Electronic Supplementary Information Role of transition metals on MoS₂-based supported catalysts for hydrodeoxygenation (HDO) of Propylguaiacol

You Wayne Cheah^a, Muhammad Abdus Salam^a, Prakhar Arora^{a,b}, Olov Öhrman^b, Derek Creaser ^a and Louise Olsson^{a,*}

^aCompetence Centre for Catalysis, Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden

^bPreem AB Sweden

*Corresponding author: <u>louise.olsson@chalmers.se</u>

Kraft lignin liquid product analysis (2D GC × GC-MS-FID analysis)

The individual product selectivity in the liquid was calculated by dividing the corresponding MS blob volume of the product by the total MS blob volume for all identifiable products in the liquids.

The bio-liquid products were also analyzed by GC × GC-MS-FID on Agilent 7890B gas chromatograph equipped with an oven, a flow splitter, a modulator, and a flame ionization detector. The injector temperature was 280 °C and the sample injection volume was 1 μ L. Helium gas was used as a carrier gas with a flow rate of 1 mL/min with a split ratio of 30. The chromatographic separation involves two columns: a mid-polar phase column VF-1701MS (30 m × 250 μ m × 0.25 μ m) and a non-polar phase column DB-5MS UI (1.2 m × 150 μ m × 0.15 μ m). Modulation time on the modulator is 8 s. The oven temperature was initially set at 40 °C for 1 min and then heated up to 280 °C at a rate of 2 °C/min. The flame ionization detector temperature was set at 250 °C. The hydrogen flow rate is 30 mL/min and the airflow rate is 350 mL/min. The analysis was performed using the GCImage software for multidimensional chromatography.

Entry	Sulfided catalysts	Model compound (Phenolics)	Solvent	Conversion (%)	Reaction parameters (reactor type, reaction time, temperature, and pressure)	action ameters tor type, Major products ion time, (selectivity %) ature, and essure)	
1	MoS_2	4-propylguaiacol	Dodecane	99.2	Batch, 6 h, 300 °C and 40 bar	Propylcyclohexane (5%), 4- Propylcyclohexene (2.9%), Propylbenzene (57.4%) and 4- Propylphenol (34.7%)	1
2	NiS2-MoS2	4-propylguaiacol	Dodecane	99.7	Batch, 6 h, 275 °C and 40 bar	Propylcyclohexane (31.6%), 4- Propylcyclohexene (0.6%), Propylbenzene (47.4%) and 4- Propylphenol (20.4%)	1
3	CoS ₂ -MoS ₂	4-propylguaiacol	Dodecane	100	Batch, 6 h, 250 °C and 40 bar	Propylcyclohexane (13.4%), 4- Propylcyclohexene (0.6%), Propylbenzene (83.7%) and 4- Propylphenol (2.3%)	1
4	Commercial sulphided NiMo/γAl ₂ O ₃	Phenol	Dodecane	-	Continuous, WHSV = 29/ 36 h ⁻¹ , 200/ 220/ 250 °C and 30 bar	Cyclohexene (traces), Cyclohexane (93.4%) and benzene (6.5%) for 200 °C and 29 h ⁻¹	2
5	Commercial reduced NiMo/γAl ₂ O ₃	Phenol	Dodecane	100	Continuous, WHSV = 11/ 21 h ⁻¹ , 130/ 145 °C and 30 bar	Cyclohexene (<2.5%), Cyclohexane (10%) and Cyclohexanol (90%) for 130 °C and 11 h ⁻¹	2
6	CoMoS	p-cresol	Decalin	100 after 3 h	Batch, 4 h, 300 °C and 40 bar	Arene yield (98%)	3
7	CoMo/Al ₂ O ₃ - TiO ₂	Phenol	Dodecane	93	Batch, 4 h, 320 °C and 54 bar	Benzene (65%), Cyclohexane (25%) and Cyclohexene (3%)	4
8	RuS ₂ /SBA-15	Phenol	Decalin	9	Continuous, WHSV = 1.28 h^{-1} , 310 °C, TOS = $4 hand 30 bar$	Cyclohexane (40%), Cyclohexene (54%), Benzene (3%) and Cyclohexanol (3%)	5
9	Ir-RuS ₂ /SBA-15	Phenol	Decalin	41	Continuous, WHSV = 1.28 h^{-1} , 310 °C, TOS = $4 hand 30 \text{ bar}$	Cyclohexane (63%), Cyclohexene (11%), Benzene (7%) and Cyclohexanol (19%)	5
10	Pt-RuS ₂ /SBA-15	Phenol	Decalin	37	Continuous, WHSV = 1.28 h^{-1} , 310 °C, TOS = $4 hand 30 bar$	Cyclohexane (62%), Cyclohexene (11%), Benzene (11%) and Cyclohexanol (16%)	5
11	Ni/W/TiO ₂	Guaiacol	n-decane	100	Batch, 2.5 h, 300 °C and 70 bar	Phenol (37%), Cyclohexane (16%), Benzene (1%), Creasol (3%) and others (43%)	6
12	NiMo/Al ₂ O ₃	2-ethylphenol	toluene	23	Continuous, 1.11 min (contact time), 340 °C and 70 bar	Oxygenated compounds (19.1%) and deoxygenated compounds (80.9%)	7
13	CoMo/Al ₂ O ₃	2-ethylphenol	toluene	24	Continuous 1.15 min (contact time), 340 °C and 70 bar	Oxygenated compounds (27.7%) and deoxygenated compounds (72.3%)	7

Table S1: State of the art sulfided catalysts for HDO of phenolics.

14	Mo/Al ₂ O ₃	2-ethylphenol	toluene	22	Continuous 2.3 min (contact time), 340 °C and 70 bar	Oxygenated compounds (48.4%) and deoxygenated compounds (51.6%)	7
15	NiWS supported on TiO ₂ , ZrO ₂ , and TiO ₂ -ZrO ₂	Guaiacol	Hexadecane	100	Batch, 320 °C, 55 bar H ₂ , and 1000 rpm	80% cycloalkanes (NiWS-TiO ₂)	8
16	CoMoS supported on Al ₂ O ₃	Phenol/2-ethylphenol	Toluene	-	Continuous, 400 °C, 70 bar	HDO activity (29.1 mmol. h ⁻¹ g ⁻¹) for phenol and (22 mmol.h ⁻¹ g ⁻¹) for 2- ethylphenol	9
17	NiMoS/CoMoS supported on γ- Al ₂ O ₃	Guaiacol/Phenol	m-xylene /n- hexadecane	30-100	Continuous/batch, 200-350 °C, 75-80 bar	Cycloalkanes (55% for NiMo and 45% for CoMo) at 300 °C	10
18	CoMoS supported on Al ₂ O ₃	Phenol, o-cresol, anisole, 4-methylanisole, catechol, guaiacol, 4- methylguaiacol, 1,3- dimethoxybenzene, syringol, and vanillin.	Dodecane	25-90	Batch, 4 h, 300 °C and, 50 bar	See ref ¹¹	11
19	NiMoS supported on γ- Al ₂ O ₃	Phenol and methyl heptanoate	Dodecane	100	Batch, 200/250 °C, and 75 bar	Cyclohexane (85%), cyclohexyl cyclohexane (14%), and others (1%)	12
20	CoMoP/MgO	Phenol	Supercritical hexane	17-90	Batch, 350-450 °C, 1 h and 50 bar	Benzene (65%) and other (26%) at 450 °C	13
21	NiMoS/CoMoS supported on γ- Al ₂ O ₃	Phenol and methyl heptanoate	m-xylene	5-28	Batch/continuous, 250 °C, 1 h and 15 bar	See ref ¹⁴	14
22	CoMoS supported on Al ₂ O ₃	Methyl-substituted phenols	n-heptane/n- decane	10-50	Continuous, 300 °C and 28.5 bar	See ref ¹⁵	15
23	CoMoS on activated carbon	Guaiacol, ethyldecanoate, and 4- methylacetophenone	-	17-19	Continuous, 270 °C and 75 bar	See ref ¹⁶	16
24	MoS ₂ on activated carbon	Guaiacol	Decalin	10-30	Batch, 300 °C, 50 bar, and 1000 rpm	See ref ¹⁷	17
25	MoS_2 on activated carbon	Guaiacol	Dodecane	55	Batch, 300 °C, 50 bar, 5 h and 1000 rpm	Phenol (52%), Cycloalkanes (12.2%), cyclohexanol (5%), anisole (0.3%), benzene (0.4%), catechol (1.8%), veratrole (0.8%), methanol (0.04%) and gases.	18
26	ReS ₂ /SiO ₂	Guaiacol and phenol	Hexadecane and dodecane	15-20	Batch, 250 °C, 50 bar, and 4 h	For guaiacol, phenol (13%), catechol (1%), and cyclohexanol (0.5%)	19
27	ReS ₂ /SiO ₂	Guaiacol	Dodecane	80	Batch, 300 °C, 50 bar, and 4 h	For ReS ₂ /SiO ₂ , phenol (60%), cyclohexane (20%) and others.	20
28	ReS ₂ /activated carbon	Guaiacol	Dodecane	40-80	Batch, 300 °C, 50 bar, and 4 h	See ref ²¹	21
29	ReS ₂ /SiO ₂ (Al ₂ O ₃)	Guaiacol and 4,6- dimethyldibenzothiophene	Dodecane	80	Batch, 300 °C, 50 bar, and 4 h	See ref ²²	22
30	Re/ZrO ₂ and Re/ZrO ₂ - sulphated	Guaiacol	Decaline	10-70	Batch, 300 °C, 50 bar, and 4 h	See ref ²³	23
31	CoS ₂ /MoS ₂	Creosol and phenol derivatives	Dodecane	18-98	Batch, 250 °C, 40 bar, and 1 h	For CoMo-0.3, toluene (99%)	24
32	MoS ₂ and CoMoS ₂	Phenol	n-decane	30-98	Batch, 350 °C, 28 bar, 150 rpm, and 1 h	See ref ²⁵	25

33	Amorphous NiMoS	Phenol	n-decane	34.5-96.2	Batch, 350 °C, 28 bar, 150 rpm, and 1 h	For NiMoS-0.3, benzene (30.4%), cyclohexane (52.4%), cyclohexene (9.8%), cyclohexanone (7.4%)	26
34	MoS_2	Phenol, 4-methylphenol, and 4-methoxyphenol	Hexadecane	34-52	Batch, 350 °C, 28 bar, 1000 rpm, and 7 h	For phenol, benzene (36%), methylcylohexane (6%) and cyclohexylbenzene (43%)	27
35	NiMoW	Guaiacol	-	99	Continuous, 400 °C, 28 bar, and WHSV = 2.7 h^{-1}	Phenol (45%), creosol (15%), catechol (10%), and hydrocarbon (30%)	28
36	CoMoS	p-cresol	Dodecane	78.8-98.7	Batch, 350 °C, 28 bar, 900 rpm, and 7 h	For CoMo-0.5-200, methylcyclohexane (6.3%), methylcyclohexene (1.5%) and toluene (92.2%)	29
37	Ni-WMoS	p-cresol	Dodecane	85-97.9	Batch, 300 °C, 40 bar, 700 rpm, and 6 h	For W-Mo-0.5, methylcyclohexane (66.7%), methylcyclohexene (3.2%) and toluene (30.3%)	30
38	NiMo(W)S	4-methylphenol	Decalin	93.9-97.8	Batch, 300 °C, 30 bar, 800 rpm, and 5 h	Toluene (87.2%), methylcyclohexane (11.3%), and 4- methylcyclohexene (1.5%)	31
39	NiMoWS	4-methylphenol	Decalin	87-100	Batch, 300 °C, 30 bar, 800 rpm, and 5 h	Toluene (95.6%), methylcyclohexane (2.9%), and 4- methylcyclohexene (1.5%)	32
40	MoP, MoS_{2} , and MoO_{x}	4-methylphenol	Decalin	30-100	Batch, 300 °C, 30 bar, 800 rpm, and 5 h	See ref ³³	33
41	MoS ₂ (effect of adding CTAB)	p-cresol	Dodecane	42-100	Batch, 275 or 300 °C, 40 bar, 900 rpm, and 5 h	See ref ³⁴	34
42	NiMoS	p-cresol	Dodecane	67-100	Batch, 300 °C, 40 bar, 900 rpm, and 5 h	For NiMo-0.3, methylcyclohexane (67.1%), 3- methylcyclohexene (4.12%), and toluene (28.8%)	35
43	Fe-MoS ₂	p-cresol	Dodecane	63.3-98.3	Batch, 250 °C, 40 bar, 900 rpm, and 5 h (1.6%), and tolue (94.7%)		36
44	MoS ₂ /Al ₂ O ₃	Propylguaiacol	Dodecane	99	99 Batch, 300 °C, 50 bar, 1000 rpm, and 5 h		This work
45	Ni/MoS ₂ /Al ₂ O ₃	Propylguaiacol	Dodecane	99	Batch, 300 °C, 50 bar, 1000 rpm, and 5 h	Cycloalkanes (93.9%) and aromatics (7.9%)	This work
46	Cu/MoS ₂ /Al ₂ O ₃	Propylguaiacol	Dodecane	99	$\begin{array}{c c} & 5 \text{ h} \\ \hline \\ 99 & \text{Batch, 300 °C, 50} \\ \text{bar, 1000 rpm, and} \\ 5 \text{ h} \\ \end{array} \begin{array}{c} \text{Prop} \\ \text{cycl} \\ \text{and} \\ \end{array}$		This work

47	Zn/MoS ₂ /Al ₂ O ₃	Propylguaiacol	Dodecane	99	Batch, 300 °C, 50 bar, 1000 rpm, and 5 h	Propyphenol (11.3%), cycloalkanes (67.2%) and aromatics (18.9%)	This work
48	Fe/MoS ₂ /Al ₂ O ₃	Propylguaiacol	Dodecane	99	Batch, 300 °C, 50 bar, 1000 rpm, and 5 h	Propyphenol (26.2%), cycloalkanes (58.1%) and aromatics (16.2%)	This work

a)

Figure S1 XPS spectra for sulfided a) Mo b) NiMo c) CuMo d) FeMo and e) ZnMo sulfided catalysts.

Figure S2 Products selectivity for a) phenolics, b) deoxygenated aromatics, and c) deoxygenated cycloalkanes over sulfided catalysts in HDO of PG.

Selectivity	Mo	NiMo	CuMo	ZnMo	FeMo
Deoxygenated cycloalkanes					
Propylcyclopentane	-	0.8	-	-	-
1-methyl-2-propylcyclopentane	4.5	2.9	3.9	-	4.5
Propylcyclohexane	41.2	80.3	27.6	55.7	49.6
Propylcyclohexene	8.3	-	8.9	-	0.5
1-methyl-2-propylcyclohexane	16.3	10.1	3.0	11.8	3.4
1-butenylcyclopentane	-	-	0.9	-	-
Deoxygenated aromatics					
Propylbenzene	3.6	5.2	3.2	19.1	16.2
3-methyl-6-propylbenzene	-	-	1.2	-	-
1-methyl-3-propylbenzene	8.3	1.6	1.4	-	-
Phenolics					
Propylphenol	12.7	-	41.6	9.6	23.7
4-(1-methylpropyl)-phenol	4.8	-	5.6	1.6	2.1
1-methoxyl-4-(1- methylpropyl)benzene	-	-	0.3	-	-

Table S2: Individual reaction product selectivity (major and side products) over sulfided catalysts in HDO of PG at 5 h.

Figure S3 HDO of PG over sulfided (a) Mo, (b) NiMo, (c) CuMo, (d) ZnMo, and (e) FeMo at a total pressure of 50 bar and 300 °C. The solid line denotes the modeling results and the symbols correspond to the experimental values (product yield versus reaction time). Notation: A = Propylguaiacol, B = 4-propylphenol, C = Propylbenzene, D = Propylcyclohexane, E =Propylcyclohexene and I = sum of propylcyclopentane, 1-methyl-2-propylcyclopentane and 1methyl-2-propylcyclohexane.

The kinetic	*NiMo	Мо	NiMo	CuMo	ZnMo	FeMo
rate constant (min ⁻¹)						
<i>k</i> ₁	0.0161 ± 0.0036	$\begin{array}{c} 0.0186 \pm \\ 0.0066 \end{array}$	$\begin{array}{c} 0.0053 \pm \\ 0.0066 \end{array}$	$\begin{array}{c} 0.0074 \pm \\ 0.0058 \end{array}$	0.0148 ± 0.0067	0.0071 ± 0.0235
<i>k</i> ₂	$\begin{array}{c} 0.0167 \pm \\ 0.0051 \end{array}$	0.0089 ± 0.0013	0.0236 ± 0.0039	$\begin{array}{c} 0.0032 \pm \\ 0.0005 \end{array}$	$\begin{array}{c} 0.0105 \pm \\ 0.0017 \end{array}$	$\begin{array}{c} 0.0061 \pm \\ 0.0008 \end{array}$
k3	0.0597 ± 0.0577	0.0365 ± 0.0808	0.0850 ± 0.2364	0.0575 ± 0.2363	0.0165 ± 0.1105	$\begin{array}{c} 8.2378{\times}10^{-6} \\ \pm \ 0.4095 \end{array}$
k₄	0	0.0063 ± 0.0061	$\begin{array}{c} 0.0145 \pm \\ 0.0059 \end{array}$	0.0079 ± 0.0049	0.0074 ± 0.0068	0.0111 ± 0.0242
<i>k</i> 5	0	0.0170 ± 0.0232	0.0288 ± 0.0155	$\begin{array}{c} 0.0165 \pm \\ 0.0141 \end{array}$	0.0202 ± 0.0251	$\begin{array}{c} 0.0610 \pm \\ 0.1408 \end{array}$
k ₆	0	0.0047 ± 0.0057	0.0018 ± 0.0054	0.0054 ± 0.0059	0.0028 ± 0.0044	0.0017 ± 0.0063
<i>k</i> 7	0	0.0156 ± 0.0267	0.0266 ± 0.1015	$\begin{array}{c} 0.0205 \pm \\ 0.0296 \end{array}$	0.0113 ± 0.0249	0.0224 ± 0.1075
k_8	0	0.0126 ± 0.0196	0.0035 ± 0.0075	0.0034 ± 0.0248	0.0103 ± 0.0137	0.0034 ± 0.0068
k9	0	0.0714 ± 0.1204	0.0992 ± 0.2610	0.0941 ± 0.3544	$\begin{array}{c} 0.0673 \pm \\ 0.1333 \end{array}$	0.0637 ± 0.4129
k ₁₀	0	0.0147 ± 0.0163	0.0553 ± 0.1364	0.0092 ± 0.0234	$\begin{array}{c} 0.0282 \pm \\ 0.0505 \end{array}$	0.0644 ± 0.4306
k ₁₁	0	0.0039 ± 0.0011	0.0011 ± 0.0002	$\begin{array}{c} 0.0012 \pm \\ 0.0020 \end{array}$	0.0033 ± 0.0009	0.0016 ± 0.0009
R ₂	90.5	89.7	97.0	90.1	88.3	91.0

Table S3: Apparent kinetic rate constant values for all catalyst systems for HDO of PG.*Simplified model

Figure S4 2D GC x GC chromatograms for hydrotreatment of kraft lignin over sulfided a) ZnMo, b) FeMo, and c) NiMo at 340 °C and 40 bar initial H_2 pressure.

References

- 1 K. Wu, Y. Liu, W. Wang, Y. Huang, W. Li, Q. Shi and Y. Yang, *Mol. Catal.*, , DOI:10.1016/j.mcat.2019.110537.
- 2 C. C. Templis, C. J. Revelas, A. A. Papastylianou and N. G. Papayannakos, *Ind. Eng. Chem. Res.*, 2019, **58**, 6278–6287.
- 3 W. Song, S. Zhou, S. Hu, W. Lai, Y. Lian, J. Wang, W. Yang, M. Wang, P. Wang and X. Jiang, *ACS Catal.*, 2019, **9**, 259–268.
- J. A. Tavizón-Pozos, V. A. Suárez-Toriello, P. Del Ángel and J. A. De Los Reyes, *Int. J. Chem. React. Eng.*, 2016, **14**, 1211–1223.
- 5 A. Infantes-Molina, B. Pawelec, J. L. G. Fierro, C. V. Loricera, A. Jiménez-López and E. Rodríguez-Castellón, *Top. Catal.*, 2015, **58**, 247–257.
- 6 Y. K. Hong, D. W. Lee, H. J. Eom and K. Y. Lee, *J. Mol. Catal. A Chem.*, 2014, **392**, 241–246.
- 7 Y. Romero, F. Richard and S. Brunet, *Appl. Catal. B Environ.*, 2010, **98**, 213–223.
- 8 C. García-Mendoza, C. E. Santolalla-Vargas, L. G. Woolfolk, P. del Ángel and J. A. de los Reyes, *Catal. Today*, DOI:10.1016/j.cattod.2020.08.026.
- 9 M. Badawi, J. F. Paul, E. Payen, Y. Romero, F. Richard, S. Brunet, A. Popov, E. Kondratieva, J. P. Gilson, L. Mariey, A. Travert and F. Maugé, *Oil Gas Sci. Technol.*, 2013, 68, 829–840.
- 10 A. Gutierrez, E. M. Turpeinen, T. R. Viljava and O. Krause, *Catal. Today*, 2017, **285**, 125–134.
- 11 A. L. Jongerius, R. Jastrzebski, P. C. A. Bruijnincx and B. M. Weckhuysen, *J. Catal.*, 2012, **285**, 315–323.
- 12 E. M. Ryymin, M. L. Honkela, T. R. Viljava and A. O. I. Krause, *Appl. Catal. A Gen.*, 2010, **389**, 114–121.
- 13 Y. Yang, A. Gilbert and C. (Charles) Xu, *Appl. Catal. A Gen.*, 2009, **360**, 242–249.
- 14 O. I. Şenol, E. M. Ryymin, T. R. Viljava and A. O. I. Krause, *J. Mol. Catal. A Chem.*, 2007, **277**, 107–112.
- 15 F. E. Massoth, P. Politzer, M. C. Concha, J. S. Murray, J. Jakowski and J. Simons, *J. Phys. Chem. B*, 2006, **110**, 14283–14291.
- 16 M. Ferrari, S. Bosmans, R. Maggi, B. Delmon and P. Grange, *Catal. Today*, 2001, **65**, 257–264.
- 17 P. E. Ruiz, B. G. Frederick, W. J. De Sisto, R. N. Austin, L. R. Radovic, K. Leiva, R. García, N. Escalona and M. C. Wheeler, 2012, **27**, 44–48.
- 18 S. Mukundan, M. Konarova, L. Atanda, Q. Ma and J. Beltramini, *Catal. Sci. Technol.*, 2015, **5**, 4422–4432.
- 19 K. Leiva, C. Sepúlveda, R. García, J. L. G. Fierro and N. Escalona, *Catal. Commun.*, 2014, **53**, 33–37.

- K. Leiva, N. Martinez, C. Sepulveda, R. García, C. A. Jiménez, D. Laurenti, M. Vrinat, C. Geantet, J. L. G. Fierro, I. T. Ghampson and N. Escalona, *Appl. Catal. A Gen.*, 2015, 490, 71–79.
- 21 C. Sepúlveda, R. García, P. Reyes, I. T. Ghampson, J. L. G. Fierro, D. Laurenti, M. Vrinat and N. Escalona, *Appl. Catal. A Gen.*, 2014, **475**, 427–437.
- 22 C. Sepúlveda, N. Escalona, R. García, D. Laurenti and M. Vrinat, *Catal. Today*, 2012, **195**, 101–105.
- 23 P. E. Ruiz, K. Leiva, R. Garcia, P. Reyes, J. L. G. Fierro and N. Escalona, *Appl. Catal. A Gen.*, 2010, **384**, 78–83.
- 24 W. Wang, L. Li, K. Wu, G. Zhu, S. Tan, Y. Liu and Y. Yang, *RSC Adv.*, 2016, **6**, 31265–31271.
- B. Yoosuk, D. Tumnantong and P. Prasassarakich, *Chem. Eng. Sci.*, 2012, **79**, 1–7.
- 26 B. Yoosuk, D. Tumnantong and P. Prasassarakich, *Fuel*, DOI:10.1016/j.fuel.2011.08.001.
- 27 Y. Q. Yang, C. T. Tye and K. J. Smith, *Catal. Commun.*, 2008, **9**, 1364–1368.
- C. C. Tran, F. Stankovikj, M. Garcia-Perez and S. Kaliaguine, *Catal. Commun.*, 2017, 101, 71–76.
- 29 W. Wang, K. Zhang, L. Li, K. Wu, P. Liu and Y. Yang, *Ind. Eng. Chem. Res.*, 2014, **53**, 19001–19009.
- 30 W. Wang, K. Zhang, Z. Qiao, L. Li, P. Liu and Y. Yang, *Catal. Commun.*, 2014, **56**, 17–22.
- 31 C. Wang, D. Wang, Z. Wu, Z. Wang, C. Tang and P. Zhou, *Appl. Catal. A Gen.*, 2014, **476**, 61–67.
- 32 C. Wang, Z. Wu, C. Tang, L. Li and D. Wang, *Catal. Commun.*, 2013, **32**, 76–80.
- 33 V. M. L. Whiffen and K. J. Smith, *Energy and Fuels*, 2010, **24**, 4728–4737.
- 34 W. Wang, L. Li, K. Zhang, Z. Qiao, P. Liu and Y. Yang, *React. Kinet. Mech. Catal.*, 2014, **113**, 417–429.
- 35 W. Wang, L. Li, K. Wu, K. Zhang, J. Jie and Y. Yang, Appl. Catal. A Gen., 2015, 495, 8–16.
- 36 X. Guo, W. Wang, K. Wu, Y. Huang, Q. Shi and Y. Yang, *Biomass and Bioenergy*, 2019, **125**, 34–40.