Asymmetric β -arylation of cyclopropanols enabled by

photoredox and nickel dual catalysis

Jianhua Wang, Xiaoxun Li *

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education) and NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.

*Correspondence to: xli@sdu.edu.cn.

Table of Contents

1.	General techniques and chemicals	3
2.	Optimization of reaction conditions	5
3.	General procedure for the preparation of cyclopropanols	.10
4.	General procedure for asymmetric β-arylation of cyclopropanols	.16
5.	Derivatization of chiral β-aryl ketones	.38
6.	Mechanistic studies	.46
7.	X-ray Crystallography data	.50
8.	References	.57
9.	NMR Spectra	.58
10.	HPLC Spectra	120

General techniques and chemicals

Unless otherwise noted, all the reactions for the preparation of the substrates were performed in oven-dried glassware under nitrogen atmosphere with freshly distilled solvents. The catalytic reactions were performed under nitrogen atmosphere. The solvents were purified by distillation from calcium hydride unless otherwise noted. All other commercial reagents were used without further purification unless otherwise indicated. ¹H NMR and ¹³C NMR spectra were recorded on Bruker 400 MHz spectrometer (ADVNCE III) using chloroform-d (CDCl₃), methanol-d4 (CD₃OD) and dimethyl sulphoxide-d6 (DMSO-d6) as the internal standard. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.1), proton (methanol δ 3.31), carbon (methanol δ 49.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Data are reported as follows: chemical shift, multiplicity (s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz) and integration. The enantiomeric ratio (er) was determined by HPLC analysis on Agilent 1260 Infinity II Prime using Daicel CHIRALPAK® column IA-U, IB-U, IC-U or LC-20AD/T LPGE KIT using Daicel CHIRALPAK® column IA-3, IB-3, IC-3. X-ray diffraction analyses were carried out on a microcrystalline powder using a Rigaku Oxford Diffraction XtaLAB Synergy-S diffractometer using Cu radiation ($\lambda = 1.54184$ Å). If not specially mentioned, flash column chromatography was performed using 200-300 silica gel purchased from Yaitai Chemicals (China). High-resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer using ESI (electrospray ionization) as ionization method. Optical rotations were recorded on an AUTOPOL II digital polarimeter at 589 nm and are recorded as $[\alpha]_D^T$ (concentration in grams/100 mL solvent).

The LEDs reaction machine was purchased from Beijing Strongerscience Co., Ltd., the LEDs emits blue light with a spectral output centered at 465 nm (**Figure 1**).

Figure S1: Spectral intensity distribution of LEDs

The reactions were stirred by IKA® RCT basic stirrer, cooled by ethanol circulator bath (**Figure 2**).

Figure S2: Appearance of Blue LEDs reaction System.

Optimization of reaction conditions

Table S1. Preliminary investigation of chiral ligands. [a]

[a] Unless otherwise indicated, all reactions were performed with Ir cat (1.5 mmol%), NiCl₂·glyme (20 mmol%), chiral ligand (22 mmol%), collidine (300 mmol%), cyclopropanol (0.30 mmol) and 4-bromoacetophenone (0.10 mmol) in DMF (5 mL) at 25 °C with blue LEDs irradiation under nitrogen atmosphere. NP: No product. After screening a series of chiral ligands, reactions with chiral Py-(oxazoline) ligands gave better enantioselectivities.

HO Ph GPO + Ac	[Ir(dF(CF ₃)ppy) ₂ (c NiCl ₂ ·glyme (20 n Collidine DMF, - Blue LI	Itbbpy)]PF ₆ (1.5 mmol%) nmol%), L1 (22 mmol%) e (300 mmol%) 48 hrs, 25 °C EDs (465 nm)	Ph OPG	
PG =	Ph Si Si Ph TBDPS TIPS	'Bu 'Bu' Si, Si, Bu BMBS BIBS		
Entry.	PG	Х	Yield (%) ^b	er ^c
1	TBS	C1	0	-
2	TBS	Br	68	81:19
3	TBS	Ι	13	81:19

Table S2. Investigation of aryl e	electrophiles and silyl prote	ction groups. ^[a]
-----------------------------------	-------------------------------	------------------------------

4	TBS	OTf	5	52:48
5	TBS	B(OH) ₂	0	-
6	TBS	BPin	0	-
7	TBDPS	Br	63	80:20
8	TIPS	Br	71	84:16
9	BMBS	Br	51	83.5:16.5
10	BIBS	Br	50	81:19

[a] Unless otherwise indicated, all reactions were performed with Ir cat (1.5 mmol%), NiCl₂glyme (20 mmol%), L1 (22 mmol%), collidine (300 mmol%), cyclopropanols (0.30 mmol) and electrophiles (0.10 mmol) in DMF (5 mL) at 25 °C with blue LEDs irradiation under nitrogen atmosphere. [b] Isolated yield. [c] Determined by HPLC analysis.

Table S3. Investigation of Ni(II) catalysts, ligands and photoredox catalysts. ^[a]

 $E_{1/2} * Ir^{III} / Ir^{II} = +1.32 V$ $E_{1/2} Ir^{III} / Ir^{II} = -1.37 V$

 $[Ir(dF(CF_3)ppy)_2(bpy)]PF_6$ (Ir-2) $[Ir(dF(CF_3)ppy)_2(4,4'-d(CF_3)bpy)]PF_6$ (Ir-3) $E_{1/2} * Ir^{III} / Ir^{II} = +1.27 V$ $E_{1/2} Ir^{III} / Ir^{II} = -1.07 V$

Entry	Ligands	Ni(II) cat.	Photoredox cat.	Yields (%) ^b	er ^c
1	L1	NiCl ₂ ·glyme	Ir-1	71	84:16
2	L1	NiBr ₂ ·glyme	Ir-1	58	87:13
3	L1	NiI ₂	Ir-1	0	-
4	L1	Ni(OAc) ₂	Ir-1	80	88:12
5	L1	Ni(acac) ₂	Ir-1	44	82:18
6	L1	Ni(PPh ₃) ₂ Cl ₂	Ir-1	0	-
7	L2	Ni(OAc) ₂	Ir-1	70	55:45
8	L3	Ni(OAc) ₂	Ir-1	0	-
9	L4	Ni(OAc) ₂	Ir-1	20	60:40
10	L5	Ni(OAc) ₂	Ir-1	77	90:10
11	L6	Ni(OAc) ₂	Ir-1	75	93:7
12	L7	Ni(OAc) ₂	Ir-1	73	7:93
13	L8	Ni(OAc) ₂	Ir-1	58	79:21
14	L9	Ni(OAc) ₂	Ir-1	11	92:8
15	L10	Ni(OAc) ₂	Ir-1	0	-
16	L6	NiCl ₂ ·glyme	Ir-1	64	87:13
17	L6	NiBr ₂ ·glyme	Ir-1	47	90:10
18	L6	Ni(OAc) ₂	Acr-1	0	-
19	L6	Ni(OAc) ₂	Ru-1	0	-
20	L6	Ni(OAc) ₂	Ir-2	31	92:8
21	L6	Ni(OAc) ₂	Ir-3	9	79:21

[a] Unless otherwise indicated, all reactions were performed with Ir cat (1.5 mmol%), nickel catalysts (20 mmol%), chiral ligand (22 mmol%), collidine (300 mmol%), cyclopropanol (0.30 mmol) and 4-bromoacetophenone (0.10 mmol) in DMF (5 mL) at 25 °C with blue LEDs irradiation under nitrogen atmosphere. [b] Isolated yield. [c] Determined by HPLC analysis. Ad: Adamantyl. For **Acr-1**, **Ru-1**, **Ir-1** and **Ir-2**, potentials measured in V vs SCE in MeCN; for **Ir-3**, potentials measured in V vs FC⁺/FC in MeCN.¹

After investigation of photocatalysts, nickel salts and chiral ligands, $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_{6}$, Ni(OAc)₂ and Py-(oxazoline) ligand **L6** were optimal for this reaction.

HO Ph TIPSO +	Br [Ir(dF(CF Ni(OAc	⁵ 3)ppy) ₂ (dtbbpy)]PF ₆ (1.5 mmol%) ;) ₂ (20 mmol%), L6 (22 mmol%) Base (300 mmol%) Solvent, 48 hrs, 25 °C Blue LEDs (465 nm)	Ph OTIPS	Me N N L6 Ád
Entry.	Solvent	base	Yield (%) ^b	er ^c
1	DCE	collidine	0	-
2	DMF	collidine	75	93:7
3	DMA	collidine	71	88:12
4	DMSO	collidine	62	75:25
5	DMPU	collidine	0	-
6	DMF	pyridine	20	93.5:6.5
7	DMF	lutidine	64	93:7
8	DMF	P ⁿ Bu ₃ Et ⁺ (EtO) ₂ POO	- 67	87:13

Table S4. Investigation of solvents and bases. [a]

[a] Unless otherwise indicated, all reactions were performed with Ir cat (1.5 mmol%), Ni(OAc)₂ (20 mmol%), L6 (22 mmol%), base (300 mmol%), cyclopropanol (0.30 mmol) and 4-bromoacetophenone (0.10 mmol) in solvent (5 mL) at 25 °C with blue LEDs irradiation under nitrogen atmosphere. [b] Isolated yield. [c] Determined by HPLC analysis.

Reactions with DMF as the solvent and collidine as the base gave the best result.

 Table S5. Investigation of equivalents of cyclopropanol, reaction concentration

 and temperature. [a]

HO Ph TIPSO	Br Ni(OAc) ₂ (20 mmol% Collidine (30 Ac Blue LEDs	y)]PF ₆ (1.5 mmd b), L6 (22 mmol ⁶ 0 mmol%) 8 hrs (465 nm)	ol%) %) Ph	Ac	L6 Ád
Entry.	Cyclopropanol (eq.)	DMF	Temp. (°C)	Yield (%) ^b	er ^c
1	2.5	5 mL	25 °C	60	93:7
2	3.0	5 mL	25 °C	75	93:7
3	3.5	5 mL	25 °C	76	93:7
4	3.0	2.5 mL	25 °C	61	92:8
5	3.0	7.5 mL	25 °C	77	93:7
6	3.0	5 mL	35 °C	77	91:9
7	3.0	5 mL	10 °C	31	90:10

[a] Unless otherwise indicated, all reactions were performed with Ir cat (1.5 mmol%), Ni(OAc)₂ (20 mmol%), L6 (22 mmol%), collidine (300 mmol%), cyclopropanol and 4-bromoacetophenone (0.10 mmol) in DMF at 25 °C with blue LEDs irradiation under nitrogen atmosphere. [b] Isolated yield. [c] Determined by HPLC analysis.

Table S6. Control experiments.^[a]

Entry.	Variations from the standard conditions	Yield (%) ^b	erc
1	no change	77	93:7
2	no Ir. catalyst	0	-
3	no Ni(OAc) ₂	0	-
4	no ligand	0	-
5	no base	0	-
6	no light	0	-

[a] Unless otherwise indicated, all reactions were performed with Ir cat (1.5 mmol%), Ni(OAc)₂ (20 mmol%), L6 (22 mmol%), collidine (300 mmol%), cyclopropanol (0.30 mmol) and 4-bromoacetophenone (0.10 mmol) in DMF (5 mL) at 25 °C with blue LEDs irradiation under nitrogen atmosphere. [b] Isolated yield. [c] Determined by HPLC analysis.

General procedure for the preparation of cyclopropanols

The β -oxy silvl ether ketone S1 was prepared following literature reported.²

The cyclopropanols (1) was produced via Simmons-Smith sequence.³

General Procedure 1 (GP1): To a stirred solution of ketone S1 (10.0 mmol, 1.0 eq.) and Et₃N (12.0 mmol, 1.2 eq.) in anhydrous DCM (20 mL) was added TMSOTf (11.0 mmol, 1.1 eq.) dropwise at 0 °C under nitrogen, then stirred at room temperature for 4 h. The reaction was cooled to 0 °C, quenched by saturated aq. NaHCO₃ (10 mL), extracted with DCM (20 mL×2). The combined organic layer was washed by brine, dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and got crude silvl enol ether S2, which can be used to next step without further purification. The solution of S2 in anhydrous DCM (20 mL) was cooled to 0 °C under nitrogen, then added CH₂I₂ (12.0 mmol, 1.2 eq.) and Et₂Zn (1 M in hexane, 12.0 mmol, 1.2 eq.) during 15 mins. The reaction was stirred at room temperature for 6 h. The reaction was cooled to 0 °C, quenched by saturated aq. NaHCO₃ (10 mL) and extracted with DCM (20 mL×2). The combined organic layer was washed by brine, dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and got crude TMSprotected cyclopropanol S3, which was used in next step without further purification. The solution of TMS-protected cyclopropanol S3 in methanol (10 mL) was cooled to 0°C under nitrogen, then added K₂CO₃ (1.0 mmol, 0.1 eq.) in one portion and stirred at 0°C for 1 h. The reaction was quenched with water (20 mL), extracted with DCM (20 mL×2). The combined organic layer was washed by brine, dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel and gave desired product 1. Notably, the transcyclopropanols 1 were isolated as major isomers following this procedure and used for the corresponding asymmetric transformations.

Following general procedure **GP 1**, got product **1a** (2.2 g, dr > 20:1) as pale-yellow oil in 53% yield over three steps.

¹H NMR (400 MHz, CDCl₃) δ 1.03 – 1.15 (m, 21H), 1.21 – 1.27 (m, 2H), 1.46 – 1.57 (m, 1H), 3.53 (s, 1H), 3.94 (dd, *J* = 10.7, 7.6 Hz, 1H), 4.33 (dd, *J* = 10.7, 4.9 Hz, 1H), 7.21 (dt, *J* = 8.6, 4.3 Hz, 1H), 7.32 (d, *J* = 4.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.1, 21.0, 28.8, 59.7, 63.6, 124.5, 126.3, 128.3, 144.6.

1-(p-tolyl)-2-(((triisopropylsilyl)oxy)methyl)cyclopropan-1-ol (1b)

Following general procedure **GP 1**, got product **1b** (5.0 g, dr > 20:1) as colorless oil in 47% yield over three steps.

¹H NMR (400 MHz, CDCl₃) δ 1.04 – 1.15 (m, 21H), 1.17 – 1.22 (m, 2H), 1.45 – 1.52 (m, 1H), 2.33 (s, 3H), 3.44 (s, 1H), 3.92 (dd, J = 10.7, 7.7 Hz, 1H), 4.30 (dd, J = 10.7, 5.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 12.0, 18.1, 20.7, 21.1, 28.5, 59.6, 63.6, 124.7, 129.0, 136.0, 141.6.

1-(4-ethylphenyl)-2-(((triisopropylsilyl)oxy)methyl)cyclopropan-1-ol (1c)

Following general procedure **GP 1**, got product **1c** (1.0 g, dr > 20:1) as pale-yellow oil in 47% yield over three steps.

¹H NMR (400 MHz, CDCl₃) δ 1.04 – 1.14 (m, 21H), 1.17 (d, *J* = 1.9 Hz, 2H), 1.23 (t, *J* = 7.6 Hz, 3H), 1.45 – 1.54 (m, 1H), 2.63 (q, *J* = 7.6 Hz, 2H), 3.38 (s, 1H), 3.93 (dd, *J* = 10.7, 7.7 Hz, 1H), 4.30 (dd, *J* = 10.7, 5.0 Hz, 1H), 7.15 (d, *J* = 8.1 Hz, 2H), 7.25 (d, J = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 15.7, 18.1, 20.6, 28.49, 28.52, 59.7, 63.6, 124.9, 127.8, 141.9, 142.4.

1-(3,5-dimethylphenyl)-2-(((triisopropylsilyl)oxy)methyl)cyclopropan-1-ol (1d)

Following general procedure **GP 1**, got product **1d** (2.7 g, dr > 20:1) as colorless oil in 45% yield over three steps.

¹H NMR (400 MHz, CDCl₃) δ 1.04 – 1.15 (m, 21H), 1.18 (d, *J* = 3.2 Hz, 1H), 1.20 (s, 1H), 1.45 – 1.54 (m, 1H), 2.30 (s, 6H), 3.46 (s, 1H), 3.94 (dd, *J* = 10.6, 7.5 Hz, 1H), 4.29 (dd, *J* = 10.7, 4.9 Hz, 1H), 6.85 (s, 1H), 6.95 (s, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 12.0, 18.1, 20.6, 21.4, 28.5, 59.7, 63.5, 122.6, 128.0, 137.8, 144.48.

1-(4-fluorophenyl)-2-(((triisopropylsilyl)oxy)methyl)cyclopropan-1-ol (1e)

Following general procedure **GP1**, got product **1e** (1.9 g, dr > 20:1) as light-yellow oil in 69% yield over three steps.

¹H NMR (400 MHz, CDCl₃) δ 1.03 – 1.15 (m, 21H), 1.16 – 1.20 (m, 1H), 1.23 (t, *J* = 6.3 Hz, 1H), 1.42 – 1.51 (m, 1H), 3.58 (s, 1H), 3.93 (dd, *J* = 10.7, 7.6 Hz, 1H), 4.32 (dd, *J* = 10.7, 4.8 Hz, 1H), 6.99 (t, *J* = 8.7 Hz, 2H), 7.29 (dd, *J* = 8.8, 5.3 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 12.0, 18.1, 20.6, 28.5, 59.4, 63.5, 115.1 (d, C-F, ²*J*_{C-F} = 21.3 Hz), 126.5 (d, C-F, ³*J*_{C-F} = 8.1 Hz), 140.3 (d, C-F, ⁴*J*_{C-F} = 3.1 Hz), 161.7 (d, C-F, ¹*J*_{C-F} = 244.4 Hz).

1-([1,1'-biphenyl]-4-yl)-2-(((triisopropylsilyl)oxy)methyl)cyclopropan-1-ol (1f)

Following general procedure **GP 1**, got product **1f** (2.0 g, dr = 10:1) as white waxy solid (m.p. = 37-38 °C) in 46% yield over three steps.

¹**H NMR** (400 MHz, CDCl₃) δ 1.03 – 1.14 (m, 21H), 1.14- 1.17 (m, 1H), 1.26 – 1.29 (m, 1H), 1.52 – 1.58 (m, 1H), 3.64 (s, 1H), 3.96 (dd, *J* = 10.7, 7.5 Hz, 1H), 4.33 (dd, *J* = 10.7, 4.8 Hz, 1H), 7.31 (t, *J* = 7.3 Hz, 1H), 7.30 – 7.43 (m, 4H), 7.54 – 7.59 (m, 4H); ¹³**C NMR** (100 MHz, CDCl₃) δ 12.0, 18.1, 21.2, 29.0, 59.5, 63.6, 124.9, 127.1, 127.1, 127.2, 128.8, 139.2, 141.0, 143.9.

1-(naphthalen-2-yl)-2-(((triisopropylsilyl)oxy)methyl)cyclopropan-1-ol (1g)

Following general procedure **GP 1**, got product **1g** (1.8 g, dr = 10:1) as white waxy solid (m.p. = 41-42 °C) in 57% yield over three steps.

¹H NMR (400 MHz, CDCl₃) δ 1.05 – 1.11 (m, 21H), 1.31 – 1.36 (m, 2H), 1.58 – 1.66 (m, 1H), 3.67 (s, 1H), 3.99 (dd, *J* = 10.7, 7.5 Hz, 1H), 4.36 (dd, *J* = 10.7, 4.9 Hz, 1H), 7.34 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.39 – 7.48 (m, 2H), 7.78 – 7.81 (m, 3H), 7.86 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.1, 21.0, 28.8, 59.9, 63.6, 123.1, 123.2, 125.5, 126.1, 127.6, 127.9, 128.1, 132.2, 133.4, 142.0.

1-(furan-2-yl)-2-(((triisopropylsilyl)oxy)methyl)cyclopropan-1-ol (1h)

Following general procedure **GP 1**, got product **1h** (1.1 g, dr > 20:1) as light-yellow oil in 21% yield over three steps.

¹H NMR (400 MHz, CDCl₃) δ 1.04 – 1.13 (m, 21H), 1.15 (d, *J* = 3.4 Hz, 1H), 1.27 (dd, *J* = 9.6, 5.7 Hz, 1H), 1.54 – 1.63 (m, 1H), 3.57 (s, 1H), 3.88 (dd, *J* = 10.8, 7.8 Hz, 1H), 4.27 (dd, *J* = 10.8, 5.0 Hz, 1H), 6.22 (d, *J* = 3.2 Hz, 1H), 6.31 (dd, *J* = 2.9, 2.0 Hz, 1H), 7.27 – 7.33 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 18.8, 26.5, 55.6, 63.2, 104.5, 110.4, 141.2, 156.8.

1-(thiophen-2-yl)-2-(((triisopropylsilyl)oxy)methyl)cyclopropan-1-ol (1i)

Following general procedure **GP 1**, got product **1i** (1.1 g, dr > 20:1) as light-yellow oil in 32% yield over three steps.

¹H NMR (400 MHz, CDCl₃) δ 1.06 – 1.15 (m, 21H), 1.24 – 1.31 (m, 2H), 1.51 – 1.61 (m, 1H), 3.71 (s, 1H), 3.89 (dd, *J* = 10.8, 7.7 Hz, 1H), 4.31 (dd, *J* = 10.8, 4.9 Hz, 1H), 6.83 (dd, *J* = 3.6, 1.2 Hz, 1H), 6.93 (dd, *J* = 5.0, 3.5 Hz, 1H), 7.16 (dd, *J* = 5.0, 1.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) *δ* 12.0, 18.1, 22.0, 29.7, 57.4, 63.4, 121.6, 123.7, 126.8, 150.0.

1-(thiophen-3-yl)-2-(((triisopropylsilyl)oxy)methyl)cyclopropan-1-ol (1j)

Following general procedure **GP 1**, got product **1j** (1.1 g, dr > 20:1) as light-yellow oil in 27% yield over three steps.

¹H NMR (400 MHz, CDCl₃) δ 1.02 – 1.15 (m, 21H), 1.16 – 1.20 (m, 1H), 1.20 – 1.24 (m, 1H), 1.42 – 1.53 (m, 1H), 3.60 (s, 1H), 3.92 (dd, *J* = 10.7, 7.4 Hz, 1H), 4.29 (dd, *J* = 10.7, 4.9 Hz, 1H), 6.84 (d, *J* = 5.0 Hz, 1H), 7.15 (d, *J* = 2.9 Hz, 1H), 7.23 – 7.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 11.9, 18.1, 20.8, 28.5, 58.0, 63.4, 118.6, 124.6, 125.9, 146.7.

1-(4-chlorophenyl)-2-(((triisopropylsilyl)oxy)methyl)cyclopropan-1-ol (1k)

Following general procedure **GP 1**, got product **1k** (2.7 g, dr > 20:1) as light-yellow oil in 56% yield over three steps.

¹H NMR (400 MHz, CDCl₃) δ 1.02 – 1.17 (m, 21H), 1.17 – 1.22 (m, 1H), 1.27 (t, *J* = 6.4 Hz, 1H), 1.41 – 1.55 (m, 1H), 3.67 (s, 1H), 3.93 (dd, *J* = 10.8, 7.5 Hz, 1H), 4.33 (dd,

J = 10.8, 4.8 Hz, 1H), 7.20 – 7.33 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 11.9, 18.0, 21.2, 29.0, 59.2, 63.5, 125.8, 128.4, 132.0, 143.4.

General procedure for asymmetric β-arylation of cyclopropanols

General Procedure 2 (**GP 2**): To a 10 mL vial equipped with a stir bar was added $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (1.7 mg, 1.5 µmol, 1.5 mmol%), Nickel(II) acetate (3.6 mg, 20 µmol, 20 mmol%), **L6** (6.6 mg, 22 µmol, 22 mmol%) and aryl bromide **2** (0.1 mmol). The vial was sealed, evacuated and backfilled with nitrogen three times, then anhydrous DMF (5mL) was injected under nitrogen protection, stirred at room temperature for 10 min. Cyclopropanol **1** (0.3 mmol) and collidine (36.5 mg, 0.3 mmol) was injected *via* micro syringe respectively. After degassing the reaction mixture with Freeze-Pump-Thaw methods for three cycles, it was stirred and irradiated with the corresponding blue LEDs photoreactor at 25 °C (cooled by ethanol circulator bath) for 48~72 h. The reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether /ethyl acetate = 100:1 to 20:1 as the eluent) to give the product **3**.

Procedure for preparation of L6

(S)-2-(adamantan-1-yl)-2-aminoethan-1-ol was synthesized following literature reported method.⁴

L6 was prepared as following according to literature reported.⁵

To a 100 mL two-necked round bottomed flask equipped with reflux condenser was added 5-methylpicolinonitrile (1.0 g, 8.46 mmol), (S)-2-(adamantan-1-yl)-2-aminoethan-1-ol (1.8 g, 9.31 mmol) and anhydrous toluene (35 mL), then anhydrous

zinc triflate (0.31 g, 0.85 mmol) was added under nitrogen protection. The reaction mixture was heated to reflux and stirred at this temperature for 24 h. Cooled the reaction to room temperature, dilute the mixture with EtOAc (30 mL) and washed with saturated aq. NaHCO₃ solution (30mL). The organic layer was separated and the aqueous layer was extracted the with EtOAc (30 mL×2). Combined of the organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure, the residue was purified by column chromatography on silica gel (dichloromethane /methanol = 100:1 to 20:1 as the eluent) to give the product (1.6 g) as a white solid in 64% yield. The white solid was recrystallized from ethanol to give L6 (1.4 g) in 88% yield.

White solid, m.p. 142-143 °C; $[\alpha]_D^{20.0} = -78.8 (0.1, MeOH)$; ¹H NMR (400 MHz, CDCl₃) δ 11.48 (d, J = 12.0 Hz, 3H), 1.68 – 1.74 (m, 9H), 2.00 (s, 3H), 2.39 (s, 3H), 3.94 (t, J = 9.2 Hz, 1H), 4.35 (t, J = 8.8 Hz, 1H), 4.49 (t, J = 8.8 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 8.53 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 18.6, 28.3, 35.8, 37.2, 38.6, 67.8, 76.6, 123.5, 135.5, 137.0, 144.4, 150.2, 162.4; HRMS (ESIquadrupole) m/z calcd. for C₁₉H₂₅N₂O [M+H]⁺: 297.1961, found: 297.1962.

(S)-3-(4-acetylphenyl)-1-phenyl-4-((triisopropylsilyl)oxy)butan-1-one (3a)

Colorless oil; 33 mg, 75% yield; 93:7 er; $[\alpha]_D^{20.0} = -13.9$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 7.0 min, t (minor) = 12.6 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.97 – 1.08 (m, 21H), 2.57 (s, 3H), 3.60 – 3.74 (m, 2H), 3.31 (dd, J = 6.8, 16.0 Hz, 1H), 3.94 (dd, J = 9.7, 5.0 Hz, 1H), 3.85 (dd, J = 6.3, 9.7 Hz, 1H), 7.39 (d, J = 8.2 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.88 (d, J = 8.3 Hz, 2H), 7.94 (d, J = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 26.6, 40.5, 44.0, 67.0, 128.1, 128.4, 128.5, 128.6, 133.1, 135.7, 137.1, 148.3, 197.9, 198.6; HRMS (ESI- quadrupole) m/z calcd. for C₂₇H₃₉O₃Si [M+H]⁺: 439.2663, found: 439.2667. **(S)-3-(4-acetylphenyl)-1-(***p***-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3b)**

Colorless oil; 35 mg, 77% yield; 93:7 er; $[\alpha]_D^{20.0} = -15.9$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 5.6 min, t (minor) = 9.1 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.97 – 1.08 (m, 21H), 2.40 (s, 3H), 2.56 (s, 3H), 3.28 (dd, *J* = 10.0, 18.8Hz, 1H), 3.60 – 3.69 (m, 2H), 3.84 (dd, *J* = 6.2, 9.7 Hz, 1H), 3.93 (dd, *J* = 5.0, 9.7 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.2 Hz, 2H), 7.84 (d, *J* = 8.1 Hz, 2H), 7.87 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 26.6, 40.3, 44.0, 67.0, 128.2, 128.4, 128.5, 129.3, 134.6, 135.6, 143.9, 148.4, 197.9, 198.3; HRMS (ESI-quadrupole) m/z calcd. for C₂₈H₄₁O₃Si [M+H]⁺: 453.2819, found: 453.2822. **(S)-3-(4-acetylphenyl)-1-(4-ethylphenyl)-4-((triisopropylsilyl)oxy)butan-1-one (3c)**

Colorless oil; 33 mg, 70% yield; 93:7 er; $[\alpha]_D^{20.0} = -14.5$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.4 min, t (minor) = 12.8 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.94 – 1.09 (m, 21H), 1.25 (t, *J* = 7.6 Hz, 3H), 2.57 (s, 3H), 2.70 (q, *J* = 7.6 Hz, 2H), 3.30 (dd, *J* = 10.0, 18.8 Hz, 1H), 3.61 – 3.72 (m, 2H), 3.84 (dd, *J* = 6.2, 9.6 Hz, 1H), 3.93 (dd, *J* = 4.8, 9.6 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.87 (d, *J* = 8.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 15.3, 18.0, 26.6, 29.0, 40.3, 44.0, 67.1, 128.1, 128.3, 128.4, 128.5, 134.8, 135.6, 148.4, 150.1, 197.9, 198.3; HRMS (ESI- quadrupole) m/z calcd. for C₂₉H₄₃O₃Si [M+H]⁺: 467.2976, found: 467.2971.

(S)-3-(4-acetylphenyl)-1-(3,5-dimethylphenyl)-4-((triisopropylsilyl)oxy)butan-1one (3d)

Colorless oil; 32 mg, 68% yield; 91:9 er; $[\alpha]_D^{20.0} = -7.2$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IC-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 95/5, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 7.1 min, t (minor) = 8.4 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.97 – 1.08 (m, 21H), 2.35 (s, 6H), 2.57 (s, 3H), 3.20– 3.31 (m, 1H), 3.60 – 3.70 (m, 2H), 3.85 (dd, J = 6.2, 9.8 Hz, 1H), 3.93 (dd, J = 4.9, 9.7, Hz, 1H), 7.18 (s, 1H), 7.39 (d, J = 8.2 Hz, 2H), 7.54 (s, 2H), 7.87 (d, J = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.3, 26.6, 40.6, 44.1, 67.1, 125.9, 128.4, 128.5, 134.8, 135.7, 137.2, 138.3, 148.4, 197.9, 199.1; HRMS (ESI- quadrupole) m/z calcd. for C₂₉H₄₃O₃Si [M+H]⁺: 467.2976, found: 467.2976.

(S)-3-(4-acetylphenyl)-1-(4-fluorophenyl)-4-((triisopropylsilyl)oxy)butan-1-one (3e)

Colorless oil; 28 mg, 60% yield; 93:7 er; $[\alpha]_D^{20.0} = -8.1$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 5.8 min, t (minor) = 7.3 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.98 – 1.09 (m, 21H), 2.57 (s, 3H), 3.27 (dd, J = 6.8, 16.0 Hz, 1H), 3.60 – 3.71 (m, 2H), 3.84 (dd, J = 6.2, 9.7 Hz, 1H), 3.94 (dd, J = 4.7, 9.7 Hz, 1H), 7.11 (t, J = 8.6 Hz, 2H), 7.39(d, J = 8.0 Hz, 2H), 7.88 (d, J = 8.0 Hz, 2H), 7.97 (dd, J = 5.5, 8.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ , 12.0, 18.0, 26.6, 40.3, 44.0, 67.0, 115.7, (d, C-F, ² $J_{C-F} = 21.7$ Hz), 128.3, 128.5, 130.7 (d, C-F, ³ $J_{C-F} = 9.2$ Hz,), 133.5 (d, C-F, ⁴ $J_{C-F} = 2.8$ Hz), 135.7, 148.1, 165.80 (d, C-F, ¹ $J_{C-F} = 253.3$ Hz), 197.0, 197.8; HRMS (ESI-quadrupole) m/z calcd. for C₂₇H₃₈FO₃Si [M+H]⁺: 457.2569, found: 457.2568.

(S)-1-([1,1'-biphenyl]-4-yl)-3-(4-acetylphenyl)-4-((triisopropylsilyl)oxy)butan-1one (3f)

Colorless oil; 27 mg, 52% yield; 90:10 er; $[\alpha]_D^{20.0} = -13.5$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 8.2 min, t (minor) = 13.8 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.99 –1.09 (m, 21H), 2.57 (s, 3H), 3.34 (dd, J = 7.1, 16.0, Hz, 1H), 3.70 (m, 2H), 3.87 (dd, J = 6.2, 9.7, Hz, 1H), 3.96 (dd, J = 4.9, 9.7 Hz, 1H), 7.40 – 7.45 (m, 3H), 7.47 (t, J = 7.4 Hz, 2H), 7.62 (d, J = 7.2 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 8.2 Hz, 2H), 8.02 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 26.7, 40.5, 44.0, 67.1, 127.3, 127.4, 128.3, 128.4, 128.5, 128.7, 129.0, 135.7, 135.8, 139.9, 145.8, 148.3, 197.9, 198.3; HRMS (ESI-quadrupole) m/z calcd. for C₃₃H₄₃O3Si [M+H]⁺: 515.2976, found: 515.2978.

(S)-3-(4-acetylphenyl)-1-(naphthalen-2-yl)-4-((triisopropylsilyl)oxy)butan-1-one (3g)

Colorless oil; 24 mg, 50% yield; 90:10 er; $[\alpha]_D^{20.0} = -11.7$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 15.6 min, t (minor) = 18.7 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.99 – 1.08 (m, 21H), 2.56 (s, 3H), 3.43 (dd, *J* = 7.9, 16.8 Hz, 1H), 3.68 – 3.74 (m, 1H), 3.84 (dd, *J* = 5.8, 16.8, Hz, 1H), 3.90 (dd, *J* = 6.6, 9.6, Hz, 1H), 3.99 (dd, *J* = 5.2, 9.7, Hz, 1H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.53 – 7.61 (m, 2H), 7.88 (t, *J* = 8.1 Hz, 4H), 7.94 (d, *J* = 7.9 Hz, 1H), 7.99 (d, *J* = 8.6 Hz, 1H), 8.47 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 26.6, 40.5, 44.1, 67.1, 123.9, 126.8, 127.8, 128.4, 128.5, 129.6, 129.8, 132.6, 134.4, 135.6, 135.7, 148.3, 197.9, 198.6; HRMS (ESI- quadrupole) m/z calcd. for C₃₁H₄₁O₃Si [M+H]⁺: 489.2819, found: 489.2822.

(S)-1-(furan-2-yl)-3-(4-(2-phenylacetyl)phenyl)-4-((triisopropylsilyl)oxy)butan-1one (3h)

Colorless oil; 29 mg, 58% yield; 89:11 er; $[\alpha]_D^{20.0} = -8.4$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 80/20, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 7.6 min, t (minor) = 8.8 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.92 – 1.11 (m, 21H), 3.17 (dd, *J* = 7.8, 16.5 Hz, 1H), 3.48 (dd, *J* = 6.4, 16.5 Hz, 1H), 3.62 (m, 1H), 3.82 (dd, *J* = 6.5, 9.7 Hz, 1H), 3.90 (dd, *J* = 5.3, 9.7 Hz, 1H), 4.24 (s, 2H), 6.50 (dd, *J* = 1.7, 3.6 Hz, 1H), 7.15 (d, *J* = 3.5 Hz, 1H), 7.21 – 7.27 (m, 3H), 7.28 – 7.34 (m, 2H), 7.37 (d, *J* = 8.3 Hz, 2H), 7.54 (d, *J* = 1.5 Hz, 1H), 7.93 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 40.3, 43.7, 45.5, 67.0, 112.3, 117.0, 126.9, 128.4, 128.7, 128.8, 129.5, 134.7, 135.2, 146.3, 148.1, 152.9, 187.8, 197.3; HRMS (ESI- quadrupole) m/z calcd. for C₃₁H₄₁O₄Si [M+H]⁺: 505.2769, found: 505.2773.

(S)-3-(4-(2-phenylacetyl)phenyl)-1-(thiophen-2-yl)-4-((triisopropylsilyl)oxy)butan -1-one (3i)

Colorless oil; 29 mg, 56% yield; 88:12 er; $[\alpha]_D^{20.0} = -9.7$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 13.1 min, t (minor) = 14.1 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.96 – 1.10 (m, 21H), 3.24 (dd, J = 6.8, 11.2 Hz, 1H), 3.55 – 3.66 (m, 2H), 3.83 (dd, J = 6.1, 9.7 Hz, 1H), 3.92 (dd, J = 4.7, 9.7 Hz, 1H), 4.24 (s, 2H), 7.11 (t, J = 3.6 Hz, 1H), 7.21 – 7.27 (m, 3H), 7.32 (t, J = 7.6 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 3.9 Hz, 1H), 7.72 (d, J = 2.8 Hz, 1H), 7.93 (d, J = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 41.2, 44.1, 45.5, 66.9, 126.9, 128.1, 128.4, 128.7, 128.8, 129.5, 131.9, 133.7, 134.7, 135.2, 144.4, 148.1, 191.5, 197.3; HRMS (ESI- quadrupole) m/z calcd. for C₃₁H₄₁O₃SSi [M+H]⁺: 521.2540, found: 521.2545.

(S)-3-(4-(2-phenylacetyl)phenyl)-1-(thiophen-3-yl)-4-((triisopropylsilyl)oxy)-

butan-1-one (3j)

Colorless oil; 29 mg, 55% yield; 91:9 er; $[\alpha]_D^{20.0} = -8.1$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 15.6 min, t (minor) = 18.7 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.97 – 1.08 (m, 21H), 3.21 (dd, J = 6.8, 16.0 Hz, 1H), 3.53 – 3.68 (m, 2H), 3.82 (dd, J = 6.2, 9.7 Hz, 1H), 3.91 (dd, J = 5.0, 9.7 Hz, 1H), 4.24 (s, 2H), 7.22 – 7.26 (m, 3H), 7.27 – 7.34 (m, 3H), 7.38 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 5.1 Hz, 1H), 7.93 (d, J = 8.3 Hz, 2H), 8.04 (d, J = 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 41.7, 43.9, 45.5, 67.0, 126.4, 126.9, 127.0, 128.4, 128.7, 128.8, 129.5, 132.0, 134.8, 135.1, 142.4, 148.3, 192.9, 197.3; HRMS (ESI- quadrupole) m/z calcd. for C₃₁H₄₁O₃SSi [M+H]⁺: 521.2540, found: 521.2542.

(S)-1-phenyl-3-(4-(2-phenylacetyl)phenyl)-4-((triisopropylsilyl)oxy)butan-1-one (3k)

Colorless oil; 36 mg, 71% yield; 92:8 er; $[\alpha]_D^{20.0} = -10.1$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 13.0 min, t (minor) = 14.3 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.95 – 1.08 (m, 21H), 3.30 (dd, J = 6.8, 16.0 Hz, 1H), 3.59 – 3.74 (m, 2H), 3.83 (dd, J = 6.3, 9.6 Hz, 1H), 3.92 (dd, J = 4.8, 9.7 Hz, 1H), 4.24 (s, 2H), 7.21 – 7.27 (m, 3H), 7.31 (t, J = 8.3 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.93 (d, J = 8.2 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 40.4, 43.9, 45.5, 67.0, 126.9, 128.1, 128.5, 128.6, 128.7, 128.8, 129.5, 133.2, 134.8, 135.1, 137.1, 148.4, 197.3, 198.7. HRMS (ESI- quadrupole) m/z calcd. for C₃₃H₄₃O₃Si [M+H]⁺: 515.2976, found: 515.2976.

(S)-3-(4-(2-phenylacetyl)phenyl)-1-(*p*-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (31)

Colorless oil; 39 mg, 73% yield; 93:7 er; $[\alpha]_D^{20.0} = -9.8$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 8.6 min, t (minor) = 13.2 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.96 – 1.06 (m, 21H), 2.40 (s, 3H), 3.27 (dd, J = 10.0, 18.8 Hz, 1H), 3.58 – 3.69 (m, 2H), 3.83 (dd, J = 6.2, 9.6 Hz, 1H), 3.92 (dd, J = 4.9, 9.6 Hz, 1H), 4.24 (s, 2H), 7.20 – 7.26 (m, 5H), 7.31 (t, J = 7.6 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 7.84 (d, J = 8.1 Hz, 2H), 7.93 (d, J = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 40.3, 44.0, 45.5, 67.0, 126.9, 128.2, 128.5, 128.7, 128.8, 129.3, 129.5, 134.6, 134.8, 135.1, 143.9, 148.5, 197.3, 198.3; HRMS (ESI- quadrupole) m/z calcd. for C₃₄H₄₅O₃Si [M+H]⁺: 529.3132, found: 529.3133.

(S)-1-(3,5-dimethylphenyl)-3-(4-(2-phenylacetyl)phenyl)-4-((triisopropylsilyl)oxy)butan-1-one (3m)

Colorless oil; 41 mg, 75% yield; 91:9 er; $[\alpha]_D^{20.0} = -11.7$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IC-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 80/20, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 10.8 min, t (minor) = 12.5 min]; ¹H NMR (400 MHz, CDCl₃) δ 1.07 – 0.96 (m, 21H), 2.34 (s, 6H), 3.31 – 3.19 (m, 1H), 3.70 – 3.57 (m, 2H), 3.87 – 3.80 (m, 1H), 3.96 – 3.88 (m, 1H), 4.24 (s, 2H), 7.17 (s, 1H), 7.27 – 7.21 (m, 3H), 7.34 – 7.28 (m, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.53 (s, 2H), 7.93 (d, J = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.3, 40.5, 44.0, 45.5, 67.1, 125.9, 126.9, 128.5, 128.7, 128.8, 129.5, 134.7, 134.8, 135.1, 137.3, 138.3, 148.5, 197.3, 199.0; HRMS (ESI- quadrupole) m/z calcd. for C₃₅H₄₇O₃Si [M+H]⁺: 543.3289, found:

543.3290.

(S)-1-(4-chlorophenyl)-3-(4-(2-phenylacetyl)phenyl)-4-((triisopropylsilyl)oxy)butan-1-one (3n)

Colorless oil; 36 mg, 65% yield; 92:8 er; $[\alpha]_D^{20.0} = -7.7$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 80/20, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 10.1 min, t (minor) = 12.7 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.94 – 1.05 (m, 21H), 3.25 (dd, J = 6.4, 16.4 Hz,1H), 3.63 (m, 2H), 3.83 (dd, J = 6.3, 9.7, Hz, 1H), 3.92 (dd, J = 4.8, 9.6, Hz, 1H), 4.24 (s, 2H), 7.25 (m, 3H), 7.31 (t, J = 6.8 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.6 Hz, 2H), 7.87 (d, J = 8.6 Hz, 2H), 7.93 (d, J = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 40.4, 43.9, 45.5, 66.9, 126.9, 128.4, 128.7, 128.9, 129.0, 129.5, 129.6, 134.7, 135.2, 135.4, 139.6, 148.1, 197.3, 197.4; HRMS (ESI- quadrupole) m/z calcd. for C₃₃H₁₂ClO₃Si [M+H]⁺: 549.2586, found: 549.2585.

(S)-3-(4-isobutyrylphenyl)-1-(p-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (30)

Colorless oil; 40 mg, 83% yield; 92:8 er; $[\alpha]_D^{20.0} = -10.4$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 5.4 min, t (minor) = 8.7 min]; ¹H NMR (400 MHz, Chloroform-*d*) δ 0.97 – 1.07 (m, 21H), 1.18 (s, 3H), 1.20 (s, 3H), 2.40 (s, 3H), 3.29 (dd, J = 9.6, 18.8 Hz, 1H), 3.48 – 3.56 (m, 1H), 3.59 – 3.69 (m, 2H), 3.84 (dd, J = 6.2, 9.6 Hz, 1H), 3.93 (dd, J = 4.9, 9.7 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 7.85 (d, J = 8.3 Hz, 2H), 7.87 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 19.2, 19.3, 21.7, 35.3, 40.3, 44.0, 67.1, 128.2, 128.4, 128.5, 129.3, 134.6, 134.7, 143.9, 148.1, 198.4, 204.2; HRMS (ESI- quadrupole) m/z calcd. for C₃₀H₄₅O₃Si

[M+H]⁺: 481.3132, found: 481.3131.

(S)-3-(4-pivaloylphenyl)-1-(p-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3p)

Colorless oil; 37 mg, 76% yield; 94:6 er; $[\alpha]_D^{20.0} = -9.8$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.2 min, t (minor) = 11.2 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.94 – 1.04 (m, 21H), 1.33 (s, 9H), 2.40 (s, 3H), 3.22 – 3.32 (m, 1H), 3.58 – 3.68 (m, 2H), 3.83 (dd, J = 6.3, 9.6 Hz, 1H), 3.92 (dd, J = 4.9, 9.7 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.2 Hz, 2H), 7.85 (d, J = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 28.2, 40.3, 43.8, 44.2, 67.2, 127.8, 128.2, 128.3, 129.3, 134.7, 136.6, 143.8, 146.0, 198.5, 208.5; HRMS (ESI- quadrupole) m/z calcd. for C₃₁H₄₇O₃Si [M+H]⁺: 495.3289, found: 495.3287.

(S)-3-(4-pentanoylphenyl)-1-(p-tolyl) -4-((triisopropylsilyl)oxy)butan-1-one (3q)

Colorless oil; 41 mg, 83% yield; 95:5 er; $[\alpha]_D^{20.0} = -12.1$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 9.0 min, t (minor) = 17.6 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, J = 7.3 Hz, 3H), 0.97 – 1.05 (d, J = 5.9 Hz, 21H), 1.38 (dt, J = 7.4, 14.7 Hz, 2H), 1.70 (dt, J = 7.4, 14.7 Hz, 2H), 2.40 (s, 3H), 2.92 (t, J = 7.4 Hz, 2H), 3.28 (dd, J = 10.0, 19.2 Hz, 1H), 3.59 – 3.70 (m, 2H), 3.84 (dd, J = 6.2, 9.7 Hz, 1H), 3.93 (dd, J = 4.9, 9.7 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H), 7.87 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 14.0, 18.0, 21.7, 22.6, 26.7, 38.4, 40.3, 44.0, 67.1, 128.2, 128.3, 129.3, 134.7, 135.6, 143.9, 148.1, 198.3, 200.3; HRMS (ESI- quadrupole) m/z calcd. for C₃₁H₄₇O₃Si [M+H]⁺: 495.3289, found: 495.3292.

Colorless oil; 39 mg, 75% yield; 92:8 er; $[\alpha]_D^{20.0} = -9.1$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 5.4 min, t (minor) = 9.7 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.97 – 1.10 (m, 21H), 2.40 (s, 3H), 3.32 (dd, J = 9.4, 18.5 Hz, 1H), 3.63 – 3.71 (m, 2H), 3.87 (dd, J = 6.1, 9.6 Hz, 1H), 3.96 (dd, J = 4.9, 9.7 Hz, 1H), 7.25 (d, J = 8.6 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.73 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 7.1 Hz, 2H), 7.86 (d, J = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 40.3, 44.0, 67.2, 128.1, 128.3, 129.3, 130.1, 130.3, 132.3, 134.7, 135.9, 137.9, 143.9, 147.8, 196.5, 198.4; HRMS (ESI- quadrupole) m/z calcd. for C₃₃H₄₃O₃Si [M+H]⁺: 515.2976, found: 515.2971.

(S)-3-(4-(4-methoxybenzoyl)phenyl)-1-(*p*-tolyl)-4-((triisopropylsilyl)oxy)butan-1one (3s)

Colorless oil; 41 mg, 75% yield; 94:6 er; $[\alpha]_D^{20.0} = -14.2$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 60/40, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.9 min, t (minor) = 15.5 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.97 – 1.06 (m, 21H), 2.40 (s, 3H), 3.31 (dd, J = 9.6, 18.4 Hz, 1H), 3.61 – 3.73 (m, 2H), 3.84 – 3.91 (m, 4H), 3.96 (dd, J = 4.9, 9.7 Hz, 1H), 6.94 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 8.1 Hz, 2H), 7.79 (d, J = 8.8 Hz, 2H), 7.86 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.1, 21.7, 40.4, 44.0, 55.6, 67.2, 113.6, 128.0, 128.3, 129.3, 130.0, 130.5, 132.6, 134.8, 136.6, 143.9, 147.2, 163.2, 195.4, 198.4; HRMS (ESI- quadrupole) m/z calcd. for C₃₄H₄₅O₄Si [M+H]⁺: 545.3082, found: 545.3080.

(S)-3-(4-formylphenyl)-1-(p-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3t)

Colorless oil; 29 mg, 65% yield; 92:8 er; $[\alpha]_D^{20.0} = -15.1$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 85/15, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 7.0 min, t (minor) = 8.9 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.94 – 1.07 (m, 21H), 2.40 (s, 3H), 3.30 (dd, J = 9.4, 18.6, Hz, 1H), 3.59 – 3.71 (m, 2H), 3.86 (dd, J = 5.9, 9.7 Hz, 1H), 3.94 (dd, J = 5.0, 9.7 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.1 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H), 9.96 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 40.2, 44.1, 67.0, 128.2, 128.9, 129.4, 129.9, 134.6, 135.1, 144.0, 150.2, 192.1, 198.2; HRMS (ESI- quadrupole) m/z calcd. for C₂₇H₃₉O₃Si [M+H]⁺: 439.2663, found: 439.2661.

(S)-1-phenyl-3-(4-cyanophenyl)-4-((triisopropylsilyl)oxy)butan-1-one (3u)

Colorless oil; 24 mg, 56% yield; 91:9 er; $[\alpha]_D^{20.0} = -10.2$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.3 min, t (minor) = 8.2 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.94 – 1.10 (m, 21H), 3.31 (dd, J = 9.6, 18.8 Hz, 1H), 3.59 – 3.71 (m, 2H), 3.85 (dd, J = 5.6, 9.8 Hz, 1H), 3.93 (dd, J = 5.1, 9.8 Hz, 1H), 7.41 (d, J = 8.3 Hz, 2H), 7.45 (t, J = 7.7 Hz, 2H), 7.56 (t, J = 7.4 Hz, 3H), 7.93 (d, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 11.9, 18.0, 40.2, 43.8, 66.8, 110.4, 119.1, 128.1, 128.7, 129.0, 132.2, 133.3, 136.9, 148.4, 198.3; HRMS (ESI- quadrupole) m/z calcd. for C₂₆H₃₆NO₂Si [M+H]⁺: 422.2510, found: 422.2510.

(S)-3-(3-formylphenyl)-1-(p-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3v)

Colorless oil; 24 mg, 55% yield; 95:5 er; $[\alpha]_D^{20.0} = -13.2$ (0.1, CH₂Cl₂); [Daicel

CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 7.7 min, t (minor) = 17.9 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.95 – 1.05 (m, 21H), 2.40 (s, 3H), 3.30 (dd, *J* = 9.6, 18.8 Hz, 1H), 3.62 – 3.72 (m, 2H), 3.86 (dd, *J* = 5.9, 9.6 Hz, 1H), 3.94 (dd, *J* = 5.0, 9.7 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 7.7 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.82 (s, 1H), 7.85 (d, *J* = 8.1 Hz, 2H), 9.98 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 40.4, 43.6, 67.2, 128.2, 128.3, 129.0, 129.1, 129.4, 134.6, 134.8, 136.5, 143.9, 144.0, 192.5, 198.3; HRMS (ESI- quadrupole) m/z calcd. for C₂₇H₃₉O₃Si [M+H]⁺: 439.2663, found: 439.2663.

(S)-3-(3-acetylphenyl)-1-(*p*-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3w)

Colorless oil; 27 mg, 63% yield; 95:5 er; $[\alpha]_D^{20.0} = -13.6$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 5.9 min, t (minor) = 13.1 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.97 – 1.06 (m, 21H), 2.40 (s, 3H), 2.58 (s, 3H), 3.23 – 3.35 (m, 1H), 3.60 – 3.72 (m, 2H), 3.85 (dd, J = 6.2, 9.6 Hz, 1H), 3.93 (dd, J = 4.9, 9.6 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.37 (t, J = 7.7 Hz, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.78 (d, J = 7.7 Hz, 1H), 7.85 (d, J = 8.1 Hz, 2H), 7.89 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 26.7, 40.4, 43.8, 67.2, 126.8, 127.7, 128.3, 128.5, 129.3, 133.3, 134.7, 137.2, 143.3, 143.9, 198.3, 198.4; HRMS (ESI- quadrupole) m/z calcd. for C₂₈H₄₁O₃Si [M+H]⁺: 453.2819, found: 453.2819.

(S)-3-(3-acetyl-4-chlorophenyl)-1-(*p*-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3x)

Colorless oil; 31 mg, 63% yield; 94:6 er; $[\alpha]_D^{20.0} = -15.1$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.7 min, t (minor) = 13.0 min]; ¹H NMR (400 MHz,

CDCl₃) δ 0.97 – 1.07 (m, 21H), 2.40 (s, 3H), 2.62 (s, 3H), 3.22 (dd, *J* = 6.8, 16.0 Hz, 1H), 3.54 – 3.67 (m, 2H), 3.81 (dd, *J* = 5.9, 9.7 Hz, 1H), 3.90 (dd, *J* = 5.0, 9.6 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.28 – 7.37 (m, 2H), 7.48 (d, *J* = 1.9 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 30.8, 40.3, 43.2, 67.0, 128.2, 129.0, 129.3, 129.4, 130.5, 132.1, 134.6, 138.9, 142.1, 144.0, 198.1, 200.7; HRMS (ESI- quadrupole) m/z calcd. for C₂₈H₃₉ClO₃Si [M+H]⁺: 487.2430, found: 487.2433. (*S*)-3-(4-(cyclopropanecarbonyl)-3-methylphenyl)-1-(*p*-tolyl)-4-((triisopropylsil-yl)oxy)butan-1-one (3y)

Colorless oil; 36 mg, 76% yield; 94:6 er; $[\alpha]_D^{20.0} = -9.6$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.0 min, t (minor) = 11.6 min]; ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 0.97 – 1.04 (m, 21H), 1.05 – 1.08 (m, 2H), 1.18 – 1.21 (m, 2H), 2.38 – 2.41 (m, 1H), 2.40 (s, 3H), 2.45 (s, 3H), 3.26 (dd, *J* = 7.7, 16.6 Hz, 1H), 3.52 – 3.61 (m, 1H), 3.67 (dd, *J* = 5.7, 16.7 Hz, 1H), 3.81 (dd, *J* = 6.9, 9.5 Hz, 1H), 3.92 (dd, *J* = 4.9, 9.5 Hz, 1H), 7.14 – 7.21 (m, 2H), 7.24 (d, *J* = 8.9 Hz, 2H), 7.65 (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 11.8, 12.0, 18.1, 20.5, 21.0, 21.7, 40.4, 43.8, 67.2, 125.3, 128.3, 128.8, 129.3, 131.4, 134.8, 137.3, 137.9, 143.8, 145.8, 198.5, 204.8; HRMS (ESI- quadrupole) m/z calcd. for C₃₁H₄₅O₃Si [M+H]⁺: 493.3132, found: 493.3129.

(S)-3-(3-methyl-4-propionylphenyl)-1-(*p*-tolyl)-4-((triisopropylsilyl)oxy)butan-1one (3z)

Colorless oil; 35 mg, 72% yield; 94:6 er; $[\alpha]_D^{20.0} = -10.1$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0

mL·min⁻¹, $\lambda = 254$ nm, t (major) = 5.9 min, t (minor) = 9.8 min]; ¹H NMR (400 MHz, Chloroform-*d*) δ 0.98 – 1.08 (m, 21H), 1.17 (t, J = 7.3 Hz, 3H), 2.40 (s, 3H), 2.47 (s, 3H), 2.88 (q, J = 7.2 Hz, 2H), 3.26 (dd, J = 7.7, 16.7 Hz, 1H), 3.53 – 3.60 (m, J = 6.2 Hz, 1H), 3.66 (dd, J = 5.8, 16.7 Hz, 1H), 3.81 (dd, J = 6.8, 9.6 Hz, 1H), 3.91 (dd, J = 5.1, 9.6 Hz, 1H), 7.17 (d, J = 6.5 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.5 Hz, 1H), 7.85 (d, J = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 8.5, 12.0, 18.0, 21.6, 21.7, 34.5, 40.3, 43.8, 67.1, 125.4, 128.3, 128.8, 129.3, 131.8, 134.7, 136.1, 138.4, 143.8, 146.2, 198.5, 204.5; HRMS (ESI- quadrupole) m/z calcd. for C₃₀H₄₅O₃Si [M+H]⁺: 481.3132, found: 481.3133.

(S)-3-(3-methyl-4-(2-phenylacetyl)phenyl)-1-(*p*-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (za)

Colorless oil; 39 mg, 72% yield; 95:5 er; $[\alpha]_D^{20.0} = -12.9$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 9.8 min, t (minor) = 15.6 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.96 – 1.06 (m, 21H), 2.40 (s, 3H), 2.44 (s, 3H), 3.25 (dd, *J* = 7.5, 16.6 Hz, 1H), 3.52 – 3.60 (m, 1H), 3.64 (dd, *J* = 5.9, 16.6 Hz, 1H), 3.81 (dd, *J* = 6.5, 9.7 Hz, 1H), 3.91 (dd, *J* = 5.1, 9.7 Hz, 1H), 4.18 (s, 2H), 7.14 – 7.21 (m, 3H), 7.23 (d, *J* = 9.2 Hz, 4H), 7.30 (t, *J* = 6.8 Hz, 2H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 21.8, 40.3, 43.8, 48.2, 67.1, 125.4, 126.8, 128.3, 128.6, 129.2, 129.3, 129.6, 132.0, 134.7, 134.8, 135.6, 139.2, 143.9, 146.6, 198.4, 200.8; HRMS (ESI- quadrupole) m/z calcd. for C₃₅H₄₇O₃Si [M+H]⁺: 543.3289, found: 543.3286.

(S)-3-(4-acetyl-3-fluorophenyl)-1-(*p*-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3zb)

Colorless oil; 32 mg, 69% yield; 92:8 er; $[\alpha]_D^{20.0} = -21.5$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 5.8 min, t (minor) = 8.5 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.96 – 1.07 (m, 21H), 2.40 (s, 3H), 2.60 (d, *J* = 4.5 Hz, 3H), 3.27 (dd, *J* = 9.6, 18.7 Hz, 1H), 3.62 (m, 2H), 3.84 (dd, *J* = 5.6, 9.6 Hz, 1H), 3.93 (dd, *J* = 4.7, 9.6 Hz, 1H), 7.10 (d, *J* = 12.4 Hz, 1H), 7.15 (d, *J* = 8.1 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 2H), 7.79 (t, *J* = 7.9 Hz, 1H), 7.84 (d, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 31.4 (d, C-F, *J*_{C-F} = 7.4 Hz), 40.1, 43.6, 66.8, 116.4 (d, C-F, ²*J*_{C-F} = 24.0 Hz), 123.9 (d, C-F, ²*J*_{C-F} = 12.9 Hz), 124.2 (d, ⁴*J*_{C-F} = 2.9 Hz), 128.2, 129.4, 130.5 (d, ³*J*_{C-F} = 2.9 Hz), 134.6, 144.1, 151.2 (d, C-F, ³*J*_{C-F} = 8.4 Hz), 162.3 (d, C-F, ¹*J*_{C-F} = 254.9 Hz), 195.7, 197.9; HRMS (ESI- quadrupole) m/z calcd. for C₂₈H₄₀FO₃Si [M+H]⁺: 471.2725, found: 471.2720.

(S)-3-(4-acetyl-3-chlorophenyl)-1-(*p*-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3zc)

Colorless oil; 35 mg, 71% yield; 91:9 er; $[\alpha]_D^{20.0} = -16.7$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 5.7 min, t (minor) = 8.3 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.96 – 1.07 (m, 21H), 2.41 (s, 3H), 2.62 (s, 3H), 3.20 – 3.32 (dd, J = 6.4, 16.0 Hz, 1H), 3.54 – 3.67 (m, 2H), 3.83 (dd, J = 5.4, 9.7 Hz, 1H), 3.92 (dd, J = 4.6, 9.5 Hz, 1H), 7.25 (d, J = 9.0 Hz, 3H), 7.39 (s, 1H), 7.51 (d, J = 7.9 Hz, 1H), 7.85 (d, J = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 30.7, 40.1, 43.3, 66.8, 126.9, 128.2, 129.4, 129.8, 130.5, 131.6, 134.6, 137.0, 144.1, 148.0, 197.9, 200.0; HRMS (ESI- quadrupole) m/z calcd. for C₂₈H₄₀ClO₃Si [M+H]⁺: 487.2430, found: 487.2433. **(S)-3-(3-methyl-4-formylphenyl)-1-(***p***-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3zd)**

Colorless oil; 30 mg, 66% yield; 94:6 er; $[\alpha]_D^{20.0} = -12.9$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.1 min, t (minor) = 8.8 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.98 – 1.06 (m, 21H), 2.40 (s, 3H), 2.63 (s, 3H), 3.28 (dd, *J* = 7.1, 16.3 Hz, 1H), 3.56 – 3.69 (m, 2H), 3.84 (dd, *J* = 6.1, 9.7 Hz, 1H), 3.93 (dd, *J* = 5.0, 9.6 Hz, 1H), 7.20 (s, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.2 Hz, 2H), 10.20 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 19.7, 21.7, 40.2, 44.0, 67.0, 126.1, 128.3, 129.3, 131.8, 132.4, 132.9, 134.6, 140.6, 144.0, 149.2, 192.5, 198.2; HRMS (ESI- quadrupole) m/z calcd. for C₂₈H₄₁O₃Si [M+H]⁺: 453.2819, found: 453.2821.

(*S*)-3-(3-fluoro-4-formylphenyl)-1-(*p*-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3ze)

Colorless oil; 23 mg, 51% yield; 88:12 er; $[\alpha]_D^{20.0} = -7.2$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 5.9 min, t (minor) = 8.5 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.98 – 1.08 (m, 21H), 2.41 (s, 3H), 3.29 (dd, J = 9.6, 19.2 Hz, 1H), 3.59 – 3.67 (m, 2H), 3.86 (dd, J = 5.4, 9.7 Hz, 1H), 3.94 (dd, J = 5.0, 9.8 Hz, 1H), 7.14 (d, J = 11.6 Hz, 1H), 7.21 (d, J = 8.0, 1H), 7.25 (d, J = 8.3, 2H), 7.78 (t, J = 7.6 Hz, 1H), 7.84 (d, J = 8.1 Hz, 2H), 10.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 40.0, 43.9, 66.7, 116.2 (d, C-F, ²*J*_{C-F} = 20.6 Hz), 122.6 (d, C-F, ³*J*_{C-F} = 8.1 Hz), 124.6 (d, C-F, ³*J*_{C-F} = 3.1 Hz), 128.2, 128.6 (d, C-F, ⁴*J*_{C-F} = 2.3 Hz), 129.4, 134.5, 144.2, 153.2 (d, C-F, ²*J*_{C-F} = 8.4 Hz), 164.7 (d, C-F, ¹*J*_{C-F} = 258.5 Hz), 187.0 (d, C-F, *J*_{C-F} = 6.2 Hz), 197.7; HRMS (ESI- quadrupole) m/z calcd. for C₂₇H₃₈FO₃Si [M+H]⁺: 457.2569, found: 457.2568.

(S)-3-(4-cyano-3-methylphenyl)-1-(*p*-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3zf)

Colorless oil; 28 mg, 63% yield; 94.5:5.5 er; $[\alpha]_D^{20.0} = -12.5$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 4.4 min, t (minor) = 5.9 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.96 – 1.04 (m, 21H), 2.41 (s, 3H), 2.50 (s, 3H), 3.26 (dd, *J* = 6.8, 16.0 Hz, 1H), 3.53 – 3.66 (m, 2H), 3.82 (dd, *J* = 5.8, 9.7 Hz, 1H), 3.90 (dd, *J* = 5.0, 9.6 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 7.22 – 7.27 (m, 3H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 20.6, 21.7, 40.0, 43.8, 66.9, 110.8, 118.4, 126.1, 128.2, 129.4, 130.3, 132.5, 134.5, 141.8, 144.1, 148.3, 198.0; HRMS (ESI- quadrupole) m/z calcd. for C₂₈H₄₀NO₂Si [M+H]⁺: 450.2823, found: 450.2827. **(S)-3-(4-cyano-3-fluorophenyl)-1-(***p***-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3zg)**

Colorless oil; 26 mg, 57% yield; 92:8 er; $[\alpha]_D^{20.0} = -9.5$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.6 min, t (minor) = 11.0 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.96 – 1.07 (m, 21H), 2.41 (s, 3H), 3.28 (dd, *J* = 7.2, 16.4 Hz, 1H), 3.54 – 3.67 (m, 2H), 3.85 (dd, *J* = 5.2, 9.7 Hz, 1H), 3.93 (dd, *J* = 5.1, 9.7 Hz, 1H), 7.20 (dd, *J* = 6.0, 7.9 Hz, 2H), 7.25 (d, *J* = 7.6 Hz, 2H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 11.9, 18.0, 21.7, 39.9, 43.7, 66.6, 99.3 (d, C-F, ²*JC*-*F* = 15.5 Hz), 114.2, 116.2 (d, C-F, ²*JC*-*F* = 19.5 Hz), 124.9 (d, C-F, ³*JC*-*F* = 258.4 Hz), 197.4; HRMS (ESI- quadrupole) m/z calcd. for C₂₇H₃₇FNO₂Si [M+H]⁺: 454.2572, found: 454.2574.

(S)-3-(4-cyano-3-chlorophenyl)-1-(p-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one

Colorless oil; 23 mg, 50% yield; 88:12 er; $[\alpha]_D^{20.0} = -8.1$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.6 min, t (minor) = 10.5 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.97 – 1.08 (m, 21H), 2.41 (s, 3H), 3.28 (dd, *J* = 9.6, 19.2 Hz, 1H), 3.53 – 3.65 (m, 2H), 3.85 (dd, *J* = 4.9, 9.7 Hz, 1H), 3.92 (dd, *J* = 5.0, 9.7 Hz, 1H), 7.25 (d, *J* = 7.4 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.50 (s, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 11.9, 18.0, 21.7, 39.8, 43.5, 66.6, 111.3, 116.2, 127.3, 128.2, 129.4, 129.9, 133.7, 134.3, 136.6, 144.3, 150.5, 197.4; HRMS (ESI- quadrupole) m/z calcd. for C₂₇H₃₇CINO₂Si [M+H]⁺: 470.2277, found: 470.2275. **(S)-5-(4-oxo-4-(***p***-tolyl)-1-((triisopropylsilyl)oxy)butan-2-yl)-2,3-dihydro-1H-inden-1-one (3zi)**

Colorless oil; 37 mg, 80% yield; 94:6 er; $[\alpha]_D^{20.0} = -11.3$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 10.3 min, t (minor) = 18.5 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.97 – 1.09 (m, 21H), 2.40 (s, 3H), 2.66 (t, *J* = 5.6 Hz, 2H), 3.09 (t, *J* = 5.6 Hz, 2H), 3.31 (dd, *J* = 10.0, 18.4, Hz, 1H), 3.62 – 3.71 (m, 2H), 3.85 (dd, *J* = 6.2, 9.6 Hz, 1H), 3.94 (dd, *J* = 4.9, 9.7 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.41 (s, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.85 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 25.8, 36.5, 40.4, 44.3, 67.1, 123.7, 126.4, 127.5, 128.2, 129.3, 134.6, 135.8, 144.0, 150.3, 155.5, 198.2, 206.7; HRMS (ESI- quadrupole) m/z calcd. for C₂₉H₄₁O₃Si [M+H]⁺: 465.2819, found: 465.2821.

(S)-3-(6-acetylnaphthalen-2-yl)-1-(*p*-tolyl)-4-((triisopropylsilyl)oxy)butan-1-one (3zj)

Colorless oil; 28 mg, 56% yield; 94:6 er; $[\alpha]_D^{20.0} = -11.8$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 10.5 min, t (minor) = 17.0 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.96 – 1.08 (m, 21H), 2.40 (s, 3H), 2.71 (s, 3H), 3.38 (dd, J = 9.2, 18.4 Hz, 1H), 3.71 – 3.81 (m, 2H), 3.93 (dd, J = 6.1, 9.7 Hz, 1H), 4.02 (dd, J = 4.6, 9.7 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.53 (dd, J = 1.7, 8.5 Hz, 1H), 7.77 (d, J = 1.6 Hz, 1H), 7.81 (d, J = 8.6 Hz, 1H), 7.88 (t, J = 8.7 Hz, 3H), 7.99 (dd, J = 1.8, 8.6 Hz, 1H), 8.41 (d, J = 1.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 26.7, 40.6, 44.2, 67.2, 124.0, 126.5, 127.8, 128.2, 128.3, 129.3, 129.6, 130.0, 131.5, 134.2, 134.7, 135.8, 143.4, 143.9, 198.2, 198.5; HRMS (ESI- quadrupole) m/z calcd. for C₃₂H₄₃O₃Si [M+H]⁺: 503.2976, found: 503.2978.

isopropyl (S)-2-methyl-2-(4-(4-(4-oxo-4-phenyl-1-((triisopropylsilyl)oxy)butan-2yl)benzoyl)phenoxy)propanoate (3zk)

White solid, m.p. = 48-49 °C; 45 mg, 70% yield; 94:6 er; $[\alpha]_D^{20.0}$ = -7.9 (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 8.8 min, t (minor) = 15.9 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.96 – 1.08 (m, 21H), 1.20 (d, *J* = 6.3 Hz, 6H), 1.65 (s, 6H), 3.28 – 3.41 (m, 1H), 3.62 – 3.75 (m, 2H), 3.87 (dd, *J* = 6.0, 10.0 Hz, 1H), 3.96 (dd, *J* = 4.7, 9.7 Hz, 1H), 5.05 – 5.12 (m, 1H), 6.85 (d, *J* = 8.8 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.67 (d, *J* = 8.1 Hz, 2H), 7.72 (d, *J* = 8.8 Hz, 2H), 7.96 (d, *J* = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.6, 25.4, 25.5, 40.5, 44.0, 67.2, 69.4, 79.4, 117.2, 128.0, 128.1, 128.6, 130.0, 130.9, 132.0, 133.1, 136.5, 137.2, 147.1, 159.5, 173.3, 195.3, 198.8; HRMS (ESI- quadrupole) m/z calcd. for C₃₉H₅₃O₆Si [M+H]⁺: 645.3606, found: 645.3603.

(*R*)-4-((3*R*,5*R*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-3-methoxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)-1-(4-((S)-4-oxo-4-phenyl-1-((triisopropylsilyl)oxy)butan-2-yl)phenyl)pentan-1-one (3zl)

Colorless oil; 49 mg, 63% yield; 94:6 er; $[\alpha]_D^{20.0} = -20.8$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 85/15, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 11.1 min, t (minor) = 12.3 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.64 (s, 3H), 0.80 – 0.92 (m, 5H), 0.96 – 1.07 (m, 21H), 1.09 – 1.15 (m, 5H), 1.18 – 1.33 (m, 7H), 1.34 – 1.51 (m, 7H), 1.63 – 1.97 (m, 8H), 2.77 – 2.89 (m, 1H), 2.90 – 3.01 (m, 1H), 3.13 – 3.19 (m, 1H), 3.26 – 3.34 (m, 1H), 3.35 (s, 3H), 3.60 – 3.76 (m, 2H), 3.80 – 3.88 (m, 1H), 3.94 (dd, J = 9.6, 4.5 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.87 (d, J = 8.0 Hz, 2H), 7.94 (d, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 12.2, 18.0, 18.7, 20.9, 23.5, 24.3, 26.5, 26.9, 27.4, 28.3, 30.7, 32.9, 35.0, 35.4, 35.5, 35.6, 36.0, 40.3, 40.4, 40.5, 42.2, 42.9, 44.0, 55.6, 56.1, 56.6, 67.1, 80.5, 128.1, 128.3, 128.4, 128.7, 133.1, 135.7, 137.1, 148.0, 198.8, 200.9. HRMS (ESI- quadrupole) m/z calcd. for C₅₀H₇₇O₄Si [M+H]⁺: 769.5586, found: 769.5582.

(S)-2-(2-oxo-2-(4-(4-oxo-4-(p-tolyl)-1-((triisopropylsilyl)oxy)butan-2-yl)phenyl)ethyl)dibenzo[b,e]oxepin-11(6H)-one (3zm)

Light-yellow amorphous foam; 44 mg, 68% yield; 95:5 er; $[\alpha]_D^{20.0} = -12.0 (0.1, CH_2Cl_2)$; [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 60/40, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 19.4 min, t (minor) = 32.2 min]; ¹H NMR (400
MHz, CDCl₃) δ 0.95 – 1.08 (m, 21H), 2.40 (s, 3H), 3.28 (dd, J = 9.6, 18.8 Hz, 1H), 3.58 – 3.73 (m, 2H), 3.84 (dd, J = 6.1, 9.6 Hz, 1H), 3.93 (dd, J = 4.9, 9.7 Hz, 1H), 4.27 (s, 2H), 5.18 (s, 2H), 7.02 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.38 (m, 4H), 7.46 (t, J = 7.1 Hz, 1H), 7.55 (t, J = 7.8 Hz, 1H), 7.84 (d, J = 8.1 Hz, 2H), 7.89 (d, J = 7.5 Hz, 1H), 7.94 (d, J = 8.2 Hz, 2H), 8.11 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 21.7, 40.3, 44.0, 44.3, 67.0, 73.7, 121.1, 125.3, 127.8, 128.2, 128.5, 128.6, 128.7, 129.2, 129.3, 129.6, 132.7, 132.8, 134.6, 134.9, 135.7, 136.7, 140.6, 143.9, 148.8, 160.4, 190.9, 197.0, 198.3; HRMS (ESI- quadrupole) m/z calcd. for C₄₂H₄₉O₅Si [M+H]⁺: 661.3344, found: 661.3345.

Derivatization of chiral β-aryl ketones

Large-scale experiment

Figure S3: Set-up for large scale reaction under blue LEDs irradiation.

To a 100 mL round bottomed flask was added [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (16.9 mg, 0.015 mmol, 1.5 mmol%), Nickel(II) acetate (35.5 mg, 0.2 mmol, 20 mmol%), L6 (65.5 mg, 0.22 mmol, 22 mmol%), followed by 2a (200 mg, 1 mmol). The reaction flask was sealed, evacuated and backfilled with nitrogen three times, then degassed DMF (50 mL) was injected under nitrogen protection, stirred at room temperature for 30 min. Cyclopropanol 1a (0.97 g, 3 mmol) and collidine (0.365 g, 0.4 mL, 3 mmol) was injected *via* syringe respectively. The reaction mixture was degassed by Freeze-Pump-Thaw methods for three cycles, then stirred under nitrogen atmosphere with the irradiated of two Kessil® A160WE blue LED lamps (5 cm away from reaction flask) at room temperature (cooled by fan) for 72 h. The reaction mixture was poured into water (150 mL), then added EA (30 mL) to the mixture, stirred for 20 min. The organic layer was separated and the aqueous layer was extracted with EA (20 mL×2). Combined of the organic layer was washed by brine, dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column

chromatography on silica gel (petroleum ether /ethyl acetate = 100:1 to 20:1 as the eluent) to afford **3a**.

Colorless oil; 308 mg, 70% yield; 93:7 er; $[\alpha]_D^{20.0} = -12.0$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 7.0 min, t (minor) = 12.4 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.95 – 1.08 (m, 21H), 2.57 (s, 3H), 3.31 (dd, J = 15.9, 5.7 Hz, 1H), 3.58 – 3.76 (m, 2H), 3.81 – 3.90 (m, 1H), 3.91 – 3.99 (m, 1H), 7.39 (d, J = 7.0 Hz, 2H), 7.45 (t, J = 7.2 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.88 (d, J = 6.9 Hz, 2H), 7.94 (d, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 18.0, 26.6, 40.5, 44.0, 67.1, 128.1, 128.4, 128.5, 128.7, 133.1, 135.7, 137.1, 148.3, 197.9, 198.7; HRMS (ESI- quadrupole) m/z calcd. for C₂₇H₃₉O₃Si [M+H]⁺: 439.2663, found: 439.2666.

Deprotection of TIPS

To a solution of **3m** (30 mg, 0.05 mmol) in anhydrous THF (2 mL) was added TBAF (78 μ L, 0.08 mmol, 1.5 eq., 1M in THF) at -10 °C. The reaction was stirred at -10 °C for 2 hrs. After that, the reaction mixture was concentrated under reduced pressure, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1 to 2:1 as the eluent) quickly to afford product **4** (19 mg, 88% yield) as amorphous foam (Note: Product **4** should be stored at -20 °C).

(*S*)-1-(3,5-dimethylphenyl)-4-hydroxy-3-(4-(2-phenylacetyl)phenyl)butan-1-one (4)

Amorphous foam; 19 mg, 88% yield; 92:8 er; $[\alpha]_D^{20.0} = -14.4$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 60/40, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 13.5 min, t (minor) = 18.2 min]; ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 6H), 3.36 (dd, J = 6.7, 17.3 Hz, 1H), 3.47 (dd, J = 6.9, 17.3 Hz, 1H), 3.62 – 3.72 (m, 1H), 3.80 – 3.92 (m, 2H), 4.25 (s, 2H), 7.19 (s, 1H), 7.22 – 7.28 (m,

3H), 7.32 (t, J = 6.7 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.54 (s, 2H), 7.98 (d, J = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 41.1, 43.5, 45.6, 66.7, 126.0, 127.0, 128.3, 128.8, 129.2, 129.5, 134.6, 135.0, 135.4, 136.9, 138.4, 147.9, 197.2, 199.0; HRMS (ESI- quadrupole) m/z calcd. for C₂₆H₂₇O₃ [M+H]⁺: 387.1955, found: 387.1951.

Synthesis of ent-calyxolane B analog

(1S,3S)-3-(4-(hydroxymethyl)-3-methylphenyl)-1-(p-tolyl)butane-1,4-diol (5)

To a solution of (*R*)-CBS (7.4 mg, 0.026 mmol) in anhydrous THF (2 mL) was added BH₃·Me₂S (133 μ L, 0.266 mmol, 4.0 eq., 2M in THF) at 0°C with nitrogen protection, stirred for a while. To the mixture was added a solution of **3zd** (30.0 mg, 0.066 mmol) in anhydrous THF (1 mL) slowly. After the addition, the reaction was allowed to stirred at room temperature for 3 h. The reaction was cooled to 0°C, added methanol (1 mL) slowly, followed by brine (10 mL). The mixture was extracted by EA (10 mL×2). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄. The organic layer was concentrated to dryness and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1 to 2:1 as the eluent) to afford the intermediate (26.5 mg) as colorless oil. The intermediate (26.5 mg, 0.058 mmol) was dissolved in anhydrous THF (2 mL), then TBAF (87 μ L, 0.087 mmol, 1.5 eq., 1M in THF) was added to the reaction at 0°C, stirred at 0°C for 30 min. The reaction

mixture was concentrated to dryness and the residue was purified by column chromatography on silica gel (dichloromethane/methanol = 100:1 to 20:1 as the eluent) to afford **5** (16 mg, 82% yield) as a white solid.

White solid, m.p. = 138-139°C; 16 mg, 82% yield; 2:98 er; $[\alpha]_D^{20.0} = +76.1$ (0.1, methanol); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 80/20, v = 1.0 mL·min⁻¹, λ = 210 nm, t (major) = 12.7 min, t (minor) = 11.4 min]; ¹H NMR (400 MHz, CD₃OD) δ 2.07 – 2.25 (m, 2H), 2.32 (s, 3H), 2.33 (s, 3H), 2.40 –2.50 (m, 1H), 3.57 (d, *J* = 6.7 Hz, 2H), 4.34 (dd, *J* = 8.9, 5.6 Hz, 1H), 4.60 (s, 2H), 6.97 (d, *J* = 5.4 Hz, 2H), 7.07 – 7.17 (m, 4H), 7.28 (d, *J* = 8.2 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 18.9, 21.2, 42.1, 46.0, 63.2, 68.1, 73.2, 126.7, 127.7, 129.1, 129.9, 131.0, 137.3, 138.3, 138.5, 142.4, 143.1; HRMS (ESI- quadrupole) m/z calcd. for C₁₉H₂₄O₃Na [M+Na]⁺: 323.1618, found: 323.1619.

(2-methyl-4-((3*S*,5*R*)-5-(p-tolyl)tetrahydrofuran-3-yl)phenyl)methanol (6) ⁶

To a solution of **5** (16 mg, 0.05 mmol) in anhydrous 1,2-dichloroethane (2 mL) was added *p*-toluenesulfonic acid monohydrate (1.0 mg, 0.005 mmol, 0.1 eq.). The reaction was allowed to stirred at 40°C for 12 h before quenched by brine (10 mL). The organic layer was separated and the aqueous layer was extracted with DCM (10 mL×2). The combined organic layer was washed by brine, dried over anhydrous Na₂SO₄. The organic layer was concentrated and the crude product was purified by column chromatography on silica gel (petroleum ether / ethyl acetate = 5:1 as the eluent) to afford product **6** (12 mg, dr 4:1, totally 80% yield) as amorphous foam.

Amorphous foam; 12 mg, 80% yield; 2:98 er (*major isomer*); $[\alpha]_D^{20.0} = +27.2$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 210$ nm, t (major) = 16.9 min, t (minor) = 15.1 min]; *major isomer*: ¹H NMR (400 MHz, CDCl₃) δ 1.66 (s, 1H), 1.95 – 2.03 (m, 1H), 2.34 (s, 3H), 2.35 (s, 3H), 2.67 – 2.74 (m, 1H), 3.54 – 3.65 (m, 1H), 3.98 (t, J = 8.4 Hz, 1H), 4.32 (t,

J = 8.2 Hz, 1H), 4.66 (s, 2H), 5.03 (dd, J = 5.7, 10.1 Hz, 1H), 7.07 – 7.12 (m, 2H), 7.17 (d, J = 7.8 Hz, 2H), 7.24 – 7.28 (m, 1H), 7.30 (d, J = 7.1 Hz, 2H); *minor isomer*: ¹H NMR (400 MHz, CDCl₃) δ 1.63 (s, 1H), 2.25 – 2.30 (m, 1H), 2.34 (s, 3H), 2.35 (s, 3H), 2.40 – 2.48 (m, 1H), 3.46 – 3.52 (m, 1H), 3.91 (t, J = 8.2 Hz, 1H), 4.43 (t, J = 7.9 Hz, 1H), 4.66 (s, 2H), 5.19 (t, 1H), 7.10 (dd, J = 13.2, 5.5 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 7.28 – 7.24 (m, 1H), 7.30 (d, J = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.7, 18.8, 21.1, 21.2, 42.8, 43.7, 44.2, 45.8, 63.3, 63.4, 75.1, 80.6, 81.8, 124.9, 125.0, 125.6, 125.8, 128.1, 129.1, 129.2, 129.4, 129.5, 130.0, 136.6, 137.1, 137.2, 138.5, 139.6, 140.6, 141.4; HRMS (ESI- quadrupole) m/z calcd. for C₂₀H₁₉BrNO₃ [M+H]⁺: 283.1693, found: 283.1689.

Synthesis of indomethacin ester (9)

(S)-triisopropyl((4-phenyl-2-(4-(prop-1-en-2-yl)phenyl)pent-4-en-1-yl)oxy)silane (7)

To a suspension of methyltriphenylphosphonium bromide (200.0 mg, 0.56 mmol) in anhydrous THF (2 mL) was added *t*-BuOK (63 mg, 0.56 mmol) at 0°C with nitrogen

protection, then the reaction was stirred at ambient temperature for 2 h to form a bright yellow suspension. The witting reagent was cooled to 0°C, then a solution of compound **3a** (80 mg, 0.18 mmol) in anhydrous THF (1 mL) was added *via* syringe at 0°C. After the addition, the reaction was allowed to stirred at room temperature for 2 h. The reaction was quenched by water (5 mL) and extracted with EA (10 mL×2). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄. The organic layer was concentrated to dryness and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1 as the eluent) to afford product **7** as colorless oil.

Colorless oil; 64 mg, 81% yield; 6:94 er; $[\alpha]_D^{20.0} = +57.1$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane, v = 0.1 mL·min⁻¹, λ = 254 nm, t (major) = 36.7 min, t (minor) = 35.3 min]; ¹H NMR (400 MHz, CDCl₃) δ 0.98 – 1.07 (m, 21H), 2.13 (s, 3H), 2.68 (dd, J = 9.1, 14.2 Hz, 1H), 2.88 (dt, J = 5.7, 12.8, Hz, 1H), 3.33 (dd, J = 5.4, 14.2, Hz, 1H), 3.71 – 3.87 (m, 2H), 4.89 (s, 1H), 5.03 (s, 1H), 5.18 (s, 1H), 5.34 (s, 1H), 7.06 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 4.0 Hz, 1H), 7.27 (d, J = 5.6 Hz, 1H), 7.33 (d, J = 9.0 Hz, 2H), 7.37 (d, J = 4.0 Hz, 2H), 7.39 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.1, 18.1, 21.9, 37.9, 46.7, 67.5, 111.7, 114.3, 125.2, 126.5, 127.4, 128.1, 128.3, 139.1, 141.0, 142.0, 143.2, 146.6; HRMS (ESI- quadrupole) m/z calcd. for C₂₉H₄₃OSi [M+H]⁺: 435.3078, found: 435.3074.

(S)-4-phenyl-2-(4-(prop-1-en-2-yl)phenyl)pent-4-en-1-ol (8)

To a solution of compound 7 (62.0 mg, 0.143 mmol) in anhydrous THF (2 mL) was added TBAF (210 μ L, 0.21 mmol, 1.5 eq., 1M in THF) at -10°C, then stirred the reaction at 0°C for 2 h. The reaction mixture was concentrated and the residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 50:1 to 10:1 as the eluent) to afford **8** (37 mg, 93% yield) as colorless oil.

Colorless oil; 37 mg, 93% yield; 6:94 er; $[\alpha]_D^{20.0} = +70.4$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 7.8 min, t (minor) = 6.3 min]; ¹H NMR (400 MHz, CDCl₃) δ 1.32 (s, 1H), 2.16 (s, 3H), 2.82 (dd, J = 12.4, 5.7 Hz, 1H), 2.88 – 3.08 (m, 2H), 3.73 – 3.81 (m, 2H), 5.01 (s, 1H), 5.08 (s, 1H), 5.24 (s, 1H), 5.38 (s, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.27 – 7.41 (m, 5H),7.43 (d, J = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.8, 38.4, 46.1, 66.7, 112.1, 114.6, 125.7, 126.4, 127.6, 127.9, 128.5, 139.7, 140.8, 141.3, 142.9, 146.3; HRMS (ESI- quadrupole) m/z calcd. for C₂₀H₂₃O [M+H]⁺: 279.1743, found: 279.1741.

Indomethacin (S)-4-phenyl-2-(4-(prop-1-en-2-yl)phenyl)pent-4-en-1-yl ester (9)

To a mixture of compound **8** (18 mg, 0.065 mmol) and indomethacin (27.8 mg, 0.078 mmol) in anhydrous DCM (2 mL) was added DMAP (1.6 mg, 0.013 mmol) and DCC (18.7 mg, 0.09 mmol) at 0°C with nitrogen protection, then the reaction was stirred at ambient temperature for 4 h. The reaction mixture was concentrated and the crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1 as the eluent) to afford **9** (38 mg, 95% yield) as thick yellow oil.

Yellow oil; 38 mg, 95% yield; 7:93 er; $[\alpha]_D^{20.0} = +22.3$ (0.1, CH₂Cl₂); [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 60/40, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.9 min, t (minor) = 5.5 min]; ¹H NMR (400 MHz, CDCl₃) δ 2.09 (s, 3H), 2.26 (s, 3H), 2.73 (dd, J = 7.7, 14.2 Hz, 1H), 2.84 (dd, J = 7.2, 14.2 Hz, 1H), 2.96 – 3.03 (m, 1H), 3.59 (s, 2H), 3.77 (s, 3H), 4.17 – 4.31 (m, 2H), 4.86 (s, 1H), 5.03 (s, 1H), 5.17 (s, 1H), 5.32 (s, 1H), 6.67 (dd, J = 2.3, 9.0 Hz, 1H), 6.86 – 6.91 (m, 2H), 6.93 (d, J = 8.1 Hz, 2H), 7.23 – 7.29 (m, 7H), 7.42 (d, J = 8.4 Hz, 2H),

7.59 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.3, 21.7, 30.4, 38.4, 42.4, 55.7, 67.8, 101.3, 111.8, 112.1, 112.6, 115.0, 115.1, 125.4, 126.3, 127.6, 127.7, 128.4, 129.1, 130.7, 130.8, 131.2, 133.9, 135.8, 139.2, 139.4, 140.5, 140.6, 142.7, 145.6, 156.1, 168.2, 170.6; HRMS (ESI- quadrupole) m/z calcd. for C₃₉H₃₇ClNO₄ [M+H]⁺: 618.2406, found: 618.2408.

Synthesis of (2*R*,4*S*)-2-methyl-2-phenyl-4-(4-(prop-1-en-2-yl)phenyl)tetrahydrofuran (10) ⁷

To a solution of compound **8** (16 mg, 0.065 mmol) in anhydrous chloroform (2 mL) was added HCl solution (57 μ L, 0.057 mmol, 1.0 eq., 1M in 1,4-dioxane) at 0°C with nitrogen protection. The reaction was stirred for 30 min at room temperature. The reaction mixture was concentrated and the crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1 as the eluent) to afford **10** (14 mg, dr 2:1, totally 88% yield) as yellow viscous oil.

Yellow viscous oil; 14 mg, 88% yield; $[\alpha]_D^{20.0} = +10.8 (0.1, CH_2Cl_2)$; major isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.60 (s, 3H), 2.11 (s, 3H), 2.30 (dd, J = 12.2, 10.8 Hz, 1H), 2.63 (dd, J = 8.0, 12.4 Hz, 1H), 3.60 – 3.74 (m, 1H), 3.81 (m, 1H), 4.38 (t, J = 7.9 Hz, 1H), 5.04 (s, 1H), 5.31 (s, 1H), 7.11 (d, J = 8.2 Hz, 1H), 7.22 – 7.30 (m, 2H), 7.33 – 7.38 (m, 4H), 7.46 (d, J = 7.7 Hz, 2H); minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.65 (s, 3H), 2.13 (s, 3H), 2.18 – 2.20 (m, 1H), 2.71 (dd, J = 12.1, 7.1 Hz, 1H), 3.34 – 3.22 (m, 1H), 3.96 (t, J = 8.6 Hz, 1H), 4.32 (t, J = 8.4 Hz, 1H), 5.05 (s, 1H), 5.34 (s, 1H), 7.11 (d, J = 8.2 Hz, 1H), 7.31 – 7.22 (m,1H), 7.43 – 7.38 (m, 3H), 7.46 (d, J = 7.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 21.8, 21.9, 30.3, 30.7, 44.4, 45.6, 48.1, 48.4, 74.0, 74.5, 85.1, 85.6, 112.2, 124.6, 124.8, 125.7, 125.8, 126.6, 126.7, 127.2, 127.4, 128.3, 128.4, 139.6, 139.7, 140.1, 140.9, 142.9, 145.0, 147.7, 149.0; HRMS (ESI- quadrupole) m/z calcd. for C₂₀H₂₂O [M+H]⁺: 279.1743, found: 279.1739.

Mechanistic studies

(A). Effect of cyclopropanol isomers

Two experiments were carried out to evaluate the effect of the cyclopropanol isomers. When used *trans*-isomer **1f**' as the starting material, followed the standard reaction conditions, product **3f** was obtained in 52% yield with 90:10 er. [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 8.2 min, t (minor) = 13.8 min];

When used *cis*-isomer **1f**" as the starting material, followed the standard reaction conditions, product **3f** was obtained in 48% yield with 90:10 er. [Daicel CHIRALPAK® IA-3 (4.6 mm x 250mm), *n*-hexane/2-propanol = 70/30, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 8.0 min, t (minor) = 12.9 min];

The results showed that both cyclopropanol isomers could provide the product in similar yields with the same enantioselectivity.

(B). Effect of cyclopropanol OH

To a 10 mL vial equipped with a stir bar was added [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (1.7 mg, 1.5 μ mol, 1.5 mmol%), Nickel(II) acetate (3.6 mg, 20 μ mol, 20 mmol%), **L6** (6.6 mg, 22 μ mol, 22 mmol%) and **2a** (20 mg, 0.1 mmol).The vial was sealed, evacuated and backfilled with nitrogen three times, then anhydrous DMF (5mL) was injected under nitrogen protection. The reaction was stirred at room temperature for 10 min. TBS-

protected cyclopropanol **11** (135 mg, 0.3 mmol) and collidine (36.5 mg, 0.3 mmol) was injected *via* micro syringe respectively. After degassing the reaction mixture with Freeze-Pump-Thaw methods for three cycles, it was stirred and irradiated with the corresponding blue LEDs photoreactor at 25°C (cooled by ethanol circulator bath) for 48 h. No product **3b** was observed from ¹H-NMR of the crude reaction mixture.

(C) Trapping of the radical intermediate by TEMPO

To a 10 mL vial equipped with a stir bar was added [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (1.7 mg, 1.5 µmol, 1.5 mmol%), Nickel(II) acetate (3.6 mg, 20 µmol, 20 mmol%), **L6** (6.6 mg, 22 µmol, 22 mmol%) and **2a** (20 mg, 0.1 mmol) The vial was sealed, evacuated and backfilled with nitrogen three times, then anhydrous DMF (5 mL) was injected under nitrogen protection, stirred at room temperature for 10 min. Cyclopropanol **1b** (100 mg, 0.3 mmol) and collidine (36.5 mg, 0.3 mmol) was injected *via* micro syringe respectively. Then TEMPO (47 mg, 0.3 mmol, 3 equiv.) in anhydrous DMF (1 mL) was injected slowly at -10°C. After degassing the reaction mixture with Freeze-Pump-Thaw methods for three cycles, it was stirred and irradiated with the corresponding blue LEDs photoreactor at 25°C (cooled by ethanol circulator bath) for 48 h. The reaction mixture was poured into ice-water (50 mL), then extracted with DCM (10 mL×2), combined of the organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give yellow thick oil. The yellow thick oil was analyzed by HRMS.

HRMS (ESI- quadrupole) m/z calcd. for $C_{29}H_{52}NO_3Si [M+H]^+$: 490.3711, found: 490.3712.

(D) Trapping of the radical intermediate with acrylonitrile

To a 10 mL vial equipped with a stir bar was added [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (1.7 mg, 1.5 µmol, 1.5 mmol%), Nickel(II) acetate (3.6 mg, 20 µmol, 20 mmol%) and **L6** (6.6 mg, 22 µmol, 22 mmol%). The vial was sealed, evacuated and backfilled with nitrogen three times, then anhydrous DMF (5mL) was injected under nitrogen protection, stirred at room temperature for 10 min. Cyclopropanol **1b** (100 mg, 0.3 mmol) and collidine (36.5 mg, 0.3 mmol) was injected *via* micro syringe respectively. After degassing the reaction mixture with Freeze-Pump-Thaw methods for three cycles, compound **13** (5.3 mg, 0.1 mmol) was injected *via* micro syringe. The reaction was stirred and irradiated with the corresponding blue LEDs photoreactor at 25°C (cooled by ethanol circulator bath) for 48 h. The reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 100:1 to 20:1 as the eluent) to give product **14** (20.0 mg, 52% yield) as yellow

oil.

¹H NMR (400 MHz, CDCl₃) δ 1.03 – 1.10 (m, 21H), 1.76 –1.81 (m, 1H), 1.86 –1.92 (m, 1H), 2.32 – 2.36 (m, 1H), 2.42 (s, 3H), 2.45 – 2.49 (m, 2H), 2.84 (dd, *J* = 17.0, 6.6 Hz, 1H), 3.20 (dd, *J* = 17.0, 6.3 Hz, 1H), 3.73 (d, *J* = 4.6 Hz, 2H), 7.26 (d, *J* = 7.8 Hz, 2H), 7.86 (d, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 15.4, 18.1, 21.7, 27.7, 36.4, 39.8, 65.1, 119.9, 128.2, 129.4, 134.6, 144.1, 198.7.

HRMS (ESI- quadrupole) m/z calcd. for $C_{23}H_{38}NO_2Si \ [M+H]^+$: 388.2666, found: 388.2665.

X-ray Crystallography data

X-ray structure of compound 6

CDCC: 2126211

Table S7 Crystal data and structure refinement for Compound 6.

Identification code	Compound 6
Empirical formula	$C_{19}H_{24}O_3$
Formula weight	300.38
Temperature/K	293.00(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	9.16551(16)
b/Å	10.4822(2)
c/Å	17.5734(4)
$\alpha/^{\circ}$	90
β/°	90
γ/°	90
Volume/Å ³	1688.36(6)
Z	4
$\rho_{calc}g/cm^3$	1.182
µ/mm ⁻¹	0.624
F(000)	648.0
Crystal size/mm ³	$0.06 \times 0.05 \times 0.04$
Radiation	Cu Ka ($\lambda = 1.54184$)

 2Θ range for data collection/° $\, 9.826$ to 134.15

Index ranges	$\textbf{-4} \leq h \leq 10, \textbf{-12} \leq k \leq 12, \textbf{-19} \leq \textbf{l} \leq 20$
Reflections collected	8109
Independent reflections	2989 [$R_{int} = 0.0365$, $R_{sigma} = 0.0407$]
Data/restraints/parameters	2989/0/204
Goodness-of-fit on F ²	1.098
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0396, wR_2 = 0.1004$
Final R indexes [all data]	$R_1 = 0.0422, wR_2 = 0.1025$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.23
Flack parameter	-0.04(11)

Table S8 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for Compound 6. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z.	U(eq)
01	7452.7(16)	3709.5(16)	5073.1(11)	52.6(4)
O2	2001.7(16)	3624.5(15)	4373.7(11)	48.0(4)
O3	4159.3(16)	11061.1(15)	6187.8(10)	48.0(4)
C1	4904.8(19)	6436.7(19)	5437.0(12)	33.9(4)
C2	5442(2)	5231.6(19)	5055.5(12)	35.6(4)
C3	4378(2)	6428(2)	6183.5(13)	41.3(5)
C4	4575(2)	8719(2)	5430.2(12)	37.4(4)
C5	6705(2)	4651(2)	5504.5(14)	42.9(5)
C6	4090.9(19)	8711(2)	6177.7(12)	36.7(4)
C7	4986(2)	7601(2)	5067.5(12)	37.0(4)
C8	3093(3)	6445(3)	2526.2(16)	53.9(6)
C9	3009(2)	4684.7(19)	4413.9(13)	36.6(4)
C10	3446(2)	5083(2)	3618.7(12)	37.8(4)
C11	4242(2)	4232.4(19)	4922.7(13)	36.7(4)
C12	2821(2)	6149(2)	3280.7(15)	46.1(5)

C13	4011(3)	5709(3)	2085.3(14)	50.5(6)
C14	3977(2)	7545(2)	6560.5(13)	42.0(5)
C15	4406(3)	4365(3)	3181.9(15)	52.9(6)
C16	3735(3)	9945(2)	6587.8(14)	47.4(5)
C17	4681(3)	4677(3)	2431.7(16)	58.3(6)
C18	4250(4)	5984(4)	1253.7(17)	72.9(9)
C19	3493(4)	7491(3)	7382.6(17)	67.7(8)

Table S9 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for Compound 6. The Anisotropic displacement factor exponent takes the form: -

Atom	U 11	U22	U33	U23	U 13	U12
01	49.0(8)	35.8(8)	72.9(12)	8.1(9)	18.0(8)	8.3(6)
02	45.3(7)	39.6(8)	58.9(10)	9.2(8)	-11.7(7)	-8.5(7)
03	53.1(8)	35.1(8)	55.9(10)	-5.7(7)	-4.7(7)	1.5(6)
C1	33.3(9)	31.1(9)	37.4(10)	0.8(9)	-1.9(7)	-0.9(7)
C2	37.5(9)	31.3(9)	38.0(10)	0.7(9)	1.9(8)	-0.2(7)
C3	46.6(10)	34.8(11)	42.7(12)	6.6(9)	4.0(8)	-2.3(8)
C4	43.3(9)	30.1(9)	38.7(10)	3.7(9)	-2.5(8)	0.6(8)
C5	39.0(10)	38.1(11)	51.6(12)	1.7(10)	-0.7(9)	4.6(8)
C6	33.1(8)	35.8(10)	41.3(11)	-2.9(9)	-0.9(7)	0.1(7)
C7	43.6(9)	35.8(10)	31.7(10)	2.1(9)	0.9(8)	-0.3(8)
C8	57.8(13)	52.0(14)	52.0(14)	14.6(12)	1.4(11)	3.4(11)
C9	38.9(9)	30.2(9)	40.6(11)	-1.2(9)	0.3(8)	-1.2(7)
C10	36.3(9)	38.8(10)	38.5(10)	-1.3(9)	-3.0(8)	0.4(8)
C11	42.4(10)	30.5(9)	37.3(11)	1.7(8)	-1.4(8)	-1.0(8)
C12	46.1(11)	41.6(11)	50.6(13)	6.8(11)	8.5(9)	7.8(10)
C13	49.6(11)	60.0(14)	41.9(13)	0.3(11)	0.7(10)	-11.5(10)
C14	43.4(10)	42.1(11)	40.6(12)	1.1(9)	7.3(8)	-2.0(9)

 $2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...].$

C15	60.7(13)	51.6(14)	46.2(13)	-3.3(11)	-1.7(11)	18.1(11)
C16	53.9(12)	40.9(12)	47.4(13)	-5.6(10)	4.4(10)	3.3(9)
C17	61.8(14)	67.1(16)	46.1(13)	-7.9(13)	7.4(11)	11.7(12)
C18	86.6(19)	87(2)	45.1(15)	2.5(15)	8.1(13)	-14.0(17)
C19	96(2)	56.6(16)	50.5(15)	2.3(14)	26.5(14)	1.1(15)

Table S10 Bond Lengths for Compound 6.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C5	1.421(3)	C6	C16	1.516(3)
O2	C9	1.447(2)	C8	C12	1.384(4)
03	C16	1.419(3)	C8	C13	1.379(4)
C1	C2	1.513(3)	C9	C10	1.512(3)
C1	C3	1.398(3)	C9	C11	1.517(3)
C1	C7	1.385(3)	C10	C12	1.389(3)
C2	C5	1.527(3)	C10	C15	1.389(3)
C2	C11	1.537(3)	C13	C17	1.385(4)
C3	C14	1.395(3)	C13	C18	1.506(4)
C4	C6	1.387(3)	C14	C19	1.512(4)
C4	C7	1.386(3)	C15	C17	1.382(4)
C6	C14	1.399(3)			

Table S11 Bond Angles for Compound 6.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C3	C1	C2	121.53(18)	C10	C9	C11	115.70(17)
C7	C1	C2	120.72(18)	C12	C10	C9	120.54(19)
C7	C1	C3	117.68(19)	C15	C10	C9	121.9(2)
C1	C2	C5	110.51(17)	C15	C10	C12	117.4(2)
C1	C2	C11	113.78(16)	C9	C11	C2	114.19(16)
C5	C2	C11	110.45(17)	C8	C12	C10	121.0(2)
C14	C3	C1	122.1(2)	C8	C13	C17	117.4(2)

C7	C4	C6	121.2(2)	C8	C13	C18	121.8(3)
01	C5	C2	111.50(19)	C17	C13	C18	120.8(3)
C4	C6	C14	119.0(2)	C3	C14	C6	119.05(19)
C4	C6	C16	120.9(2)	C3	C14	C19	120.0(2)
C14	C6	C16	120.05(19)	C6	C14	C19	120.9(2)
C1	C7	C4	121.01(18)	C17	C15	C10	121.0(2)
C13	C8	C12	121.5(2)	03	C16	C6	114.12(18)
O2	C9	C10	109.62(18)	C15	C17	C13	121.5(2)
O2	C9	C11	105.32(16)				

Table S12 Torsion Angles for Compound 6.

Α	В	С	D	Angle/°	Α	B	С	D	Angle/°
02	C9	C10	C12	101.6(2)	C7	C4	C6	C14	-1.9(3)
02	C9	C10	C15	-74.3(3)	C7	C4	C6	C16	176.07(19)
02	C9	C11	C2	-179.11(17)	C8	C13	C17	C15	2.2(4)
C1	C2	C5	01	-165.95(16)	C9	C10	C12	C8	-173.0(2)
C1	C2	C11	C9	60.8(2)	C9	C10	C15	C17	173.7(2)
C1	C3	C14	C6	0.7(3)	C10	C9	C11	C2	59.7(2)
C1	C3	C14	C19	-176.6(2)	C10	C15	C17	C13	-0.3(4)
C2	C1	C3	C14	175.30(19)	C11	C2	C5	01	67.2(2)
C2	C1	C7	C4	-176.16(17)	C11	C9	C10	C12	-139.5(2)
C3	C1	C2	C5	-59.2(2)	C11	C9	C10	C15	44.6(3)
C3	C1	C2	C11	65.7(2)	C12	C8	C13	C17	-1.5(4)
C3	C1	C7	C4	0.8(3)	C12	C8	C13	C18	176.7(3)
C4	C6	C14	C3	1.1(3)	C12	C10	C15	C17	-2.4(4)
C4	C6	C14	C19	178.3(2)	C13	C8	C12	C10	-1.2(4)
C4	C6	C16	03	-9.5(3)	C14	C6	C16	03	168.48(19)
C5	C2	C11	C9	-174.27(17)	C15	C10	C12	C8	3.1(3)
C6	C4	C7	C1	1.0(3)	C16	C6	C14	C3	-176.9(2)

C7	C1	C2	C5	117.7(2)	C16	C6	C14	C19	0.3(3)
C7	C1	C2	C11	-117.4(2)	C18	C13	C17	C15	-176.0(3)
C7	C1	C3	C14	-1.6(3)					

Table S13 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for Compound 6.

Atom	x	У	Z.	U(eq)
H1	7249.3	2999.2	5237.34	79
H2	1258.38	3848.8	4151.13	72
H3	3619.28	11164.83	5820.9	72
H2A	5824.3	5474.77	4555.17	43
H3A	4291.12	5652.2	6436.63	50
H4	4625.86	9488.36	5167.69	45
H5A	7382.8	5320.37	5647.07	51
H5B	6330.94	4268.7	5967.79	51
H7	5320.96	7633.94	4568.38	44
H8	2645.96	7155.26	2311.62	65
H9	2518.65	5403.96	4661.88	44
H11A	4679.37	3479.66	4696.73	44
H11B	3838.28	3985.4	5411.15	44
H12	2211.01	6672.59	3565.77	55
H15	4870.25	3664.15	3397.71	63
H16A	2691.56	9978.9	6678.05	57
H16B	4216.14	9940.12	7079.43	57
H17	5331.79	4182.4	2152.72	70
H18A	3620.6	6667.89	1097.29	109
H18B	4033	5234.58	960.89	109
H18C	5248.08	6225.52	1172.57	109
H19A	3387.76	6616.85	7536.01	101

H19B	2574.88	7922.05	7436.24	101
H19C	4210.08	7899.96	7697.53	101

Experimental

Single crystals of **6** ($C_{19}H_{24}O_3$) were crystallized from tetrahydrofuran and *n*-hexane. A suitable crystal was selected and measured on a XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystal was kept at 293.0(2) K during data collection. Using Olex2 [1], the structure was solved with the Unknown [2] structure solution program using Unknown and refined with the Unknown [3] refinement package using Unknown minimisation.

 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.

Crystal structure determination of Compound 6

Crystal Data for C₁₉H₂₄O₃ (*M* =300.38 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), *a* = 9.16551(16) Å, *b* = 10.4822(2) Å, *c* = 17.5734(4) Å, *V* = 1688.36(6) Å³, *Z* = 4, *T* = 293.00(2) K, μ (Cu K α) = 0.624 mm⁻¹, *Dcalc* = 1.182 g/cm³, 8109 reflections measured (9.826° ≤ 2 Θ ≤ 134.15°), 2989 unique (*R*_{int} = 0.0365, R_{sigma} = 0.0407) which were used in all calculations. The final *R*₁ was 0.0396 (I > 2 σ (I)) and *wR*₂was 0.1025 (all data).

References

- Murray, P. R. D.; Cox, J. H.; Chiappini, N. D.; Roos, C. B.; McLoughlin, E. A.; Hejna B. G.; Nguyen, S. T.; Ripberger, H. H.; Ganley, J. M.; Tsui, E.; Shin, N. Y.; Koronkiewicz, B.; Qiu, G.; Knowles, R. R. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. *Chem. Rev.* 2021, doi: org/10.1021/acs.chemrev.1c00374.
- (a) Rossolini, T.; Ferko, B.; and Dixon, D. J. Photocatalytic Reductive Formation of α-Tertiary Ethers from Ketals. *Org. Lett.* 2019, *21*, 6668–6673. (b) Takamura, M.; Yabu, K.; Nishi, T.; Yanagisawa, H.; Kanai, M.; Shibasaki, M. Efficient synthesis of a key intermediate of neurokinin receptor antagonists using a bifunctional asymmetric catalyst. *Synlett.* 2003, *3*, 353– 356.
- Avullala, T.; Asgari, P.; Hua, Y.; Bokka, A.; Ridlen, S. G.; Yum, K.; Dias, H. V. R.; Jeon J. Umpolung α-Silylation of Cyclopropyl Acetates via Low-Temperature Catalytic C–C Activation. ACS Catal. 2019, 9, 402–408.
- Poh, J.-S.; Makai, S.; Keutz, von T.; Tran, D. N.; Battilocchio, C.; Pasau, P.; Ley, S. V. Rapid Asymmetric Synthesis of Disubstituted Allenes by Coupling of Flow-Generated Diazo Compounds and Propargylated Amines. *Angew. Chem., Int. Ed.* 2021, 60, 8313–8320.
- Pezzetta, C.; Bonifazi, D.; Davidson, R. W. M. Enantioselective Synthesis of *N*-Benzylic Heterocycles: A Nickel and Photoredox Dual Catalysis Approach. *Org. Lett.* 2019, *21*, 8957– 8961.
- Kim, C.; Roh, B.; Lee, H. G. Restoration of catalytic activity by the preservation of ligand structure: Cu-catalysed asymmetric conjugate addition with 1,1-diborylmethane. *Chem. Sci.*, 2021, *12*, 3668–3673.
- Shao, W.; Besnard, C.; Guénée, L.; Mazet, C. Ni-Catalyzed Regiodivergent and Stereoselective Hydroalkylation of Acyclic Branched Dienes with Unstabilized C(sp3) Nucleophiles. J. Am. Chem. Soc. 2020, 142, 16486–16492.

NMR Spectra

1b ¹H NMR (400M Hz, CDCl₃)

1b ¹³C NMR (100M Hz, CDCl₃)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

1e¹H NMR (400M Hz, CDCl₃)

1h ¹H NMR (400M Hz, CDCl₃)

1k ¹H NMR (400M Hz, CDCl₃)

L6¹H NMR (400M Hz, CDCl₃)

69

3a ¹H NMR (400M Hz, CDCl₃)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) **3b** ¹H NMR (400M Hz, CDCl₃)

3b ¹³C NMR (400M Hz, CDCl₃)

<pre>198.30 197.92</pre>	-148.43 -142.91 135.63 135.63 128.63 128.48 -128.48 -128.31	77.42 77.10 76.78 - 67.04	-43.99 -40.31	<pre> <26.64 <21.69 <18.02 <11.97 </pre>
\checkmark		\rightarrow		

3c ¹H NMR (400M Hz, CDCl₃)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)
3d ¹H NMR (400M Hz, CDCl₃)

3d ¹³C NMR (400M Hz, CDCl₃)

\sim 199.11 - 148.43 - 148.43 - 138.27 - 138.27 - 133.76 - 133.76 - 133.76 - 133.76 - 135.68 - 135.68 - 125.94	<pre>77.42 77.10 76.78 -67.06</pre>		\26.65 -21.31 -18.04 √12.00
---	-------------------------------------	--	--------------------------------------

4 いろろくつ 2 つのの 4 こうろう	0 H 9 F 10 0 0 F 0 4 9 0 0 0 4 0 0 0 9	0 000000
4 ~ 4 ~ 4 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~	4 2 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0401000
000000400000000000	N V V V V V V V V V V V V V V V V V V V	000000 0
000000000000000000000000000000000000000	4 M M M M M M M M M M M M M M M M M M M	о оонннн
		1117

3j ¹³C NMR (400M Hz, CDCl₃)

— 197.30 — 192.9 4	- 148.32	-132.43 134.75 131.97 121.97 128.83 128.70 128.70 128.42 126.97 126.97 126.42	77.42 77.10 76.78 - 66.97	 45.52 43.87 41.68 	— 18.02 — 11.97
------------------------------	----------	---	------------------------------------	---	--------------------

3k ¹H NMR (400M Hz, CDCl₃)

3l ¹H NMR (400M Hz, CDCl₃)

		0
レレゐゐひのののるるる 4	00100010000000000000000000000000000000	0 8 7 0 7 8 0
мн ч и 8 6 и 0 6 6 7 7 7 7 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 1 7 1 7	4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 781870
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	000000 .
		· · · · · · O
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	•••••••••••••••••••••••••••••••••••••••	нннноо і

3m ¹H NMR (400M Hz, CDCl₃)

7 7 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 8 9 <t

3n ¹H NMR (400M Hz, CDCl₃)

8 2 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	※ ※ ※ 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3	4 4 1 4 1 7 2 2 5 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>	000000 0
~~~~~~~~~~	•••••••••••••••••••••••••••••••••••••••	о оооннн


3n ¹³C NMR (400M Hz, CDCl₃)

-97.44 -97.26	26 - 26 - 27 - 28 - 17 - 28 - 17 - 28 - 28 - 28 - 28 - 28 - 28 - 28 - 2	77.42 77.10 76.78 56.94	15.53 13.93 10.37	8.01	.1.96
$\overset{\scriptscriptstyle 1}{\succ}$			444	-	ī

30 ¹H NMR (400M Hz, CDCl₃)

3p ¹H NMR (400M Hz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)

3q ¹H NMR (400M Hz, CDCl₃)

3r ¹H NMR (400M Hz, CDCl₃)

10 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

3s ¹³C NMR (400M Hz, CDCl₃)

	- 198.42 - 195.37	- 163.17		<pre>77.42 77.10 77.10 76.78</pre>	- 67.21	- 55.56	- 44.02 - 40.38	×21.71 ×18.06 ×12.04
--	----------------------	----------	--	------------------------------------	---------	---------	--------------------	----------------------------

3w ¹H NMR (400M Hz, CDCl₃)

3x ¹H NMR (400M Hz, CDCl₃)

845 845 474 3350 3350 3321 2351 2351 2351 2351 2351 2351 2351	99999999999999999999999999999999999999	0 0 0 8 0 0 3 1 0 0 3 1 0 0 1 8 0 0 1 8 0 0 1 8 0 0 1 8 0 1	000
\sim	· · · · · · · · · · · · · · · · · · ·	наноо	

3y ¹H NMR (400M Hz, CDCl₃)

67	4 5 4 5	61	2 C	5	50	0	34	22	11	8	ທີ່ ຕິ	C	94	6	81	53	39	57	80	65	60	8	60	47	2	8 0 0 0		<u>^</u>	0 0	00	12	03	6 0	84	N 0	с С) U) m r m	14	07	60	69	00
00 00 \	οo	(N)	NN	-		-	ത	S	σ	ω	ωc	ρα		6	Q	9	Q	١Û	ß	ß	£	\sim	\sim	(N)	N^{-1}	4	7 5	7 7	1 0	იო	\sim	\sim	\vdash	-	0 0	э с	> c	> 0	0	0	0, 1	0	0
• •				•		•		•	•			•		•		•	•		•	•			•				•	•	•		•	•		•	•		•		•	•			•
r r r		r~ (~ ~	~	r - 1	~	m	m	$^{\circ}$	m	с	nr	m	m	m	m	m	m	$^{\circ}$	m	m	m	m ·	m i	m	NO	NC	V C	V C	NN		-	\leftarrow	-			+ -		\leftarrow	ч	0	0	0
\sim	\bigvee	5	4	1	4		_	-								Ļ	-	-	-		4	\leq	J.	1	-	5	5	1	_		-		5	4	læ	1_1	-		_	_	-	-	-

3y ¹³C NMR (400M Hz, CDCl₃)

·			·					
0	4	00	1000000	m				
ŝ	ŝ	00 00	0001-40-00	m	N O 00	n	n n	H M 4 9 N 10
	•	•		•	4 4 7	-	00 47	- 0 0 0 C
4	00	u س) て て す ー の の の ら	n .		•		
0	0	ব ব	2 M M M M M M M M	0	0 1 1	-	мо	H H O & O H H
N	-			-	~ ~ ~	Q	4 4	
1		7	****		\checkmark	1		

3za ¹H NMR (400M Hz, CDCl₃)

3za ¹³C NMR (400M Hz, CDCl₃)

	/ 198.	11111111111111111111111111111111111111	<pre>77.4 77.1 76.7 -67.0</pre>	48.1 43.7 40.2 40.2	121.7 121.7 118.0
--	--------	--	---------------------------------	---------------------------------	-------------------------

3zb ¹H NMR (400M Hz, CDCl₃)

3zd ¹H NMR (400M Hz, CDCl₃)

3zf ¹³C NMR (400M Hz, CDCl₃)

- 198.01

-148.2 -148.2 -144.0^{2} -144.2^{2} -144.2^{2} -144.2^{2} -144.2^{2} -110.8^{2} -110.8^{2} -6.91 -6.91 -43.86 -43.86 -43.86 -43.86 -11.22 -11.97
--

3zj ¹H NMR (400M Hz, CDCl₃)

3zl¹H NMR (400M Hz, CDCl₃)

Large-scale of 3a ¹H NMR (400M Hz, CDCl₃)

18

m 00	40400400000			
0 H	0004000HF000	1 80 /	- 9 4	0
		4 1 7 7	541	m
6 r	L @ @ U A @ @ @ @ U			
0 0	4 M M M M M M N N N N N N	rr 9 9	u m H	-
		C C C C C C C C C C C C C C C C C C C	4 4 4	2
1.7			(1)	1
1.0		nr I	117	

⁵¹³C NMR (400M Hz, CD₃OD)

- 21.18

6¹³C NMR (400M Hz, CDCl₃)

н ч и о о о о о о о о о о о о о о о о о о			
すいるいくしいついすししていのの	0HNO0004	L 0 4 L	1000
	894HF0 MM	C 1 C C	1 00 F
440000000000000000		5 4 M N	~ ~ ~ ~ ~
	000 1 1 1 1 0 0	ਰਾ ਰਾ ਰਾ ਰਾ	N N H H
		2110	

NOESY spectrum of 6 (major) in CDCl₃

Ме

NOESY spectrum of 10 (major) in CDCl₃

	- 198.74	- 134.58 - 129.40	128.23	- 119.91	$\underbrace{ \begin{smallmatrix} 77.42\\77.10\\76.78 \end{smallmatrix} }$	- 65 . 08 	- 39.78 - 36.36	<pre></pre>
--	----------	----------------------	--------	----------	--	---------------	--------------------	-------------

HPLC Spectra

<Peak Table>

A 254nm								
Peak#	Ret. Time	Area	Height	Area%				
1	6.906	1411282	152924	50.138				
2	12.303	1403533	83621	49.862				
		2814815	236544	100.000				

m∨

A 254nm							
Peak#	Ret. Time	Area	Height	Area%			
1	7.028	1377323	147483	92.850			
2	12.573	106055	6384	7.150			
		1483378	153867	100.000			

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	5.699	3998080	594602	50.048
2	9.254	3990412	372274	49.952
		7988492	966876	100.000

<Peak Table>

٨	2	F	4		-
А	2	ວ	4	n	п

Peak#	Ret. Time	Area	Height	Area%
1	5.648	1071597	162996	92.857
2	9.142	82430	8460	7.143
		1154027	171456	100.000

m∨

A 254nm							
Peak#	Ret. Time	Area	Height	Area%			
1	6.571	2136700	279067	50.012			
2	13.133	2135677	136685	49.988			
		4272377	415752	100.000			

<u>A 254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	6.434	3368567	446185	92.939
2	12.765	255920	17457	7.061
		3624487	463642	100.000

A 254nm							
Peak#	Ret. Time	Area	Height	Area%			
1	7.049	1370082	174856	50.045			
2	8.333	1367612	143885	49.955			
		2737693	318741	100.000			

<Peak Table>

<u>A 254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	7.074	1262057	167922	90.749
2	8.381	128652	14490	9.251
		1390709	182412	100.000

254nm	1			
Peak#	Ret. Time	Area	Height	Area%
1	5.750	681451	102523	50.061
2	7.282	679786	82951	49.939
		1361237	185474	100.000

m∨

<Peak Table>

254nm

Peak#	Ret. Time	Area	Height	Area%
1	5.751	1759202	261762	92.923
2	7.284	133982	16308	7.077
		1893184	278070	100.000

mν

<Peak Table>

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	8.162	1219362	130718	50.055
2	13.820	1216700	70404	49.945
		2436062	201123	100.000

	A 254	nm
--	-------	----

Peak#	Ret. Time	Area	Height	Area%
1	8.157	1250010	130328	89.977
2	13.827	139248	8378	10.023
		1389257	138706	100.000

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	15.684	2460240	149695	49.930
2	18.730	2467142	122746	50.070
		4927382	272441	100.000

<Peak Table>

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	15.645	1889014	112457	89.992
2	18.722	210087	10245	10.008
		2099101	122702	100.000

m∨

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	7.508	1347702	161043	50.253
2	8.761	1334117	137008	49.747
		2681819	298051	100.000

|--|

Peak#	Ret. Time	Area	Height	Area%
1	7.573	1597567	188499	89.092
2	8.852	195597	19778	10.908
		1793164	208277	100.000

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	13.002	1260392	91845	49.841
2	13.994	1268417	85551	50.159
		2528809	177395	100.000

<Peak Table>

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	13.100	1989344	139090	88.173
2	14.102	266850	17455	11.827
		2256195	156545	100.000

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	15.684	2460240	149695	49.930
2	18.730	2467142	122746	50.070
		4927382	272441	100.000

A 254n	ım			
Peak#	Ret. Time	Area	Height	Area%
1	15.645	1889014	112457	90.770
2	18.722	192095	9978	9.230
		2081109	122434	100.000

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	12.931	1529006	106327	49.850
2	14.274	1538216	95752	50.150
		3067221	202078	100.000

۵254nm ا

Peak#	Ret. Time	Area	Area Height	
1	12.984	2045177	145965	92.088
2	14.336	175717	11241	7.912
		2220894	157206	100.000

<Peak Table> A 254nm

<u>A 254n</u>	m			
Peak#	Ret. Time	Area	Height	Area%
1	8.632	999240	99095	50.197
2	13.135	991407	62829	49.803
		1990647	161924	100.000

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	8.621	3426692	340552	92.736
2	13.152	268428	18038	7.264
		3695120	358591	100.000

m٧

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	10.677	799080	38864	49.977
2	12.399	799801	30283	50.023
		1598881	69147	100.000

<Peak Table>

<u>A 254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	10.769	3486080	162510	90.611
2	12.530	361210	14768	9.389
		3847290	177279	100.000

m∨

<Peak Table>

A 254nm						
Peak#	Ret. Time	Area	Height	Area%		
1	9.950	1591809	142938	50.036		
2	12.514	1589503	107741	49.964		
		3181312	250679	100.000		

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	10.068	1268757	109046	92.085
2	12.724	109059	7313	7.915
		1377817	116359	100.000

			_		
<p< td=""><td>ea</td><td>k '</td><td>Tal</td><td>bl</td><td>e></td></p<>	ea	k '	Tal	bl	e>
	-	•••			-

<u>A 254n</u>	m			
Peak#	Ret. Time	Area	Height	Area%
1	5.397	844944	132815	50.163
2	8.700	839453	84572	49.837
		1684397	217387	100.000

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	5.407	1051948	159896	92.075
2	8.723	90544	9461	7.925
		1142491	169357	100.000

m∨

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	6.162	1210306	175627	50.074
2	11.247	1206753	98833	49.926
		2417058	274460	100.000

<Peak Table>

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	6.168	1505967	216075	94.009
2	11.225	95976	8191	5.991
		1601943	224266	100.000

m٧

A 254nm						
Peak#	Ret. Time	Area	Height	Area%		
1	9.088	2484498	250590	50.032		
2	17.680	2481329	125472	49.968		
		4965827	376062	100.000		

<u>A 254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	8.996	3857184	397172	94.763
2	17.594	213185	11654	5.237
		4070369	408827	100.000

A 254nm						
Peak#	Ret. Time	Area	Height	Area%		
1	5.400	2121822	329634	50.092		
2	9.763	2114028	184492	49.908		
		4235851	514126	100.000		

<Peak Table>

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	5.370	3139073	485835	92.152
2	9.675	267327	23848	7.848
		3406400	509682	100.000

m∨

A 254nm						
Peak#	Ret. Time	Area	Height	Area%		
1	6.888	2958289	331661	49.742		
2	15.327	2989015	145733	50.258		
		5947303	477393	100.000		

<Peak Table>

<u>A 254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	6.929	2465255	281127	93.774
2	15.542	163691	8593	6.226
		2628946	289720	100.000

A 254nm						
Peak#	Ret. Time	Area	Height	Area%		
1	6.990	1647121	214024	50.187		
2	8.864	1634824	175539	49.813		
		3281945	389563	100.000		

<Peak Table>

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	7.017	746828	100032	91.949
2	8.899	65389	7056	8.051
		812217	107088	100.000

m٧

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	6.277	727504	96796	49.840
2	8.124	732186	74138	50.160
		1459690	170934	100.000

A 254n	ım			
Peak#	Ret. Time	Area	Height	Area%
1	6.334	1633703	228505	91.012
2	8.250	161347	19295	8.988
		1795050	247799	100.000

<p< th=""><th>eal</th><th>k٦</th><th>ab</th><th>le></th></p<>	eal	k٦	ab	le>

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	7.741	1034384	125279	50.009
2	17.947	1033994	55625	49.991
		2068378	180905	100.000

<Peak Table>

<u>A 254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	7.717	1178599	140759	95.193
2	17.860	59512	3371	4.807
		1238111	144129	100.000

<Peak Table>

254nn	n			
Peak#	Ret. Time	Area	Height	Area%
1	5.912	642152	99668	50.075
2	13.064	640215	48010	49.925
		1282367	147679	100.000

254nm

Peak#	Ret. Time	Area	Height	Area%
1	5.924	2326493	360300	95.021
2	13.068	121907	9502	4.979
		2448399	369802	100.000

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	6.705	722540	94422	49.941
2	13.084	724241	48937	50.059
		1446781	143359	100.000

m∨

<u>A 254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	6.683	837399	108817	93.941
2	13.025	54009	3700	6.059
		891408	112516	100.000

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	6.030	761710	93598	50.216
2	11.472	755144	55379	49.784
		1516854	148977	100.000

<Peak Table>

.

A 2040				
Peak#	Ret. Time	Area	Height	Area%
1	6.046	1063854	156434	94.369
2	11.591	63485	5455	5.631
		1127339	161889	100.000

A 254nm					
Peak#	Ret. Time	Area	Height	Area%	
1	5.935	1054828	156230	50.544	
2	9.746	1032103	95080	49.456	
		2086932	251310	100.000	

A 254n	200	
A 2040		
	D 4	-

Peak#	Ret. Time	Area	Height	Area%
1	5.940	902636	131874	93.935
2	9.770	58284	5730	6.065
		960921	137604	100.000

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	9.776	1238735	99238	50.295
2	15.652	1224187	66627	49.705
		2462922	165865	100.000

<Peak Table>

<u>A 254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	9.786	948917	87599	94.824
2	15.628	51799	3339	5.176
		1000717	90937	100.000

m∨

A 254nm						
Peak#	Ret. Time	Area	Height	Area%		
1	5.795	2450768	367658	50.107		
2	8.442	2440327	266317	49.893		
		4891095	633975	100.000		

<Peak Table>

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	5.816	998192	151975	92.029
2	8.492	86460	9894	7.971
		1084652	161869	100.000

m٧

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	5.740	1443763	222541	49.840
2	8.399	1453062	161307	50.160
		2896825	383848	100.000

<Peak Table>

<u>A 254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	5.704	891059	139032	91.206
2	8.366	85919	9981	8.794
		976978	149013	100.000

m∨

254nm	n			
Peak#	Ret. Time	Area	Height	Area%
1	6.042	1122266	170345	50.256
2	8.811	1110855	116878	49.744
		2233121	287224	100.000

<Peak Table>

<u>254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	6.073	1471330	172398	94.001
2	8.859	93900	7538	5.999
		1565231	179936	100.000

m٧

A 254nm					
Peak#	Ret. Time	Area	Height	Area%	
1	5.903	3309070	497572	49.701	
2	8.591	3348858	364082	50.299	
		6657928	861654	100.000	

<Peak Table>

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	5.863	2398501	354989	87.695
2	8.508	336554	37521	12.305
		2735055	392511	100.000

m٧

A 254nm					
Peak#	Ret. Time	Area	Height	Area%	
1	4.431	1197296	214245	49.908	
2	5.944	1201711	173024	50.092	
		2399007	387269	100.000	

A 254n	A 254nm						
Peak#	Ret. Time	Area	Height	Area%			
1	4.419	2471559	435671	94.463			
2	5.921	144873	22008	5.537			
		2616432	457679	100.000			

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	6.430	1229862	170409	49.811
2	10.396	1239176	113145	50.189
		2469037	283554	100.000

<Peak Table>

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	6.625	10538265	1401655	91.814
2	10.976	939556	81312	8.186
		11477821	1482966	100.000

A 254nm						
Peak#	Ret. Time	Area	Height	Area%		
1	6.602	459670	62764	50.039		
2	10.506	458955	41021	49.961		
		918625	103785	100.000		

<Peak Table>

<u>A 254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	6.590	656441	89618	88.170
2	10.464	88073	8220	11.830
		744514	97838	100.000

<Peak Table>

A 254nm						
Peak#	Ret. Time	Area	Height	Area%		
1	10.371	1866595	169634	50.244		
2	18.498	1848477	92339	49.756		
		3715072	261974	100.000		

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	10.331	3201568	290245	93.827
2	18.480	210628	10921	6.173
		3412196	301166	100.000

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	10.526	2203631	194613	50.501
2	17.008	2159901	117146	49.499
		4363533	311759	100.000

<Peak Table>

A 254nm					
Peak#	Ret. Time	Area	Height	Area%	
1	10.498	2712054	237065	93.801	
2	16.952	179222	10456	6.199	
		2891276	247521	100.000	

m∨

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	8.794	1183203	111154	49.843
2	15.796	1190678	64116	50.157
		2373881	175270	100.000

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	8.839	1150357	108974	93.959
2	15.913	73966	4226	6.041
		1224324	113199	100.000

A 254nm					
Peak#	Ret. Time	Area	Height	Area%	
1	11.182	1072849	69502	49.906	
2	12.416	1076910	62081	50.094	
		2149759	131583	100.000	

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	11.063	1779124	118203	93.852
2	12.338	116552	6941	6.148
		1895677	125145	100.000

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	19.318	3873175	142220	50.267
2	31.870	3832028	68672	49.733
		7705203	210892	100.000

<Peak Table>

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	19.385	5947846	218442	94.619
2	32.188	338264	6581	5.381
		6286110	225022	100.000

Large-scale of **3a**:

A	2	5	4	n	m	١	
				_			

Peak#	Ret. Time	Area	Height	Area%
1	6.906	1411282	152924	50.138
2	12.303	1403533	83621	49.862
		2814815	236544	100.000

m∨

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	6.984	1926758	204303	93.383
2	12.432	136528	7542	6.617
		2063285	211845	100.000

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	13.598	4197547	204503	50.093
2	18.284	4181912	124487	49.907
		8379459	328990	100.000

<Peak Table>

<u>A 254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	13.523	4246260	209683	91.733
2	18.219	382659	12474	8.267
		4628919	222157	100.000

m٧

210nn	n			
Peak#	Ret. Time	Area	Height	Area%
1	11.380	2664674	164964	50.392
2	12.747	2623191	136592	49.608
		5287865	301556	100.000

21	0nn	n	
-		-	7

Peak#	Ret. Time	Area	Height	Area%
1	11.374	43405	1725	2.043
2	12.738	2080926	105299	97.957
		2124331	107024	100.000

<Peak Table>

<u>A 210nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	14.097	421090	31120	8.582
2	14.511	607099	41327	12.374
3	15.128	1985849	128872	40.474
4	16.885	1892410	114983	38.570
		4906447	316302	100.000

210nm						
Peak#	Ret. Time	Area	Height	Area%		
1	14.102	1616945	116504	17.840		
2	14.513	26203	3470	0.289		
3	15.148	90729	5770	1.001		
4	16.883	7329863	442142	80.870		
		9063739	567886	100.000		

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	35.390	4236074	93067	50.016
2	36.720	4233371	90460	49.984
		8469445	183527	100.000

<Peak Table>

<u>A 254nm</u>

Peak#	Ret. Time	Area	Height	Area%
1	35.492	386936	10384	5.761
2	36.666	6329895	154239	94.239
		6716831	164622	100.000

254nn	n			
Peak#	Ret. Time	Area	Height	Area%
1	6.268	8656691	1289311	50.044
2	7.797	8641330	1313355	49.956
		17298021	2602666	100.000

254nn	n			
Peak#	Ret. Time	Area	Height	Area%
1	6.269	78656	12865	6.337
2	7.801	1162479	180810	93.663
		1241136	193676	100.000

<Peak Table>

A 254nm						
Peak#	Ret. Time	Area	Height	Area%		
1	5.440	1023452	129478	50.090		
2	7.106	1019759	89763	49.910		
		2043211	219241	100.000		

A 254nm						
Peak#	Ret. Time	Area	Height	Area%		
1	5.543	100592	15376	6.769		
2	6.868	1385533	149776	93.231		
		1486126	165152	100.000		

A 254n	m			
Peak#	Ret. Time	Area	Height	Area%
1	8.162	1219362	130718	50.055
2	13.820	1216700	70404	49.945
		2436062	201123	100.000

m∨

<Peak Table>

A 254n	A 254nm						
Peak#	Ret. Time	Area	Height	Area%			
1	8.157	1250010	130328	89.977			
2	13.827	139248	8378	10.023			
		1389257	138706	100.000			

A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	8.064	6565869	615823	89.636
2	12.938	759146	48293	10.364
		7325015	664116	100.000