Supporting Information

Zinc-Electrocatalyzed Hydrogenation of Furfural in Near-Neutral Electrolytes

Manali S. Dhawan, [†] Ganapati D. Yadav, [‡] and Scott Calabrese Barton^{*, †}

[‡]Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh

Marg, Matunga, Mumbai 400019, India

E-mail: gdyadav@yahoo.com

*, [†]Department of Chemical Engineering and Material Science, Michigan State University, East

Lansing, Michigan 48824, United States

Telephone: 5175759393, E-mail: scb@msu.edu

Figure S1. GC chromatogram of reaction mixture containing furfural (F); furfuryl alcohol (FAL), 2-methylfuran (MF), p-xylene (internal standard, IS).

Figure S2. Experimental (Exp.) and fitted (Fit) concentration profile of furfural in anode chamber after permeation

Figure S3. CV showing polarization curves obtained with zinc at different pH (dashed lines = No furfural, bold lines = 100 mM furfural)

Figure S4. CV showing polarization curves obtained with different catalysts in 0.5 M NaHCO_3 (dashed lines = No furfural, bold lines = 100 mM furfural)

Figure S5. EDS spectra of the clean zinc wire, used zinc wire and zinc precipitates

Figure S6. Change in electrolyte pH and Open Circuit potential during two-hour ECH electrolysis. Closed symbols: initial conditions; Open symbols: final conditions.

Figure S7. pH as a function of base concentration for a) Phosphate buffer b) Sodium bicarbonate buffer

Figure S8. Variation of **(a).** Conversion of furfural, **(b).** Yield of FAL, **(c).** FE of FAL, **(d).** Yield of MF, **(e).** FE of MF with electrolyte pH (Literature vs this work)

Figure S9. GC chromatogram of reaction mixture containing furfural (F); furfural alcohol (FAL), p-xylene (internal standard, IS) and side products (alpha-furoin (Ethanone,1,2-di-2-furanyl-2hydroxy); hydrofuroin (1,2-Ethanediol, 1,2-di-2-furanyl-); 4-methyl-5-(2-methyl-2-propenyl)-2(5H)-furanone and 1-(2-furanyl)-3-methyl-butene-1,2-diol [cold trap sample containing MF not analyzed by GC-MS].

		Similarity Index of Chemical Products			
		alpha-furoin	Hydrofuroin	4-methyl-5-(2- methyl-2- propenyl)-2(5H)- furanone	1-(2-furanyl)-3- methyl-butene- 1,2-diol
Retention Time / min	42.8	87	-	88	89
	43.1	87	-	89	-
	43.3	80	-	-	-
	43.5	83	82	-	-
	43.7	82	84	85	82
	43.9	82	85	85	

Table S1. Similarity indices of probable chemical compounds at respective peak retention times in GC chromatogram [Fig. S9]

Figure S10. GC Mass spectra with probable chemical side products. (a) Mass spectrum of GC peak at 43.7 min retention time. Reference mass spectrum for (b) 4-methyl-5-(2-methyl-2-propenyl)-2(5H)-furanone; (c) hydrofuroin; (d) alpha-furoin; (e) 1-(2-furanyl)-3-methyl-butene-1,2-diol.

Figure S11. Proposed mechanism for ECH of furfural

References

[1] X.H. Chadderdon, D.J. Chadderdon, J.E. Matthiesen, Y. Qiu, J.M. Carraher, J.P.

Tessonnickeler, W. Li, Mechanisms of Furfural Reduction on Catalyst Electrodes:

Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates, J. Am. Chem. Soc. 139 (2017) 14120–14128. doi:10.1021/jacs.7b06331.

[2] S. Jung, E.J. Biddinger, Electrocatalytic Hydrogenation and Hydrogenolysis of Furfural and the Impact of Homogeneous Side Reactions of Furanic Compounds in Acidic Electrolytes, ACS Sustain. Chem. Eng. 4 (2016) 6500–6508. doi:10.1021/acssuschemeng.6b01314.

[3] S. Jung, A.N. Karaiskakis, E.J. Biddinger, Enhanced activity for electrochemical hydrogenation and hydrogenolysis of furfural to biofuel using electrodeposited Cu catalysts, Catal. Today. 323 (2019) 26–34. doi:10.1016/j.cattod.2018.09.011.

[4] P. Parpot, A.P. Bettencourt, G. Chamoulaud, K.B. Kokoh, E.M. Belgsir, Electrochemical investigations of the oxidation-reduction of furfural in aqueous medium - Application to electrosynthesis, Electrochim. Acta. 49 (2004) 397–403. doi:10.1016/j.electacta.2003.08.021.
[5] Z. Li, S. Kelkar, C.H. Lam, K. Luczek, J.E. Jackson, D.J. Miller, C.M. Saffron, Aqueous electrocatalytic hydrogenation of furfural using a sacrificial anode, Electrochim. Acta. 64 (2012) 87–93. doi:10.1016/j.electacta.2011.12.105.

[6] B. Zhao, M. Chen, Q. Guo, Y. Fu, Electrocatalytic hydrogenation of furfural to furfuryl alcohol using platinum supported on activated carbon fibers, Electrochim. Acta. 135 (2014) 139– 146. doi:10.1016/j.electacta.2014.04.164.

[7] L. Liu, H. Liu, W. Huang, Y. He, W. Zhang, C. Wang, H. Lin, Mechanism and kinetics of the electrocatalytic hydrogenation of furfural to furfuryl alcohol, J. Electroanal. Chem. 804 (2017) 248–253. doi:10.1016/j.jelechem.2017.09.021.