Highly crystalline N and S co-doped carbon dots as selective turn off-on sensor for Cr(VI)

and ascorbic acid and turn off sensor for Metanil yellow

Ambreen Abbasi^a, Mohammad Shakir^{a*}

^aDivision of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.

Tel: 00919837430035

Email: shakir078@yahoo.com

S. No.	CONTENTS	Page
		No.
S1	Experimental	3-5
S2	Detection limit of nanosensor NS CDs	5
Fig. 1S	Absorption spectrum of NS CDs	5
Fig. 2S	Emission spectrum of NS CDs at different excitation wavelengths.	6
Fig. 3S	Comparison of fluorescent intensity of NCDs and NS CDs	7
Fig. 4S	EDX spectrum of NS CDs	7
Fig. 5S	TGA spectrum of NS CDs	8
Fig 6S	Effect of pH on fluorescent intensity of NS CDs	9
Fig 7S	Effect of irradiation time on fluorescent intensity of NS CDs	10
Fig 8S	Effect of ionic strength on fluorescent intensity of NS CDs	11
Fig. 9S	Effect of pH on fluorescence intensity of nanosensor-Cr(VI) solution	12
Fig. 10S	Kinetic characteristics of the florescence intensity of nanosensor with $50 \text{ uM} \text{ Cr}(\text{VI})$ solution and 150 uM ascorbic acid	13
	50 µm Cl(v1) solution and 150 µm ascoloic acid	
Fig. 11S	Effect of other metal ions on fluorescent intensity of NS CDs (200μ L,	14
	2mg/ml). The concentrations of various metal ions 1500 μ M	

Fig. 12S	Interference spectrogram of NS CDs-Cr(VI	15
Fig 13S	Effect of other reducing species on fluorescent intensity of NS	16
	CDs+Cr(VI) ensemble . The concentrations of various reducing	
	species are 160 µM	
Fig. 14S	Effect of pH on fluorescence intensity of nanosensor- metanil yellow	17
	solution	
Fig 15S	Effect of other dyes on fluorescent intensity of NS CDs	18
Fig 16S	The stability of NS CDs MV solution	10
FIg 105	The stability of NS CDS-WY solution	19
Fig. 17S	Spectral overlap of absorption spectrum of Cr(VI) (blue) with	20
	emission (green) and excitation spectrum(red) of NS CDs	
Fig. 18S	Spectral overlap of absorption spectrum of Cr(VI) with emission and	21
	excitation spectrum of NCDs	
Fig. 19S	Fluorescence quenching spectra of NCDs and NS CDs with Cr(VI)	22
Fig 20S	Absorption spectrum of NS CDs in presence of increasing	23
	concentration of Cr(VI)	
Fig 21S	Absorption spectrum of NCDs in presence of Cr(VI)	24
Fig 22S	Decay time profile of NS CDs in absence and presence of Cr(VI)	25
E. 220		26
F1g 23S	Absorption spectrum of NS CDs – $Cr(VI)$ in presence of increasing	26
F : 2 40		27
F1g. 24S	Spectral overlap of absorption spectrum of Metanil Y ellow (blue) with	27
	emission (green) and excitation spectrum (red) of nanosensor	• •
Fig. 25S	Absorption spectrum of NS CDs $-$ Cr(VI)in presence of increasing	28
	concentration of Metanil yellow.	
Fig. 26S	Decay time profile of NS CDs in absence and presence of Metanil	29
	yellow.	
Fig. 27S	The relationship between fluorescence intensity v/s the amount of	30-31
	Metanil Yellow (0–0.8 mg per 1000 mg turmeric powder) added in	
	Turmeric Powder.	
Table 1S	Integrated fluorescence intensity against absorbance of quinine sulfate	31-32
	and NS CDs	

Table 2S	Integrated fluorescence intensity against absorbance of quinine sulfate	32-33
	and NCDs	
Table 3S	Comparison of methods for Cr(VI) determination	33-34
Table4S	Comparison of methods for Metanil yellow determination	34
Table 5S	Triple exponential fitting parameters of NS CDs and ND CDs-Cr(VI) decay curves	34
Table 6S	Triple exponential fitting parameters of NS CDs and ND CDs-metanil yellow decay curves	35
References		35-36

S1 EXPERIMENTAL

S1.1 Reagents

Mesaconic acid, ethylenediamine and sulfuric acid were purchased from Sigma Aldrich and were used without further purification. Metanil Yellow was procured from TCI chemicals. All other chemicals not mentioned here were of analytical reagent grade and were obtained from Sigma Aldrich and were used as received. Double distilled water was used in the synthesis of nanosensor

S1.2 Instrumentations

The Hitachi F-2700 spectrometer was used to record fluorescence spectra. Electronic spectral studies were done on a Perkin Elmer Lamda 365 UV-VIS spectrometer. FT-IR spectrum was obtained from Perkin Elmer Spectrum Two FT-IR Spectrometer. EDX spectrum was obtained on JSM-6510LV, JEOL, Japan . TEM was carried out in a JEM-2100F JEOL, Japan operating at the maximum accelerating voltage of 200 kV. For this, 5 μ L of the sample was drop coated on a carbon-coated copper TEM grid followed by air drying. Acquired micrographs were analyzed using ImageJ (http://imagej.nih.gov/ij/download.html) by randomly selecting individual nanoparticles in the TEM images to compute size distribution histograms. X-ray diffraction experiments were carried out using SMARTLAB Rigaku with Cu-K α 1radiation..

Flash EA 1112 analyzer was employed to carry out elemental analysis. Fluorescence lifetime measurements were done on HORIBA Jobin Yvon Fluorocube-01-NL fluorescence lifetime by using Time correlated Single Photon Counting (TCSPC) method.

S1.3 Preparation of test solutions and general procedure for UV-Vis and fluorescence spectrometry determination

For determination of Cr(VI) and Metanil yellow, 3ml of double distil water was mingled with 200 μ L of 2mg/ml NS CDs, then series of appropriate volumes of 1mmol Cr(VI) and Metanil yellow were added and the fluorescent intensities were measured. For determination of ascorbic acid 3ml of double distil water was mingled with 200 μ L of 2mg/ml NS CDs. Then 150 μ M Cr(VI) was added in order to form nanoprobe (NS CDs/Cr(VI)). Then fluorescent intensities were recorded by adding appropriate volumes of 1mmol ascorbic acid.

S1.4 Synthesis of NS CDs

NS CDs were synthesized by hydrothermal method. 2 gm mesaconic acid was dissolved in 50 ml of 15% EDA solution. The mixture was transferred to 100 ml Teflon lined stainless steel autoclave and heated constantly at 180°C for 10 hours. The mixture was cooled down naturally after reaction. Than 70% sulfuric acid was added to the mixture till the mixture becomes neutral. The resulting solution was kept in hot air oven at 60°C for 24 hours to obtain the NS CDs powder.

S 1.5 Detection of metanil yellow in turmeric powder sample

Turmeric powder was purchased from a local supermarket and was confirmed that no metanil yellow dyes was claimed from their lists of ingredients. metanil yellow was spiked into the turmeric powder.

The samples for analysis were prepared by adding increasing amounts of metanil yellow (0.1 mg/1000 mg of sample) into turmeric powder. Samples were thoroughly mixed. The prepared mixtures were extracted ultrasonically by 30 ml distil watet for 30 minutes and centrifugal

sedimentation was carried out for 10 minutes at 10,000 rpm. Finally the supernatant (also called as extracted solution) was collected for detection. Fixed aliquots of extracted solution of different samples were added to NS CDs aqueous solution.

S2 DETECTION LIMIT OF NS CDs NANOSENSOR

The detection limit was calculated based on fluorescence titration for tested analytes. To determine the δ /S ratio, emission intensity of nanosensor without tested anolytes was measured 10 times and standard deviation from blank measurements was determined. The detection limit was then calculated with the equation : detection limit = 3 δ /S where δ is the standard deviation of blank measurements and S is the slope of intensity vs sample concentration. δ from intensity measurements was calculated to be 2.5.

Fig. 1S Absorption spectrum of NS CDs

Fig. 2SEmission spectrum of NS CDs at different excitation wavelengths.

Fig. 3S Comparison of fluorescent intensity of NCDs and NS CDs.

Fig. 4S EDX spectrum of NS CDs

Fig. 5STGA spectrum of NS CDs

Fig 6S Effect of pH on fluorescent intensity of NS CDs

Fig 7S Effect of irradiation time on fluorescent intensity of NS CDs

Fig 8S Effect of ionic strength on fluorescent intensity of NS CDs

Fig. 9SEffect of pH on fluorescence intensity of nanosensor-Cr(VI) solution

Fig. 10S Kinetic characteristics of the florescence intensity of nanosensor with 50 μ M Cr(VI) solution and 150 μ M ascorbic acid

Fig. 11S Effect of other metal ions on fluorescent intensity of NS CDs (200 μ L, 2mg/ml).The concentrations of various metal ions 1500 μ M

Fig. 12S Interference spectrogram of NS CDs-Cr(VI

Fig 13S Effect of other reducing species on fluorescent intensity of NS CDs+Cr(VI) ensemble . The concentrations of various reducing species are 160 μ M

Fig. 14S Effect of pH on fluorescence intensity of nanosensor- metanil yellow solution.

Fig 15S Effect of other dyes on fluorescent intensity of NS CDs

Fig 168 The stability of NS CDs-MY solution

Fig. 17S Spectral overlap of absorption spectrum of Cr(VI) (a) with emission (c) and excitation spectrum(b) of NS CDs

Fig. 18S Spectral overlap of absorption spectrum of Cr(VI) (a) with emission (c) and excitation spectrum(b) of NCDs

Fig 19S. Fluorescence quenching spectra of NCDs and NS CDs with Cr(VI).

Fig 20S Absorption spectrum of NS CDs in presence of increasing concentration of Cr(VI)

Fig 21S Absorption spectrum of NCDs in presence of Cr(VI)

Fig 22S Decay time profile of NS CDs in absence and presence of Cr(VI)

Fig 23S Absorption spectrum of NS CDs – Cr(VI)in presence of increasing concentration of ascorbic acid

Fig. 24S Spectral overlap of absorption spectrum of Metanil Yellow (a) with emission (c) and excitation spectrum (b) of nanosensor

Fig. 25S Absorption spectrum of NS CDs – Cr(VI)in presence of increasing concentration of Metanil yellow.

Fig. 26S Decay time profile of NS CDs in absence and presence of Metanil yellow.

Fig. 27S The relationship between fluorescence intensity v/s the amount of Metanil Yellow (0–0.8 mg per 1000 mg turmeric powder) added in Turmeric Powder.

Table 1S Quantum Yield Calculation Integrated fluorescence intensity against absorbance

Formula used for calculation:

 η = Refractive Index of the solvent used.

 $\eta_{SAMPLE} = 1.333$ for Water

 $\eta_{ref} = 1.33$ for $0.1M H_2SO_4$

 $Q_{ref} = 0.546$ (Quantum yield of QUININE SULFATE)

- I = Integrated Fluorescence intensity of NS CDs
- I_{ref =} Integrated Fluorescence intensity of reference
- A = Absorbance at the excitation wavelength of NS CDs
- A_{ref} = Absorbance at the excitation wavelength of reference

QY of reference	Area of NS CDs	OD of Reference	Refractive index of sample solvent	Area of Ref	OD of NS CDs	Refractive index of ref solvent	QY
							0.32778
0.546	70793281	0.026221	1.333	110724735	0.027619	1.33	
0.546	97870331	0.032273	1.333	156091030	0.032325	1.33	0.33804
0.546	182198157	0.052567	1.333	273899865	0.057418	1.33	0.32886
0.546	202953529	0.065006	1.333	330025815	0.064582	1.33	0.33426
					Aver	age QY	0.33223

Table 2S Quantum Yield Calculation Integrated fluorescence intensity against absorbance

Formula used for calculation:

$$Q = Q_{ref} \eta^2 / \eta^2_{ref} I / A A_{ref} / I_{ref}$$

 η = Refractive Index of the solvent used.

 $\eta_{SAMPLE} = 1.333$ for Water

 $\eta_{ref} = 1.33$ for $0.1M\ H_2SO_4$

 $Q_{ref} = 0.546$ (Quantum yield of QUININE SULFATE)

- I = Integrated Fluorescence intensity of NCDs
- I_{ref =} Integrated Fluorescence intensity of reference
- A = Absorbance at the excitation wavelength of NCDs

 A_{ref} = Absorbance at the excitation wavelength of reference

QY of reference	Area of NCDs	OD of Reference	Refractive index of sample solvent	Area of Ref	OD of NCDs	Refractive index of ref solvent	QY
0.546	28387980	0.026221	1.333	110724735	0.027619	1.33	0.133499857
0 546	41230820	0 032273	1 333	156091030	0 032325	1 33	0 144642024
0.540	41230020	0.052275	1.555	130031030	0.052525	1.55	0.144042024
0.546	73109135	0.052567	1.333	273899865	0.057418	1.33	0.134027717
0.546	83596770	0.065006	1.333	330025815	0.064582	1.33	0.139840574
					Avera	age QY	0.138002543

Table 3S Comparison of methods for Cr(VI) determination

Detection method	Linear Range	Detection Limit	Reference	
Electrochemical	2-200 μM	0.9 µM	1	
Technique				
Graphite Furnace	0.038-3.1 μM	0.001 µM	2	
Atomic absorption				
Spectroscopy				
Spectro fluorimetry	0.05-2 μM	0.0055 μM	3	
Colorimetric assay	0.16-24 μM	0.15 µM	4	
Colorimetric assay	0- 100 µg/L	1.43 µG/L	5	
Electrochemical	0.10-105 μM	0.03 µM	6	
Technique				
Fluorescence	0.05-500 μM	0.0037 µM	7	
Spectroscopy				
Fluorescence	0.05-10 µM	0.015 µM	8	
Spectroscopy				

spectroscopy

Table 4S Comparison of methods for Metanil yellow determination

Detection method	Linear Range	Detection Limit	Reference
FT-IR	not given	5% concentration	9
Fluorescence	not given	3.83 nM/ml	10
Electrochemical	not given	9.8 nM	11
Electrochemical	not given	not given	12
Fluorescence	3 -100 μM	0.0073 µM	13

Table 5S	Triple exponential	fitting parameters	of NS CDs and ND	CDs-Cr(VI) decay curves
----------	--------------------	--------------------	------------------	-------------------------

Concentration of Cr(VI)	τ_1	B ₁	τ ₂	B ₂	τ ₃	B ₃	τ	CHISQ
(µM)	(nm)		(nm)		(nm)		(nm)	
0	1.88	43.25	0.135	23.79	7.53	32.96	3.3	1.04
11	1.76	36.83	0.0832	32.97	7.26	30.20	2.87	1.05
40	1.82	37.70	0.0864	31.92	7.11	30.38	2.87	1.05
110	1.71	37.65	0.0884	30.92	6.85	31.43	2.82	1.05
$\tau = \tau_1 \times B_1 + \tau_2 \times B_2 + \tau_3 \times B_3$								
$(\Sigma B_i = 1, \text{ for good fit },$								
CHISQ should be less								
than 1.2								

Concentration of Cr(VI)	τ_1	B_1	τ_2	B ₂	τ_3	B ₃	τ	CHISQ
(µM)	(nm)		(nm)		(nm)		(nm)	
0	1.88	43.25	0.135	23.79	7.53	32.96	3.3	1.04
								1.0.0
10	1.81	39.58	0.0782	29.66	7.26	30.76	2.97	1.03
	1.00							1.00
20	1.88	44.45	0.142	22.52	7.36	33.03	3.3	1.02
	1.0.1	10.1.1	0.10.6					1.0.1
50	1.84	43.14	0.126	23.51	7.15	33.34	3.2	1.04
$\tau = \tau_1 \times \mathbf{B}_1 + \tau_2 \times \mathbf{B}_2 + \tau_3 \times \mathbf{B}_3$								
$(\Sigma B_i = 1, \text{ for good fit },$								
CHISQ should be less								
than 1.2								

Table 6S Triple exponential fitting parameters of NS CDs and ND CDs-metanil yellow decay curves

References

- D. Li, J. Li, X. Jia, Y. Xia, X. Zhang and E. Wang, *Anal. Chim. Acta*, 2013, 804, 98– 103.
- 2 Y. Gu and X. Zhu, *Microchim. Acta*, 2011, **173**, 433–438.
- 3 Y. Xiang, L. Mei, N. Li and A. Tong, *Anal. Chim. Acta*, 2007, **581**, 132–136.
- 4 J. Li, H. Wei, S. Guo and E. Wang, *Anal. Chim. Acta*, 2008, **630**, 181–185.
- 5 S. Danwittayakul and A. Thanaboonsombut, *NU Sci. J. 2009;*, 2009, **6**, 64–72.
- 6 W. Jin, G. Wu and A. Chen, *Analyst*, 2014, **139**, 235–241.
- 7 S. Huang, H. Qiu, F. Zhu, S. Lu and Q. Xiao, *Microchim. Acta*, 2015, **182**, 1723–1731.
- 8 X. Liu, T. Li, Q. Wu, X. Yan, C. Wu, X. Chen and G. Zhang, *Talanta*, 2017, 165, 216–

222.

- 9 S. Dhakal, K. Chao, W. Schmidt, J. Qin, M. Kim and D. Chan, *Foods*, 2016, 5, 36.
- 10 T. Dutta and S. Sarkar, *Appl. Nanosci.*, 2016, **6**, 1191–1197.
- 11 A. Shah, *ACS Omega*, 2020, **5**, 6187–6193.
- 12 R. Jain, N. Sharma and K. Radhapyari, *Eur. Water*, 2009, **27**, 43–52.
- 13 A. Abbasi, I. I. Ansari and M. Shakir, J. Fluoresc., 2021, **31**, 1353–1361.