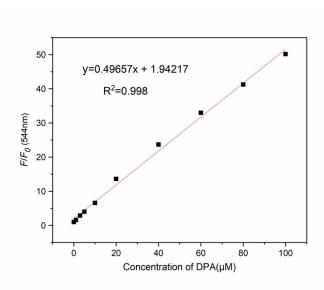
Supporting Information

A Ratiometric Luminescence Nanoprobe Based on Layered Terbium Hydroxide

Nanosheets for Quantitative Detection of An Anthrax Biomarker


Jinyan Li^{a,b}, Qingyang Gu^{a,b*}, Hui Heng^{a,b}, Ziwei Wang^{a,b}, Haibo Jin^{a,b}, Jing He^c

- a College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
- b Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
- c State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

*Email: guqingyang@bipt.edu.cn

Table S1 Comparison of different luminescence sensors for DPA detection

Probes	Range of Detection	Limit of Detection	Reference
CDs(EDTA)-Eu	1.0-100 nM	190 pM	1
CDs-Tb	0.0005-1.2 μΜ	5 nM	8
CDs(CA)-Eu	0.0005-5 μΜ	0.8 nM	3
PVA film-Eu	0.1-50 μΜ		4
$Tb-g-C_3N_4NS$	0-1.5 μΜ	9.9 nM	31
Nanosheets-Tb	0-30 μΜ	44 nM	6
LNP(Tb)	1-100 μΜ	36.67 nM	This work

FigureS1 Linear relation between luminescence intensity at 544 nm and DPA concentration (λ_{ex} =285 nm).