Plasmonic Nanometal Surface Energy Transfer-based Dual Excitation Biosensing of Pathogens

Milad Torabfam, ^a Hasan Kurt, ^{b,c,d} Mustafa Kemal Bayazıt, ^e Meral Yüce^{e*}

*Corresponding authors: meralyuce@sabanciuniv.edu

^{a. a} Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey.

^{b.b} Istanbul Medipol University, School of Engineering and Natural Sciences, 34810, Beykoz, Istanbul, Turkey

^c: Istanbul Medipol University, Sesearch Institute for Health Sciences and Technologies (SABITA), 34810, Beykoz, Istanbul, Turkey ^{d.d} Nanosolar Plasmonics Ltd., 41400, Gebze, Kocaeli, Turkey ^{e.e} Sabanci University, SUNUM Nanotechnology Research and Application Centre, 34956, Istanbul, Turkey.

Supporting In formation

Table S 1. NSET-based sensors for target detection in the literature.

Target Pathogen(s)	Donor	Acceptor	LOD	Ref.
DNA	SiO ₂ coated CdTe (CdTe/SiO ₂) core/shell	AuNPs	0.106 nmol/L	1
	nanoparticles			
hepatitis C virus (HCV) RNA	Cy3 dye	AuNPs	300 fM	2
Cu ²⁺ and Hg ²⁺	Ring-open structured rhodamine	AuNPs		3
	spirolactam			
Mercury(II)	DNA-conjugated AuNPs		1.2 ppb	4
	QDs			
Hg(II)	Rhodamine B (RhB) dye	AuNPs	2 ppt	5
Glutathione	5-aminofluorescein (FI-NH ₂)	AuNPs		6
C-Reactive protein	Fluorescein	AuNPs		7
Prostate specific antigen (PSA)	QD labeled PSA aptamer	Graphene oxide	0.05 fg mL ⁻¹	8
Hg ²⁺	S,N co-doped carbon dots (S,N-CDs)	AgNPs	0.51 nM	9
Heparin	Near-infrared fluorophore	AuNRs	6.7 ng/mL	10

Table S 2. Aptamers and complementary DNA sequences used in this study.

Target	Aptamers (5'-NH ₂ -C6)	cDNAs (5'-NH ₂ -C6)	Ref.
Salmonella typhimurium (ATCC® 14028™)	TATGGCGGCGTCA CCCGACGGGGACTTGACATTAT GACAG	ATAATGTCAAGTCCCCGTCGGG	11, 12
Escherichia coli O157:H7 (ATCC® 25922™)	CCGGACGCTTAT GCCTTGCCATCTACAGAGCAGG TGTGACGG	CCTGCTCTGTAGATGGCAAGGC	11, 12

Table S 3. The hydrodynamic size of the NPs utilized in this assay.

Samples	Hydrodynamic size (nm)	
CdSe/ZnS core/shell QDs	25.93	
EC-Aptamer-QDs	61.76	
NaYF ₄ :Yb/Er UCNPs	41.8	
ST-Aptamer-UCNPs	87.7	
AuNR	55.7	
EC-cDNA-AuNR	66.2	
AuNU	91.3	
ST-cDNA-AuNU	105.8	

Table S 4. Zeta potential of the unmodified and aptamer capped NPs.

Samples	Zeta Potential (mV)	
CdSe/ZnS core/shell QDs	-32.5	
EC-Aptamer-QDs	-12.9	
NaYF ₄ :Yb/Er UCNPs	-30.7	
ST-Aptamer-UCNPs	-14.3	
AuNR	-20.8	
EC-cDNA-AuNR	-8.27	
AuNU	-22.2	
ST-cDNA-AuNU	-9.73	

Table S 5. LOD values and calibration curve details for detection of S. typhimurium and E. coli using UCNP and QD- based aptasensor.

Bacteria	Linear Equation	R ²	Linear Range (CFU mL ⁻¹)	LOD (CFU mL ⁻¹)
S. typhimurium	y=76.15x+113.81	0.9913	10²-10 ⁶	7.55

Supporting Information

E. coli	y=97.301x+128.96	0.9743	10 ² -10 ⁶	4.94

Table S 6. LOD values and calibration curve parameters for simultaneous detection of S. typhimurium and E. coli using dual excitation luminescence nanoprobe.

Bacteria	Linear Equation	R ²	Linear Range (CFU mL ⁻¹)	LOD (CFU mL ⁻¹)
S. typhimurium	y=40.54x+46.67	0.994	10 ² -10 ⁵	9.313
E. coli	y=64.36x+60.93	0.972	10 ³ -10 ⁵	7.38

Table S 7. Multiplexed sensing of S. typhimurium and E. coli in spiked lake water samples.

Sample	Spiked Conce	ntration (CFU mL $^{-1}$)	Measured Conce	Measured Concentration (CFU mL ⁻¹)	
	E. coli	S. typhimurium	E. coli	S. typhimurium	
Lake water 1	1.0×10 ²	1.0×10 ²	(1.1462±0.13) ×10 ²	(0.9112±0.07) ×10 ²	
Lake water 2	1.0×10 ³	1.0×10 ³	(1.0762±0.10) ×10 ³	(0.9860±0.12) ×10 ³	
Lake water 3	1.0×104	1.0×10 ⁴	(1.0288±0.11) ×104	(1.113±0.09) ×104	

Figure S 1. Absorption and emission spectra related to a) UCNPs, and b) QDs.

Figure S 2. Emission/absorption spectra of a) NaYF4: Yb, Er UCNPs/AuNUs, and b) CdSe/ZnS core/shell QDs/AuNRs.

700

Supporting In formation

Figure S 3. Preparation of the AuNS-aptamer-cDNA-LNP conjugates.

Figure S 4. The luminescence intensity of the a) UCNP-AuNU conjugates at 545 nm b) QD-AuNR conjugates at 620 nm in terms of various initial acceptor/donor ratios in 1x PBS.

Figure S 5. UV-vis absorption spectra of a) S. typhimurium with and without related AuNu-aptamer, b) E. coli with and without AuNr-aptamer.

Figure S 6. Hydrodynamic size distribution of a) unmodified UCNP and b) ST cDNA-coupled UCNP, c) unlabeled QD, and d) EC cDNA-modified QDs.

Figure S 7. SEM images of a) ST-aptamer-functionalized AuNU and b) EC-aptamer-functionalized AuNR, and c) ST-cDNA-modified UCNP.

Supporting In formation

Figure S 8. SEM images of a) ST-AuNU nanoprobe with S. typhimurium, and b) EC-AuNR nanoprobe with E. coli.

Figure S 9. SEM images of UCNP-AuNR conjugate.

Supporting Information

Figure S 10. The luminescence intensity increase of a) UCNP and b) QD nanoprobes versus the logarithmically increased concentrations of S. typhimurium and E. coli, respectively. The Calibration curves for multiplex sensing of c) S. typhimurium and d) E. coli are also provided.

Reference

- 1. W. Guo, Y. Wei, Z. Dai, G. Chen, Y. Chu and Y. Zhao, *Materials*, 2018, 11.
- 2. J. Griffin, A. K. Singh, D. Senapati, P. Rhodes, K. Mitchell, B. Robinson, E. Yu and P. C. Ray, *Chemistry A European Journal*, 2009, **15**, 342-351.
- 3. M. X. Gao, H. Y. Zou, Y. F. Li and C. Z. Huang, Anal Chem, 2017, 89, 1808-1814.
- 4. M. Li, Q. Wang, X. Shi, L. A. Hornak and N. Wu, *Analytical Chemistry*, 2011, **83**, 7061-7065.
- 5. G. K. Darbha, A. Ray and P. C. Ray, *Acs Nano*, 2007, **1**, 208-214.
- 6. Q. Li, A. Sun, Y. Si, M. Chen and L. Wu, *Chemistry of Materials*, 2017, **29**, 6758-6765.
- 7. C. Bravin and V. Amendola, *Biosensors and Bioelectronics*, 2020, **169**, 112591.
- 8. B.-Y. Fang, C.-Y. Wang, C. Li, H.-B. Wang and Y.-D. Zhao, Sensors and Actuators B: Chemical, 2017, 244, 928-933.
- 9. Z. Abolghasemi-Fakhri, T. Hallaj and M. Amjadi, Luminescence, 2021, DOI: 10.1002/bio.4040, 1-8.
- 10. J. J. Liu, D. Yuan, H. Z. Zhang, Y. D. Lu, N. Wang, H. Y. Zou and J. Wang, Sensors and Actuators, B: Chemical, 2018, 274, 318-323.
- 11. H. Kurt, M. Yüce, B. Hussain and H. Budak, *Biosensors and Bioelectronics*, 2016, **81**, 280-286.
- 12. M. Yüce, H. Kurt, B. Hussain, C. W. Ow-Yang and H. Budak, *ChemistrySelect*, 2018, **3**, 5814-5823.