 & 50.911000 & 8.785000\end{array}$
$\begin{array}{llll}\mathrm{H} & -25.219998 & 53.289418 & 9.388660\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.440000 & 51.086000 & 10.325000\end{array}$
$\begin{array}{llll}\text { O } & -28.102000 & 48.675000 & 9.730000\end{array}$
$\begin{array}{llll}\text { O } & -24.500000 & 50.069000 & 7.917000\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.854000 & 49.476000 & 8.584000\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.476000 & 50.964000 & 8.264000\end{array}$
$\begin{array}{lllll}\mathrm{O} & -28.468000 & 51.143000 & 11.618000\end{array}$
$\begin{array}{llll}\mathrm{H} & -28.631000 & 51.743000 & 10.887000\end{array}$
$\begin{array}{llll}\mathrm{H} & -28.219000 & 50.281000 & 11.276000\end{array}$
$\begin{array}{llll}H & -19.317839 & 49.400287 & 8.872961\end{array}$
$\begin{array}{llll}\mathrm{H} & -18.781616 & 46.905970 & 8.825845\end{array}$
$\begin{array}{lllll}\mathrm{H} & -31.410458 & 39.645987 & 10.175530\end{array}$
$\begin{array}{llll}\mathrm{H} & -33.123137 & 41.430587 & 10.585878\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.918352 & 43.101477 & 5.060124\end{array}$
$\begin{array}{llll}\mathrm{H} & -25.276182 & 41.946486 & 6.779506\end{array}$
$\begin{array}{llll}\text { H } & -25.887694 & 41.107471 & 8.704739\end{array}$
$\begin{array}{llll}\mathrm{H} & -33.345573 & 49.336101 & 8.556107\end{array}$
$\begin{array}{llll}\mathrm{H} & -28.983998 & 49.045776 & 4.032157\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.093978 & 50.003599 & 3.587674\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.713832 & 51.469906 & 5.354642\end{array}$
$\begin{array}{llll}\mathrm{H} & -20.965998 & 46.570093 & 12.985693\end{array}$
$\begin{array}{llll}\mathrm{H} & -23.767818 & 43.291125 & 12.930815\end{array}$
$\begin{array}{llll}\mathrm{H} & -22.655830 & 42.972869 & 10.754481\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.867553 & 43.130722 & 14.398882\end{array}$
$\begin{array}{llll}\mathrm{H} & -29.848057 & 41.442364 & 6.473268\end{array}$
$\begin{array}{llll}\mathrm{H} & -25.482274 & 48.523065 & 3.692618\end{array}$
$\begin{array}{llll}\mathrm{H} & -25.150599 & 49.102190 & 5.285017\end{array}$
$\begin{array}{llll}\mathrm{H} & -29.281473 & 46.330082 & 15.766375\end{array}$
$\begin{array}{llll}\mathrm{H} & -29.948755 & 46.332473 & 14.173964\end{array}$

H $\quad-29.757537 \quad 48.465496 \quad 15.871345$
$\begin{array}{llll}\mathrm{H} & -27.507097 & 48.809032 & 15.424549\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.716503 & 49.736480 & 14.104463\end{array}$
$\begin{array}{llll}\mathrm{H} & -26.053039 & 53.545990 & 10.903018\end{array}$

Optimized structure of $\left[\mathrm{Ag}_{4}\right]^{2+}$ in constrained 7DC1 cavity :
$\begin{array}{llll}\mathrm{Ag} & -27.189764 & 47.238952 \quad 7.715822\end{array}$
$\begin{array}{llll}\mathrm{Ag} & -28.860772 & 45.762323 & 9.769021\end{array}$
$\begin{array}{lllll}\mathrm{Ag} & -27.301700 & 47.134770 & 11.812722\end{array}$
$\begin{array}{llll}\mathrm{Ag} & -25.130535 & 47.709555 & 9.787557\end{array}$
$\begin{array}{lllll}\mathrm{N} & -28.361000 & 48.860000 & 4.792000\end{array}$
$\begin{array}{lllll}\text { C } & -27.081000 & 49.589000 & 4.574000\end{array}$
$\begin{array}{lllll}\text { C } & -25.891000 & 48.627000 & 4.676000\end{array}$
$\begin{array}{lllll}\text { C } & -26.964000 & 50.740000 & 5.578000\end{array}$
$\begin{array}{llll}\mathrm{O} & -27.127000 & 50.312000 & 6.930000\end{array}$
$\begin{array}{llll}\mathrm{H} & -26.820000 & 51.001000 & 7.524000\end{array}$

H $\quad-28.777896 \quad 49.166964 \quad 5.647553$
$\begin{array}{llll}\mathrm{H} & -25.999884 & 51.192138 & 5.473348\end{array}$
$\begin{array}{lllll}\mathrm{N} & -26.071000 & 47.402000 & 5.159000\end{array}$
$\begin{array}{lllll}\text { C } & -24.953000 & 46.440000 & 5.296000\end{array}$
$\begin{array}{lllll}\text { C } & -25.498000 & 45.017000 & 5.233000\end{array}$
$\begin{array}{llll}\text { O } & -26.714000 & 44.871000 & 5.238000\end{array}$
$\begin{array}{lllll}\text { C } & -24.180000 & 46.719000 & 6.596000\end{array}$
$\begin{array}{lllll}\text { S } & -24.925000 & 46.060000 & 8.125000\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.091000 & 47.800000 & 6.706000\end{array}$
$\begin{array}{llll}\mathrm{H} & -26.998000 & 47.118000 & 5.441000\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.248000 & 46.558000 & 4.473000\end{array}$
$\begin{array}{llll}\mathrm{H} & -23.226000 & 46.203000 & 6.487000\end{array}$
$\begin{array}{llll}\mathrm{N} & -24.615000 & 44.048000 & 5.170000\end{array}$

H $\quad-23.638879 \quad 44.256229 \quad 5.231876$
$\begin{array}{llll}\mathrm{N} & -25.498000 & 42.692000 & 7.408000\end{array}$
$\begin{array}{lllll}\text { C } & -26.141000 & 42.143000 & 8.613000\end{array}$
$\begin{array}{lllll}\text { C } & -27.660000 & 42.282000 & 8.539000\end{array}$
$\begin{array}{llll}\mathrm{O} & -28.391000 & 41.595000 & 9.364000\end{array}$
$\begin{array}{llll}\mathrm{H} & -25.782175 & 42.669416 & 9.472670\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.658993 & 43.170734 & 7.666614\end{array}$
$\begin{array}{llll}\mathrm{N} & -28.155000 & 43.145000 & 7.656000\end{array}$
$\begin{array}{llll}\text { C } & -29.605000 & 43.435000 & 7.533000\end{array}$
$\begin{array}{llll}\text { C } & -30.366000 & 42.201000 & 7.022000\end{array}$
$\begin{array}{lllll}\mathrm{O} & -31.598116 & 42.083025 & 7.249031\end{array}$
$\begin{array}{llll}\text { C } & -29.860000 & 44.677000 & 6.684000\end{array}$
$\begin{array}{lllll}\text { S } & -29.519000 & 46.245000 & 7.532000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.906000 & 44.674000 & 6.379000\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.514000 & 43.625000 & 7.041000\end{array}$
$\begin{array}{llll}\mathrm{H} & -29.993000 & 43.662000 & 8.526000\end{array}$
$\begin{array}{llll}\mathrm{H} & -29.173000 & 44.624000 & 5.839000\end{array}$
$\begin{array}{lllll}\mathrm{N} & -31.221000 & 40.627000 & 10.217000\end{array}$
$\begin{array}{llll}\text { C } & -32.130000 & 41.528000 & 10.972000\end{array}$
$\begin{array}{lllll}\text { C } & -31.685000 & 42.966000 & 10.843000\end{array}$
$\begin{array}{llll}\mathrm{H} & -31.594000 & 43.409000 & 11.835000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.419820 & 41.001675 & 9.750384\end{array}$
$\begin{array}{llll}\mathrm{H} & -32.124594 & 41.248882 & 12.004940\end{array}$

H $\quad-32.419000 \quad 43.523000 \quad 10.261000$
$\begin{array}{llll}\mathrm{H} & -30.719000 & 43.003000 & 10.339000\end{array}$
$\begin{array}{llll}\text { C } & -33.325000 & 48.376000 & 9.028000\end{array}$
$\begin{array}{lllll}\text { C } & -31.958000 & 47.762000 & 8.859000\end{array}$
$\begin{array}{llll}\mathrm{N} & -30.957000 & 48.407000 & 9.735000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.670000 & 47.758000 & 10.454000\end{array}$
$\begin{array}{llll}\mathrm{H} & -34.059238 & 47.741331 & 8.577458\end{array}$
$\begin{array}{llll}\mathrm{H} & -31.645000 & 47.875000 & 7.821000\end{array}$
$\begin{array}{llll}\mathrm{H} & -33.540104 & 48.486214 & 10.070346\end{array}$
$\begin{array}{llll}\mathrm{H} & -32.022000 & 46.709000 & 9.134000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.154000 & 48.677000 & 9.186000\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.840000 & 49.445000 & 9.220000\end{array}$
$\begin{array}{lllll}\text { O } & -31.111000 & 46.252000 & 11.542000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -30.238000 & 45.932000 & 11.782000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -31.435000 & 45.761000 & 10.784000\end{array}$
$\begin{array}{lllll}\mathrm{N} & -28.134000 & 48.991000 & 14.667000\end{array}$
$\begin{array}{lllll}\text { C } & -29.405000 & 48.247000 & 14.885000\end{array}$
$\begin{array}{lllll}\text { C } & -29.167000 & 46.736000 & 14.783000\end{array}$
$\begin{array}{llll}\text { C } & -30.460000 & 48.722000 & 13.881000\end{array}$
$\begin{array}{llll}\text { O } & -30.008000 & 48.649000 & 12.529000\end{array}$
$\begin{array}{llll}\mathrm{H} & -30.047000 & 49.522000 & 12.131000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -27.715817 & 48.692270 & 13.809163\end{array}$
$\begin{array}{llll}\mathrm{H} & -31.334040 & 48.113718 & 13.985628\end{array}$
$\begin{array}{lllll}\mathrm{N} & -28.016000 & 46.279000 & 14.300000\end{array}$

C $\quad-27.742000 \quad 44.830000 \quad 14.163000$

C $\quad-26.237000 \quad 44.590000 \quad 14.226000$
$\begin{array}{lllll}\text { O } & -25.502000 & 45.571000 & 14.221000\end{array}$
$\begin{array}{lllll}\text { C } & -28.370000 & 44.300000 & 12.863000\end{array}$
$\begin{array}{lllll}\mathrm{S} & -27.427000 & 44.616000 & 11.334000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -29.351000 & 44.763000 & 12.753000\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.307000 & 46.940000 & 14.018000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -28.197000 & 44.279000 & 14.986000\end{array}$
$\begin{array}{llll}\mathrm{H} & -28.399000 & 43.216000 & 12.971000\end{array}$
$\begin{array}{lllll}\mathrm{N} & -25.839000 & 43.341000 & 14.289000\end{array}$
$\begin{array}{llll}\mathrm{H} & -26.507184 & 42.599581 & 14.227122\end{array}$
$\begin{array}{lllll}\mathrm{N} & -24.223000 & 43.428000 & 12.051000\end{array}$
$\begin{array}{lllll}\text { C } & -23.426000 & 43.710000 & 10.846000\end{array}$

C

O

H

H

N
$\begin{array}{lllll}\text { C } & -22.813000 & 47.356000 & 11.926000\end{array}$
$\begin{array}{lllll}\text { C } & -21.364000 & 47.398000 & 12.437000\end{array}$
$\begin{array}{lllll}\text { O } & -20.645759 & 48.406067 & 12.210060\end{array}$
$\begin{array}{lllll}\text { C } & -23.761000 & 48.198000 & 12.775000\end{array}$

S $\quad-25.290000 \quad 48.687000 \quad 11.927000$
$\begin{array}{llll}\mathrm{H} & -23.235000 & 49.103000 & 13.080000\end{array}$
$\begin{array}{llll}\mathrm{H} & -24.023000 & 45.640000 & 12.418000\end{array}$
$\begin{array}{llll}\mathrm{H} & -22.816000 & 47.806000 & 10.933000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -24.058000 & 47.576000 & 13.620000\end{array}$
$\begin{array}{lllll}\mathrm{N} & -19.574000 & 47.352000 & 9.242000\end{array}$
$\begin{array}{lllll}\text { C } & -19.899000 & 48.589000 & 8.487000\end{array}$

C $\quad-21.367000 \quad 48.923000 \quad 8.616000$
$\begin{array}{llll}\mathrm{H} & -21.697000 & 49.462000 & 7.728000\end{array}$
$\begin{array}{llll}\mathrm{H} & -20.357313 & 46.730866 & 9.217233\end{array}$
$\begin{array}{llll}\text { H } & -19.660005 & 48.444394 & 7.454106\end{array}$
$\begin{array}{llll}\mathrm{H} & -21.523000 & 49.544000 & 9.498000\end{array}$
$\begin{array}{llll}\mathrm{H} & -21.941000 & 48.002000 & 8.715000\end{array}$
$\begin{array}{lllll}\text { C } & -25.232000 & 53.048000 & 10.431000\end{array}$
$\begin{array}{lllll}\text { C } & -25.384000 & 51.557000 & 10.600000\end{array}$
$\begin{array}{lllll}\mathrm{N} & -26.443000 & 51.013000 & 9.724000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -26.739000 & 50.112000 & 10.072000\end{array}$
$\begin{array}{lllll}\mathrm{H} & -28.631000 & 51.743000 & 10.887000\end{array}$
$\begin{array}{llll}\mathrm{H} & -28.219000 & 50.281000 & 11.276000\end{array}$
$\begin{array}{llll}\text { H } & -19.317839 & 49.400287 & 8.872961\end{array}$

H $\quad-18.781616 \quad 46.905970 \quad 8.825845$
$\begin{array}{lllll}\mathrm{H} & -31.410458 & 39.645987 & 10.175530\end{array}$
$\begin{array}{lllll}\mathrm{H} & -33.123137 & 41.430587 & 10.585878\end{array}$
$\begin{array}{llll}\text { H } & -24.918352 & 43.101477 & 5.060124\end{array}$

H $\quad-25.276182 \quad 41.946486 \quad 6.779506$
$\begin{array}{llll}\text { H } & -25.887694 & 41.107471 & 8.704739\end{array}$
$\begin{array}{lllll}\mathrm{H} & -33.345573 & 49.336101 & 8.556107\end{array}$

H $\quad-28.983998 \quad 49.045776 \quad 4.032157$
$\begin{array}{llll}\mathrm{H} & -27.093978 & 50.003599 & 3.587674\end{array}$
$\begin{array}{llll}\mathrm{H} & -27.713832 & 51.469906 & 5.354642\end{array}$
$\begin{array}{lllll}\mathrm{H} & -20.965998 & 46.570093 & 12.985693\end{array}$
$\begin{array}{llll}\mathrm{H} & -23.767818 & 43.291125 & 12.930815\end{array}$
$\begin{array}{lllll}\mathrm{H} & -22.655830 & 42.972869 & 10.754481\end{array}$

H	-24.867553	43.130722	14.398882
H	-29.848057	41.442364	6.473268
H	-25.482274	48.523065	3.692618
H	-25.150599	49.102190	5.285017
H	-29.281473	46.330082	15.766375
H	-29.948755	46.332473	14.173964
H	-29.757537	48.465496	15.871345
H	-27.507097	48.809032	15.424549
H	-30.716503	49.736480	14.104463
H	-26.053039	53.545990	10.903018

Experimental structure $\left(\mathrm{C}_{2}\right)$ of Ag_{4} Cluster:

Ag	-0.514904	-1.748836	0.236102
Ag	-2.305118	0.390645	-0.236102
Ag	0.514904	1.748836	0.236102
Ag	2.305118	-0.390645	-0.236102

Optimized $\mathrm{T}_{\mathrm{d}}-\left[\mathrm{Ag}_{4}\right]^{2+}$ Cluster:
$\begin{array}{llll}\mathrm{Ag} & 1.060049 & -1.060049 & 1.060049\end{array}$
$\begin{array}{llll}\mathrm{Ag} & -1.060049 & 1.060049 & 1.060049\end{array}$
$\mathrm{Ag} \quad-1.060049 \quad-1.060049 \quad-1.060049$
$\begin{array}{llll}\mathrm{Ag} & 1.060049 & 1.060049 & -1.060049\end{array}$
Optimized $\mathrm{D}_{4 \mathrm{~h}}-\left[\mathrm{Ag}_{4}\right]^{2+}$ Cluster:

Ag	-1.469085	-1.469085	0.000000
Ag	-1.469085	1.469085	0.000000
Ag	1.469085	-1.469085	0.000000
Ag	1.469085	1.469085	0.000000

Optimized $\mathrm{D}_{2 \mathrm{~h}}-\left[\mathrm{Ag}_{4}\right]^{2+}$ Cluster:
$\begin{array}{llll}\mathrm{Ag} & 2.692548 & 0.000000 & 0.000000\end{array}$
$\begin{array}{llll}\mathrm{Ag} & 0.000000 \quad 1.448782 \quad 0.000000\end{array}$
$\begin{array}{llll}\mathrm{Ag} & 0.000000 & -1.448782 & 0.000000\end{array}$

Ag
$-2.692548 \quad 0.000000 \quad 0.000000$

Optimized $\mathrm{D}_{4 \mathrm{~h}}-\left[\mathrm{C}_{4} \mathrm{H}_{4}\right]^{2+}$ Cluster:
$\begin{array}{llll}\text { C } & 0.000000 & 0.952783 & 0.000000\end{array}$
$\begin{array}{llll}\text { C } & 0.000000 & 0.0000000 & 1.061328\end{array}$
$\begin{array}{llll}\text { C } & 0.000000 & -0.952783 & 0.000000\end{array}$
$\begin{array}{llll}\text { C } & 0.000000 & 0.000000 & -1.061328\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.000000 & 2.040396 & 0.000000\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.000000 & -2.040396 & 0.000000\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.000000 & 0.000000 & 2.129351\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.000000 & 0.000000 & -2.129351\end{array}$

Table S1. Strengths of single metal- ligand bonds in protein or nonprotein surfaces

Single thiol-matal bond	protein	ref
Au-S	$\sim 165 \mathrm{pN}$	1
Cu-S	$\sim 171 \mathrm{pN}$	1
Zn-S	$\sim \mathbf{1 7 0 p N}$	2
Zn-S	$\sim 90 p N$	3
Fe-S	$\sim 211 \mathrm{pN}$	4
Fe-N	$\sim 160 \mathrm{pN}$	5
Fe-O	$\sim 127 \mathrm{pN}$	6
Ag-S	$\sim \mathbf{6 4} \mathbf{p N}$ Atox1	This work

Table S2. Crystallization Method

Protein	Atox 1 for 5F0W	Atox 1 for 7DC1
Method	Sitting-drop vapour-diffusion	Sitting-drop vapour-diffusion
Plate type	Corning 3552	Corning 3552
Temperature (K)	293	293
Protein concentration	$27 \mathrm{mg} / \mathrm{mL}$	$29 \mathrm{mg} / \mathrm{mL}$
Buffer composition of protein solution	50 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.5,150 \mathrm{mM}$ $\mathrm{NaCl}, 1 \mathrm{mM}$ TCEP	50 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.5,150 \mathrm{mM}$ $\mathrm{NaCl}, 1 \mathrm{mM}$ TCEP
Composition of reservoir solution	0.2 M tri-sodium citrate, 20% (w/v) PEG 3350	0.2M LiCl, 0.1 M Tris $\mathrm{pH} 8,20 \%$ (w/v) PEG 6,000
Volume and ratio of drop	200 nL protein/200 nL reservoir	200 nL protein/200 nL reservoir
Volume of reservoir	microlitre.	microlitre.

Table S3. X-ray data collection and refinement statistics
We finished all of the data collection works by use F-RE++ and R-AXIS IV of RIGAKU.

Data collection	5F0W	7DC1
Space group	P_{6}	$\mathrm{P} 3221^{2}$
Cell dimensions		
a,b,c(\AA)	112.49, 112.49, 56.63	104.49104 .49329 .188
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90.00, 90.00, 120.00	90.00090 .000120 .000
Resolution	50.00-2.70	19.47-1.75
	(2.75-2.70)*	(1.78-1.75)
$R_{\text {merge }}$	12.9(43.7)	5.6 (61.6)
$I / \sigma I$	17.78(4.68)	17.0 (2.3)
Completeness(\%)	90.2(87.4)	98.5 (97.1)
Redundancy	6.2(6.3)	4.6 (4.3)
Refinement		
Resolution (\AA)	24.48-2.70	19.47-1.75
No. unique reflections	10336	18311 (1002)
$R_{\text {work }} / R_{\text {free }}$	0.26/0.29	0.18/0.20
No. atoms		
Protein	2056	1019
Ligand/ion	8	4
Water	12	133
B-factors		
Protein	31.55	28.44
Ligand/ion	38.73	27.41
Water	23.05	39.01
R.m.s.deviations		
Bond lengths	0.014	0.005
Bond angles	1.62	1.259

*Values in parentheses are for highest-resolution shell.

Table S4. The Hückel MO energies and MO wavefunctions of planar $\mathrm{D}_{2 \mathrm{~h}}-\mathrm{Ag}_{4}$ cluster.

MO	Eigenvalue	Energy	Eigenfunctions
LUMO $+2\left(\mathrm{a}_{\mathrm{g}}\right)$	$\chi^{4}=1.5616$	$\alpha-1.5616 \beta$	$\Psi_{4}=\left(0.4352 \phi_{1}+0.4352 \phi_{2}-0.5573 \phi_{3}-0.5573 \phi_{4}\right)$
LUMO $+1\left(\mathrm{a}_{\mathrm{u}}\right)$	$\chi^{3}=1.0000$	$\alpha-\beta$	$\Psi_{3}=\left(0.7071 \phi_{1}-0.7071 \phi_{2}\right)$
$\operatorname{LUMO}\left(\mathrm{b}_{\mathrm{u}}\right)$	$\chi^{2}=0.0000$	α	$\Psi_{2}=\left(-0.7071 \phi_{3}+0.7071 \phi_{4}\right)$
$\operatorname{HOMO}\left(\mathrm{a}_{\mathrm{g}}\right)$	$\chi^{1}=-2.5616$	$\alpha+2.5616 \beta$	$\Psi_{1}=\left(0.5573 \phi_{1}+0.5573 \phi_{2}+0.4352 \phi_{3}+0.4352 \phi_{4}\right.$
			$)$

Table S5. The Hückel MO energies and wavefunctions of square planar $\mathrm{D}_{4 \mathrm{~h}}-\mathrm{Ag}_{4}$ cluster.

MO	Eigenvalue	Energy	Eigenfunctions
LUMO $+1\left(\mathrm{a}_{\mathrm{g}}\right)$	$\chi^{4}=2.0000$	$\alpha-2.0000 \beta$	$\Psi_{4}=\left(0.5000 \phi_{1}-0.5000 \phi_{2}+0.5000 \phi_{3}-0.5000 \phi_{4}\right)$
$\operatorname{LUMO}\left(\mathrm{b}_{2 \mathrm{u}}\right)$	$\chi^{3}=0.0000$	α	$\Psi_{3}=\left(0.7071 \phi_{1}-0.7071 \phi_{3}\right)$
$\operatorname{LUMO}\left(\mathrm{b}_{1 \mathrm{u}}\right)$	$\chi^{2}=0.0000$	α	$\Psi_{2}=\left(0.7071 \phi_{2}-0.7071 \phi_{4}\right)$
$\operatorname{HOMO}\left(\mathrm{a}_{\mathrm{g}}\right)$	$\chi 1=-2.0000$	$\alpha+2.0000 \beta$	$\Psi_{1}=\left(0.5000 \phi_{1}+0.5000 \phi_{2}+0.5000 \phi_{3}+0.5000 \phi_{4}\right.$
			$)$

Table S6. The Hückel MO energies and wavefunctions of the tetrahedron $\mathrm{T}_{\mathrm{d}}-\mathrm{Ag}_{4}$ cluster.

MO	Eigenvalue	Energy	Eigenfunctions
$\operatorname{LUMO}\left(\mathrm{t}_{2}\right)$	$\chi^{4}=1.0000$	$\alpha-1.0000 \beta$	$\Psi_{4}=\left(0.5000 \phi_{1}-0.5000 \phi_{2}+0.5000 \phi_{3}-0.5000 \phi_{4}\right)$
$\operatorname{LUMO}\left(\mathrm{t}_{2}\right)$	$\chi^{3}=1.0000$	$\alpha-1.0000 \beta$	$\Psi_{3}=\left(0.5000 \phi_{1}+0.5000 \phi_{2}-0.5000 \phi_{3}-0.5000 \phi_{4}\right)$
$\operatorname{LUMO}\left(\mathrm{t}_{2}\right)$	$\chi 2=1.0000$	$\alpha-1.0000 \beta$	$\Psi_{2}=\left(0.5000 \phi_{1}-0.5000 \phi_{2}-0.5000 \phi_{3}+0.5000 \phi_{4}\right)$
$\operatorname{HOMO}\left(\mathrm{a}_{1}\right)$	$\chi 1=-3.0000$	$\alpha+3.0000 \beta$	$\Psi_{1}=\left(0.5000 \phi_{1}+0.5000 \phi_{2}+0.5000 \phi_{3}+0.5000 \phi_{4}\right.$

Table S7. The MO contours and energy of the frontier MOs of $\mathrm{T}_{\mathrm{d}}, \mathrm{D}_{4 \mathrm{~h}}, \mathrm{D}_{2 \mathrm{~h}}$ and the C_{2} experimental measured structures $\left[\mathrm{Ag}_{4}\right]^{2+}$ cluster (isosurface $=0.03$ a.u.).

Table S8. The calculated NICS values (ppm) of the $\mathrm{Ag}_{4}{ }^{2+}$ cluster

Structure	Number of $\mathrm{Bq}_{\mathrm{x}}{ }^{\mathrm{a}}$	NICS (ppm) ${ }^{\mathrm{b}}$
1	-15.9	
	2	-16.4

${ }^{a} \mathrm{~Bq}_{\mathrm{x}}$ represents the ghost atom with numbering $\mathrm{x} .{ }^{\mathrm{b}}$ For benzene: -8.0 ppm at the center and -10.2 ppm at $1 \AA$ above the ring plane)

Table S9. Constrained DFT optimization results of the $\left[\mathrm{Ag}_{4}\right]^{9^{+}}$core in the experimental cavity of 7DC1.

Specie	Total Charge	q	Geometry Structure							
			Bond Length (\AA)						Dihedral Angle (${ }^{\circ}$)	
			$\begin{gathered} \text { Ag1- } \\ \text { Ag2 } \end{gathered}$	$\begin{gathered} \text { Ag1- } \\ \text { Ag4 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Ag} 2- \\ \mathrm{Ag} 3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Ag} 3- \\ & \mathrm{Ag} 4 \end{aligned}$	$\begin{gathered} \text { Ag1- } \\ \text { Ag3 } \end{gathered}$	$\begin{gathered} \mathrm{Ag} 2- \\ \mathrm{Ag} 4 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ag1-Ag2- } \\ & \text { Ag4-Ag3 } \end{aligned}$	$\begin{gathered} \mathrm{Ag} 2-\mathrm{Ag} 1- \\ \mathrm{Ag} 3-\mathrm{Ag} 4 \end{gathered}$
Ag_{4}-(Atox1) $27 \mathrm{DC1}$ (Experiment)			2.83	3.17	3.17	2.83	3.65	4.68	150.8	157.0
$\left[\mathrm{Ag}_{4}\right]$ in cavity of 7DC1	0	+4	3.02	3.26	3.22	2.96	4.19	4.59	166.3	167.4
	-2	+2	3.03	2.96	2.91	3.02	4.10	4.21	151.8	152.5
	-4	0	null (not converged)							

Figure S1. The liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS) measurement of Atox1 and silver ions. (A) LC-ESI-MS of Atox1 protein (Found: 7458.55Da, expected: 7458.94 Da) and Atox 1 in complex with different equivalents of Ag ion. (B) (C) (D) ESI-MS of Atox 1 protein and Atox 1 in complex with different equivalents of Ag ion in the different buffer conditions including 0.01 to 1 mM DTT .

Figure S2. NMR analysis of Ag^{+}binding to Atox1. (A) Overlay of ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}-\mathrm{HSQC}$ NMR spectra of Atox1 apo-Atoxl before (red) and after (blue) adding equimolar Ag^{+}. (B) Chemical shift perturbation $\Delta \delta$ against the residue number $\left(\Delta \delta=\sqrt{\left[\left(\Delta \delta_{H}\right)^{2}+\left(\Delta \delta_{N} / 5\right)^{2}\right] / 2}\right)$.

Figure S3. Atox1 crystal structures in the presence of metals (Cu-Atox12 PDB accession code 1FEE, HgAtox 12 PDB accession code 1FE4, Cd-Atox 12 PDB accession code 1FE0, CisPt-Atox 12 PDB accession code 3IWX).
a.

b.

c.

d.

Figure S4. The rare cases we observed in the single-molecule force spectroscopy experiments. The SMFS measurements on the engineered chimeric polyprotein in the presence of Ag , and the rupture of $\mathrm{Ag} 4-$ (Atox1)2 complex proceeded in two steps.

Figure S5. Reported Atox1 crystal structures in the presence of metals and Ag_{4}-(Atox1) $)_{2}$ in this work. Crystal structure of Ag bound to an Atox 1 dimer with $2.70 \AA$ (PDB accession code 5F0W).

Figure S6. Close-up view showing details of the tretrasilver cluster in Atox1 dimer(5F0W). The distance between Ag 1 and Ag 4 is $3.01 \AA$. The distance between Ag 1 and Ag 3 is $2.95 \AA$. The distance between Ag 2 and Ag 3 is $2.95 \AA$. The distance between Ag 2 and Ag 4 is $2.89 \AA$. The Angle $\mathrm{Ag} 4-\mathrm{Ag} 1-\mathrm{Ag} 3$ is $65.01^{\circ \circ}$, and the angle $\mathrm{Ag} 4-\mathrm{Ag} 2-\mathrm{Ag} 3$ is 66.56°. The four silver ions are situated nearly on the same plane, forming four $\mathrm{Ag}-\mathrm{Ag}$ bonds with an average dihedral angle of 171°.

Figure S7. (A) Crystal structure of Ag bound to an Atox1 dimer with $1.75 \AA$ (PDB accession code 7DC1). (B) The superimposed 2 Fo -Fc electron density map of Ag_{4}-(Atox1)2. 2 Fo -Fc electron density map (gray, 1.00σ) of Ag4-(Atox1)2 metal center with anomalous difference Fourier density showing the Ag ions superimposed (green, 6б).

Figure S8. The ELF color-filled map of $\mathrm{Ag}_{4}{ }^{2+}$ generated by Multiwfn. Significant electron-pair density in the center of the cluster supported delocalized 4-center weak bonding.

Black: Atox1
Red: Atox1:Ag=1:10
Blue:Ag-Atox1+DMPO
Wine: MTSSL-Atox1

Figure S9. The CW-EPR spectra mesurement of Atox1, Atox 1-Ag, Ag-Atox1 with DMPO and MTSSL-Atox1.

References

1. W. Wei, Y. Sun, M. Zhu, X. Liu, P. Sun, F. Wang, Q. Gui, W. Meng, Y. Cao and J. Zhao, J Am Chem Soc, 2015, 137, 15358-15361.
2. S. R. Ainavarapu, J. Brujic, H. H. Huang, A. P. Wiita, H. Lu, L. Li, K. A. Walther, M. Carrion-Vazquez, H. Li and J. M. Fernandez, Biophys J, 2007, 92, 225-233.
3. I. C. Shaw, Chem Rev, 1999, 99, 2589-2600.
4. S. Chernousova and M. Epple, Angew Chem Int Edit, 2013, 52, 1636-1653.
5. G. B. Song, F. Tian, H. X. Liu, G. Q. Li and P. Zheng, J Phys Chem Lett, 2021, 12, 3860-3867.
6. G. D. Yuan, H. X. Liu, Q. Ma, X. Li, J. Y. Nie, J. L. Zuo and P. Zheng, J Phys Chem Lett, 2019, 10, 5428-5433.
