Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Continuously Efficient Hydrodeoxygenation of Glycerol into 1,3-propandiol over Pt/WO_x/Beta Catalysts

Lijun Zhu ^{a,b,ξ}, Mengya Sun ^{a,b,ξ}, Xinpeng Zhao ^{a,b}, Yanfei Zhang ^{a,b}, Hu Luo ^a, Wang Liu ^{a,b}, Gai Miao ^{a,*}, Lingzhao Kong ^{a,b*}

^a Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, CAS. No. 100 Haike Road, Shanghai, China.

^b University of Chinese Academy of Sciences, Beijing 100049, PR China.

*Corresponding author:

Dr. Gai Miao, E-mail: miaog@sari.ac.cn; Prof/Dr. Lingzhao Kong, E-mail: konglz@sari.ac.cn

Address: No.99 Haike Road, Zhangjiang Hi-Tech Park, Pudong Shanghai, PR China.

[§] These two authors contribute equally.

For the calculation of mass transfer limitations based on Weisz-Prater and Mears criteria

The effects of mass transfer limitations on HDO of glycerol into 1,3-propandiol were evaluated by Mears criteria (C_M) and Weisz-Prater (C_{WP})^[1-2]. The detailed calculations are presented:

$$C_M = \frac{-r_A' \rho_b R_p n}{k_c C_{Ab}} \ll 0.15$$

$$C_{WP} = \frac{-r_A' \rho_c R_p^2}{D_{eA} C_{As}} \ll 1$$

Where r_{A} is the observed reaction rate (kmol·kg⁻¹·s⁻¹); R_p is the catalyst particle radius (m); ρ_{b} is the bulk density of catalyst bed (kg·m⁻³), ρ_b = (1- ε) ρ_c ; ρ_c is the solid catalyst density (kg·m⁻³); ε is the catalyst porosity; C_{Ab} is the bulk concentration of glycerol (kmol·m⁻³); k_c is the mass transfer coefficient of glycerol in the liquid phase (m·s⁻¹); n is the reaction order; C_{As} is the bulk concentration of glycerol at the external surface of the catalyst (kmol·m⁻³); D_{eA} is the effective diffusivity of glycerol (m²·s⁻¹).

The parameters were computed using reaction conditions of 160 °C, 4.0 MPa, and WHSV 1.0 h⁻¹. k_c was calculated using Eqs. (S1) to (S4).

$$k_c = \frac{D_{AB}Sh}{d_p} \tag{S1}$$

$$Sh = 2 + 0.6Re_{p}^{1/2}Sc^{1/3}$$
(S2)

$$Re_{p} = \frac{d_{p}u\rho_{f}}{\mu}$$

$$Sc = \frac{\mu}{\rho_{f}D_{AB}}$$
(S3)

where Sh is the Sherwood number; d_p is the particle diameter (m); ρ_f is the fluid density (kg \cdot m⁻³); μ is the viscosity of glycerol (Pa·s); (Re)_p is the Reynolds number considering the diameter of the particle; u is the linear velocity in pores; Sc is the Schmidt number; D_{AB} is diffusion coefficient.

For the Pt/WO_x/Beta catalyst, $d_n = 3.75 \times 10^{-4} m$ $R_n = 1.875 \times 10^{-4} m$ n = 0.827 $\varepsilon = 0.375$

 $= k C^{0.827} = 2.216 \times 10^{-4} mol^{0.173} L^{0.827} h^{-1} g^{-1} \times (5.3763 mol \cdot L^{-1})^{0.827} = 2.46 L^{-1} L^{-1$ s⁻¹

(S4)

 $\rho_b = 600 \ kg \cdot m^{-3}$ $\rho_c = 960 \ kg \cdot m^{-3}$ $C_{As} = C_{Ab} = 500g \cdot L^{-1} = 5.4295 \ mol \cdot L^{-1} = 5.4295 \ kmol \cdot m^{-3}$ $\rho_f = 1.1035 \times 10^3 \, kg \cdot m^{-3}$

$$\begin{split} & \mu = 1.748 \times 10^{-12} e^{\frac{8056}{273.15 + 160}} = 0.209 \times 10^{-3} \ Pa \cdot s = 0.209 \times 10^{-3} \ kg \cdot m^{-3} \\ & d_p = 3.75 \times 10^{-4} \ m \\ & u = 2.8313 \times 10^{-5} \ m \cdot s^{-1} \\ & \tau = 3 \\ & D_A \approx D_{AB} = 3.5034 \times 10^{-8} \ m^2 \cdot s^{-1} \\ & D_{eA} = \frac{D_A \varepsilon}{\tau} = \frac{3.0534 \times 10^{-8} \times 0.375}{3} = 3.8168 \times 10^{-9} \ m^2 \cdot s^{-1} \\ & ; \text{ where } \tau \text{ is the catalyst tortuosity.} \end{split}$$

the reactor inner diameter: 1.5×10^{-2} m

$$Sc = \frac{\mu}{\rho_f D_{AB}} = \frac{0.209 \times 10^{-3} \, kg \cdot m^{-1} \cdot s^{-1}}{1.1035 \times 10^3 \, kg \cdot m^{-3} \times 3.5034 \times 10^{-8} \, m^2 \cdot s^{-1}} = 5.406$$
$$Re_p = \frac{d_p u \rho_f}{\mu} = \frac{3.75 \times 10^{-4} \, m \times 2.8313 \times 10^{-5} \, m \cdot s^{-1} \times 1.1035 \, \times 10^3 \, kg \cdot m^{-3}}{0.209 \times 10^{-3} \, kg \cdot m^{-1} s^{-1}} = 0.0561$$

$$Sh = 2 + 0.6Re_{p}^{1/2}Sc_{a}^{1/3} = 2 + 0.6 \times (0.0561)^{1/2} \times (5.406)^{1/3} = 2.2494$$

$$k_{c} = \frac{D_{AB}Sh}{d_{p}} = \frac{3.5034 \times 10^{-8} \, m^{2} \cdot s^{-1} \times 2.2494}{3.75 \times 10^{-4} \, m} = 2.1015 \times 10^{-4} \, m \cdot s^{-1}$$

$$=\frac{-r_{A}^{\prime}\rho_{b}R_{p}n}{k_{c}C_{Ab}}=\frac{2.474\times10^{-7}\,kmol\cdot kg^{-1}s^{-1}\times600\,kg\cdot m^{-3}\times1.875\times10^{-4}\,m}{2.1015\times10^{-4}\,m\cdot s^{-1}\times5.3763\,kmol\cdot m^{-3}}$$

 C_{WP}

 C_M

$$=\frac{-r_{A}^{\prime}\rho_{c}R_{p}^{2}}{D_{eA}C_{As}}=\frac{2.474\times10^{-7}\,kmol\cdot kg^{-1}s^{-1}\times960\,kg\cdot m^{-3}\times(1.875\times10^{-4}\,m^{-3})}{3.8168\times10^{-9}\,m^{2}\cdot s^{-1}\times5.4295\,kmol\cdot m^{-3}}$$

Therefore, the mass transfer limitations can be neglected.

The effects of heat transfer limitations on HDO of glycerol into 1,3-propandiol were evaluated by Mears criteria (C_H). The detailed calculations are presented:

$$C_{H} = \frac{-r_{A}^{\prime}|\Delta H_{r}^{0}|\rho_{b}R_{p}E_{A}}{hR_{g}T_{b}^{2}} \ll 0.15$$

Where ${}^{-r_{A}}$ is the observed reaction rate (kmol·kg⁻¹·s⁻¹); ${}^{\Delta H_{r}}$ is the reaction enthalpy, h is the heat transfer coefficient; ${}^{R_{p}}$ is the catalyst particle radius (m); ${}^{R_{g}}$ is the universal gas constant (8.314 J·mol⁻¹·K⁻¹); ρ_{b} is the bulk density of catalyst bed (kg·m⁻³), ${}^{E_{A}}$ is the activation energy (kJ·mol⁻¹); ${}^{T_{b}}$ is the bulk fluid temperature (K).

$$\begin{aligned} \rho_b &= 600 \ kg \cdot m^{-3} \\ R_g &= 8.314 \ J \cdot mol^{-1} \cdot K^{-1} \\ R_p &= 1.875 \times 10^{-4} \ m \\ -r'_A &= k \ C^{0.827} = 2.474 \times 10^{-4} \ mol \cdot kg^{-1} s^{-1} \\ T_b &= 160 + 273.15 = 433.15 \ K \end{aligned}$$

 $E_A = 51.688 \ kJ \cdot mol^{-1}$ $\Delta H_r^0 = -101.64 \ kJ \cdot mol^{-1}$ For the catalyst bed, $h = 61.2 \sim 320 \ kJ \cdot m^{-2} \cdot h^{-1} \cdot K^{-1} = 0.017 \sim 0.089 \ kJ \cdot m^{-2} \cdot s^{-1} \cdot K^{-1}$

 C_H

$$=\frac{2.474\times10^{-4}\,mol\cdot kg^{-1}s^{-1}\times101.64\,kJ\cdot mol^{-1}\times600\,kg\cdot m^{-3}\times1.875\times10^{-1}}{(0.017\sim0.089)kJ\cdot m^{-2}\cdot s^{-1}\cdot K^{-1}\times8.314\,\times10^{-3}kJ\cdot mol^{-1}\cdot K^{-1}}$$

 $= (1.053 \sim 5.514) \times 10^{-3} \ll 0.15$

Therefore, the heat transfer limitation can be neglected.

Entr	Catalysts	Conversion,	Selectivity, %				
у		%	1,3-PDO	n-PrOH	1,2-PDO	i-PrOH	C ₃₋
1	1.5Pt/WO _x (APT)	1.8	19.6	23.1	12.3	8.9	36.1
2	1.5Pt/Beta	3.8	23.6	28.2	5.9	3.2	39.1
3	1.5Pt/0.5W(APT)/Beta	40.5	43.5	23.6	1.1	2.6	29.2
4	1.5Pt/0.5W(APT)/ZSM-5	16.4	41.2	21.3	1.2	4.3	32.0
5	1.5Pt/0.5W(APT)/USY	16.5	45.4	26.8	11.4	8.3	8.1
6	1.5Pt/0.5W(APT)/HY	7.92	48.4	20.7	8.6	4.3	18.0
7	1.5Pt/0.5W(WCl ₆)/Beta	36.1	35.7	25.1	2.1	2.3	34.8
8	1.5Pt/0.5W(Na ₂ WO ₄)/Beta	28.3	36.7	19.6	2.0	3.5	38.2
9	1.5Pt/0.5W(AMT)/Beta	37.3	34.1	24.2	2.0	2.8	36.9
10	1.5Pt/0.5W(HSiWO _x)/Beta	28.9	36.8	25.0	1.8	2.4	34.0
11	1.5Pt/0.1W(APT)/Beta	9.9	43.4	25.8	6.4	4.9	19.5
12	1.5Pt/0.3W(APT)/Beta	23.6	41.9	23.8	2.2	2.6	29.5
13	1.5Pt/0.7W(APT)/Beta	31.1	38.6	30.9	2.5	2.6	25.4
14	1.5Pt/1.0W(APT)/Beta	29.5	33.7	23.4	1.9	2.6	38.4
15	1.5Pt/1.5W(APT)/Beta	22.8	29.7	22.7	2.6	2.6	42.4
16	1.5Pt/8.5W(APT)/Beta	5.4	27.1	29.6	6.8	7.6	28.9
17	0.5Pt/0.5W(APT)/Beta	19.7	30.4	21.4	2.8	3.7	41.7
18	1.0Pt/0.5W(APT)/Beta	24.6	38.1	26.1	2.1	4.6	29.1
19	3.0Pt/0.5W(APT)/Beta	26.0	37.8	28.5	3.8	5.2	24.7

Table S1 Reaction performance of the synthesized catalyst ^a.

^{*a*} Reaction condition: 10 ml of 30 g/L glycerol, 0.2 g catalysts at 160 °C of reaction temperature, 4.0 MPa of initial hydrogen pressure and 3h of reaction time.

 C_{3-} indicates the total products of C-C breakage in the aqueous products, including ethanol, methanol, and ethylene glycol, etc.

Catalysts	^a DT, 100°C		^a DT, 200 °C		² DT, 350 ℃		
Catalysis	n _B , μmol/g	n _L , μmol/g	n _{B,} μmol/g	n _∟ , μmol/g	n _B , μmol/g	n _∟ , µmol/g	
Beta	180.9	332.7	179.5	152.3	154.7	71.8	
WO _x (APT)	0	0.9	0	0	0	0	
WO _x /Beta	290.8	57.6	256.6	54.6	178.7	51.6	

Table S2 Acidic properties of the different supports

^aDT is short for desorption temperature.

 Table S3 Elemental analysis of fresh and used Pt/WOx/Beta.

Catalysts	^a Ratio of W, %	^{<i>a</i>} Ratio of Pt, %	^b Ratio of Al, %	^b Ratio of Si, %	
Fesh Pt/WO _x /Beta	0.471	1.497	3.191	40.083	
Spent Pt/WO _x /Beta	0.468	1.509	3.028	42.633	

^{*a*} W and Pt weight ratio are determined by ICP-AES

^b Si and Al weight ratio are determined by XRF.

					,		
Entry	Substrates	Conversion,	Selectivity, %				
		%	1,3-PDO	n-PrOH	1,2-PDO	i-PrOH	C ₃₋
1	Glycerol	40.5	43.5	23.6	1.1	2.6	29.2
2	1,2-PDO	61.5		69.4		3.3	27.3
3	1,3-PDO	4.6		71.6			28.4

Table S4 Reaction performance of different substrates over Pt/WO_x/Beta catalyst ^a

^{*a*} Reaction condition: 10 ml of 30 g/L substrates, 0.2 g catalysts at 160 °C of reaction temperature, 4.0 MPa of initial hydrogen pressure and 3 h of reaction time.

 C_{3-} indicates the total products of C-C breakage in the aqueous products, including ethanol, methanol, and ethylene glycol, etc.

Fig. S1 Infrared Spectroscopy of the different supports after adsorbing pyridine followed by desorption at 200 °C. The pyridine adsorption/desorption in situ infrared study determined the type of acids on the catalyst and the used support shows abundant acid sites containing Brønsted acid (1540 cm⁻¹) and Lewis acid (1450 cm⁻¹ and 1612 cm⁻¹).

Fig. S2 A) N₂ adsorption isotherm linear plot and B) pore diameter distribution of Beta zeolite.

Fig. S3 SEM (A and B) and TEM (C and D) images of Beta zeolite.

Fig. S4 CO pulse images of Pt/WO_x/Beta catalyst with different Pt loading, A) 0.5%Pt/WO_x/Beta, B) 1.5%Pt/WO_x/Beta, C) 3.0%Pt/WO_x/Beta.

Fig. S5 H_2 DRIFT of Pt/WO_x/Beta catalyst at high temperature (300 °C).

Fig. S6 $\rm H_2$ TPR curves of Pt/WO_x/Beta and Pt/Beta catalyst.

Fig. S7 XRD patterns of fresh and spent Pt/WO_x/Beta catalyst.

Fig. S8 TEM images of A) fresh and B) spent Pt/WO_x/Beta catalysts.

Fig. S9 The effect of H_2 initial pressure on the glycerol conversion and product selectivity, reaction temperature: 160 °C, glycerol aqueous flow rate: 0.1 ml/min, glycerol concentration: 500 g/L.

.

References

- 1 F. A. Braggio, M. D. Mello, B. C. Magalhães, J. L. Zotin and M. A. P. Silva, Energ. Fuel 2019, **33**, 1450–1457.
- 2 U. Nuravifah, S.-E. Putri, Y. Winbisono, Budhi and J. RIzkiana, IOP Conf. Ser.: Mater. Sci. Eng. 2019, 622, 012024