Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supporting information

Advanced electrocatalyst for efficient synthesis of ammonia based on chemically coupled NiS@MoS₂ heterostructured nanospheres

Shoushuang Huang a, Chunyan Gao a, Peijun Xin a, Haitao Wang a, Xiao Liu a, Ye

Wu^a, Qingquan He^a, Yong Jiang^a, Zhangjun Hu^{*, a, b}, Zhiwen Chen^{*, a}

^a School of Environmental and Chemical Engineering, Shanghai University, Shanghai,200444, China

^b Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden

Corresponding Author: E-mail:

zwchen@shu.edu.cn

Fig. S1. (a) Nitrogen adsorption/desorption isotherms. (b) Pore diameter distribution curve of NiS₂-NiS nanospheres.

Fig. S2. SEM image of the as-synthesized pure MoS_2 product.

Fig. S3. (a) Nitrogen adsorption/desorption isotherms. (b) Pore diameter distribution curve of NiS@MoS₂ nanocomposites.

			4			= 1			
	-	Elem	ent		wt/%		at/%	-	
		S K			35.46		52.33		
		Ni K			50.64		40.82		
		Mo I			13.90		6.85		
		Tota			100				
۹	\$ •						-		
2	2 4	6	8	10	12	14	16	18	ke

Fig. S4. The energy-dispersive X-ray spectroscopy (EDX) of the as-synthesized $NiS@MoS_2$ heterostructures.

Fig. S5. Schematic illustration of the NRR process.

Fig. S6. (a) Absorbance spectra of indophenol blue in NH_4^+ solutions at various concentrations. (b) Linear correlation of the absorbance intensity to NH_4^+ concentration. (c) UV-vis curves of N_2H_4 · H_2O after incubated for 10 min at room temperature. (d) Calibration curve used for calculation of N_2H_4 concentration.

Fig. S7. (a) Ion chromatogram of NH_4Cl with different concentrations in 0.1 M Na_2SO_4 and (b) corresponding standard curve. (c) Ion chromatogram for the electrolytes at a series of potentials after electrolysis for 2 h. (d) NH_3 yield of $NiS@MoS_2$ at corresponding potentials.

Fig. S8. (a) UV-vis absorption spectra of the electrolytes stained by the Watt and Chrisp method after potentiostatic tests. (b) The yield rate for ammonia and hydrazine generated during electrochemical NRR at -0.3 V vs. RHE.

Fig. S9. NRR electrocatalysis of MoS_2 . (a) CA tests for 2 h with MoS_2 electrode at various potentials from -0.6 to -0.2 V vs. RHE. (b) Corresponding UV-vis spectra of electrolytes colored with indophenol indicator. (c) Ammonia yield rates at various potentials. (d) Faradaic efficiencies at various potentials.

Fig. S10. NH₃ yields and Faradaic efficiencies for γ -NiOOH/NiS_x (a) and NiS₂-NiS (b) at a series of potentials for 2 h.

Fig. S11. (a) Comparison of catalytic performances of various electrocatalysts at -0.3 V vs. RHE. (b) UV-vis absorption spectra of the electrolytes stained with an indophenol indicator after potentiostatic tests under different conditions.

Catalyst	Electrolyte	NH ₃ yield	FE (%)	Ref.
NiS@MoS ₂	0.1 M Na ₂ SO ₄	9.66 $\mu g h^{-1} \cdot m g^{-1} _{cat}$	14.8	This work
Pd/C	0.1 M PBS	$4.5~\mu g~h^{-1} \cdot m g^{-1}~_{cat}$	8.2	[1]
γ-Fe ₂ O ₃	0.1 M KOH	$0.212 \ \mu g \ h^{-1} \cdot mg^{-1} \ _{cat}$	1.9	[2]
$Pd_{0.2}Cu_{0.8}/rGO$	0.1 M KOH	$2.8~\mu g~h^{-1} \cdot m g^{-1}~_{cat}$	4.5	[3]
α-Au/CeOx-RGO	0.1 M HCl	$8.31 \ \mu g \ h^{-1} \cdot mg^{-1} \ _{cat}$	10.1	[4]
Au nanorods	0.1 M KOH	$6.042 \ \mu g \ h^{-1} \cdot mg^{-1} \ _{cat}$	4	[5]
Fe ₂ O ₃ -CNT	KHCO ₃	$0.22 \ \mu g \ h^{-1} \ cm^{-2}$	0.15	[6]
Pd-Co/CuO	0.1 M KOH	$10.04 \ \mu g \ h^{-1} \cdot mg^{-1} \ _{cat}$	2.16	[7]
Fe/Fe ₃ O ₄	0.1 M PBS	$0.19 \ \mu g \ h^{-1} \ cm^{-2}$	8.19	[8]
Mo nanofilm	0.01 M H2SO4	1.89 μg h ⁻¹ cm ⁻²	0.72	[9]
PEBCD/C	0.5 M Li2SO4	1.58 μg h ⁻¹ cm ⁻²	2.85	[10]

Table S1. Comparison of the electrocatalytic N_2 reduction performance for NiS@MoS₂ with other aqueous-based NRR electrocatalysts under ambient conditions.

References

- [1] J. Wang, L. Yu, L. Hu, G. Chen, H.L. Xin, X.F. Feng, Nat. Commun. 9 (2018).
- [2] J. Kong, A. Lim, C. Yoon, J.H. Jang, H.C. Ham, J. Han, S. Nam, D. Kim, Y.-E.
- Sung, J. Choi, H.S. Park, ACS Sustainable Chem. Eng., 5 (2017) 10986-10995.
- [3] M.-M. Shi, D. Bao, S.-J. Li, B.-R. Wulan, J.-M. Yan, Q. Jiang, Adv. Energy Mater. 8 (2018).
- [4] S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan, Q. Jiang, Adv. Mater. 29 (2017).
- [5] D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M. Yan, Q. Jiang, X.-B. Zhang, Adv. Mater. 29 (2017).
- [6] S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su, G. Centi, Angew. Chem., Int. Ed. 56 (2017) 2699-2703.
- [7] W. Fu, Y. Cao, Q. Feng, W.R. Smith, P. Dong, M. Ye, J. Shen, Nanoscale 11 (2019) 1379-1385.
- [8] L. Hu, A. Khaniya, J. Wang, G. Chen, W.E. Kaden, X. Feng, ACS Catal. 8 (2018)9312-9319.
- [9] D. Yang, T. Chen, Z. Wang, J. Mater. Chem. A 5 (2017) 18967-18971.
- [10]G.-F. Chen, X.R. Cao, S.Q. Wu, X.Y. Zeng, L.-X. Ding, M. Zhu, H.H. Wang, J.Am. Chem. Soc. 139 (2017) 9771-9774.