Electronic Supplementary Information

Synthesis of tailored oxymethylene ether (OME) fuels via transacetalization reactions

Marius Drexler^a, Philipp Haltenort^a, Thomas A. Zevaco^a, Ulrich Arnold^{*a}, Jörg Sauer^a

^{a.} Karlsruhe Institute of Technology (KIT), Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. E-mail: ulrich.arnold@kit.edu

Content:

Page 2:	A Reaction monitoring
	A.1 Transacetalization reaction of D(2-EH)M with DEM
	A.2 Transacetalization reaction of D(2-EH)M with DPM
Page 3:	B NMR spectra
	B.1 NMR spectra for DEM
	B.2 NMR spectra for DPM
	B.3 NMR spectra for DBM
	B.4 NMR spectra for D(2-EH)M
	B.5 NMR spectra for (2-EH)EM
	B.6 NMR spectra for (2-EH)PM
	B.7 NMR spectra for (2-EH)BM
Page 14:	C FTIR spectra
-	C.1 FTIR spectrum of DEM
	C.2 FTIR spectrum of DPM
	C.3 FTIR spectrum of DBM
	C.4 FTIR spectrum of D(2-EH)M
	C.5 FTIR spectrum of (2-EH)EM
	C.6 FTIR spectrum of (2-EH)PM
	C.7 FTIR spectrum of (2-EH)BM
	C.8 Comparison of the FTIR spectra of D(2-EH)M and (2-EH)EM
	C.9 Comparison of the FTIR spectra of DEM and (2-EH)EM
Page 17:	D Mass spectra
	D.1 Mass spectrum of (2-EH)EM and relevant fragments
	D.2 Mass spectrum of (2-EH)PM and relevant fragments
Page 18:	E Tables
	E.1 Molecular structure, CAS number, chemical formula, molar mass and oxygen content of OMDMEs and n-alkanes
	E.2 Physico-chemical properties of OMDMEs and n-alkanes
	E.3 Fuel properties of OMDMEs and n-alkanes
	E.4 Thermodynamic properties of OMDMEs and n-alkanes
	E.5 Joback groups for the description of the investigated OMDAEs (all employed groups exhibit a non-ring structure)
	E.6 Joback parameters for the estimation of boiling point (T_b) and the dynamic viscosities (η_a and η_b) of the investigated OMDAEs (all employed groups exhibit a non-ring structure)
	E.7 Data set used for fitting the regression function coefficients (part 1)
	E.8 Data set used for fitting the regression function coefficients (part 2)
Page 21:	References

A. Reaction monitoring:

Figure A.1: Transacetalization reaction of D(2-EH)M with DEM catalyzed by zeolite BEA-25 (reaction conditions: 60 °C, 400 rpm, 0.78 wt% catalyst).

Figure A.2: Transacetalization reaction of D(2-EH)M with DPM catalysed by zeolite BEA-25 (reaction conditions: 80 °C, 400 rpm, 0.78 wt% catalyst).

B. NMR spectra

B.1 NMR spectra for DEM:

Ε

Figure B.1.1: Nomenclature for NMR analysis of DEM.

Figure B.1.2: ¹H-NMR spectrum for DEM (δ in ppm, J in Hz, in C₆D₆): 4.55 (s, 2H, E); 3.44 (q, 4H, A2, ³JH-H 8 Hz); 0.87 (t, 6H, A1, ³JH-H ~8 Hz).

B.2 NMR spectra for DPM:

Figure B.2.1: Nomenclature for NMR analysis of DPM.

Figure B.2.2: ¹H-NMR spectrum for DPM (δ in ppm, J in Hz, in C₆D₆): 4.57 (s, 2H, **E**); 3.39 (d, 4H, **B3**, ³JH-H= 4); 1.52 (m overlap, 4H, **B2**); 0.87 (pseudo t, overlap, 6H, **B1**, ³JH-H = 8).

B.3 NMR spectra for DBM:

Figure B.3.1: Nomenclature for NMR analysis of DBM.

Figure B.3.2: ¹H-NMR spectrum for DBM (δ in ppm, J in Hz, in C₆D₆): 4.57 (s, 2H, E); 3.45 (t, 4H, C4, ³JH-H= 8 Hz); 1.51 (quint., 4H, C3); 1.32 (m, 4H, C2); 0.85 (t, 6H, C1, ³JH-H= 8 Hz).

B.4 NMR spectra for D(2-EH)M:

Figure B.4.1: Nomenclature for NMR analysis of D(2-EH)M.

6

Figure B.4.4: ^{13}C ; DEPT135 spectrum for D(2-EH)M: δ (ppm, in C_6D_6).

Figure B.4.5: ¹³C spectrum recorded with ¹H coupling via Gated Decoupling measurement for D(2-EH)M: δ (ppm, in C₆D₆).

Figure B.4.6: ${}^{1}H$, ${}^{1}H$ COSY 2D spectrum for D(2-EH)M (δ in ppm, in C₆D₆).

Figure B.4.7: ${}^{1}H$, ${}^{13}C$ -HETCOR 2D spectrum for D(2-EH)M (δ in ppm, in C₆D₆).

B.5 NMR spectra for (2-EH)EM:

Figure B.5.1: Nomenclature for NMR analysis of (2-EH)EM.

Figure B.5.2: ¹H-NMR spectrum for (2-EH)EM (δ in ppm, J in Hz, in C₆D₆, ref. @7.16ppm, J in Hz): 4.56 (s, 2H, **E**), 3.47 (q, 2H, **A2**, ³JH,H 8.0), 3.40 (d, 2H, **D6**, ³JH,H 8.0), 1.50-1.32 (m, 4H, **D5**, **D2**, **D4**), 1.25 (s, broad, 6H, **D7**, **D3**), 1.11 (t, 2H, **A1**, ³JH,H 8.0); 0.87 (m as 2x t overlap, 9H, **D1**, **D8**).

Figure B.5.3: ¹³C-NMR spectrum for (2-EH)EM (δ in ppm, J in Hz, in C₆D₆): 95.46 ppm (**E**, ¹JC-H= 160.9), 70.29 (**D6**, ¹JC-H= 139.6), 63.08 (**A2**, ¹JC-H= 139.3), 40.29 (**D5**, ¹JC-H= 124.1), 31.15 (**D4**, ¹JC-H= 124.2), 29.55 (**D3**, ¹JC-H= 126.6), 24.40 (**D2**, ¹JC-H= 124.2), 23.48 (**D7**, ¹JC-H= 124.2), 15.38 (**A1**, ¹JC-H= 125.8), 14.25 (**D1**, ¹JC-H= 124.3), 11.33 (**D8**, ¹JC-H= 124.5).

B.6 NMR spectra for (2-EH)PM:

Figure B.6.1: Nomenclature for NMR analysis of (2-EH)PM.

Figure B.6.3: ¹³C-NMR spectrum for (2-EH)PM (δ in ppm, J in Hz, in C₆D₆): 95.67 ppm (**E**, ¹JC-H= 161.4); 70.26 (**D6**, ¹JC-H= 138.8); 69.48 (**B3**, ¹JC-H= 140.8); 40.29 (**D5**, ¹JC-H= 125.4); 31.17 (**D4**, ¹JC-H= 128.1); 29.57 (**D3**, ¹JC-H= 126.1); 24.43 (**D2**, ¹JC-H= 125.4); 23.49 (**D7+B2**, ¹JC-H= ~123.4); 14.29 (**D1**, ¹JC-H= 124.8); 11.37 (**D8**, ¹JC-H= 124.8); 10.94 (**B1**, ¹JC-H= 124.8).

B.7 NMR spectra for (2-EH)BM:

Figure B.7.1: Nomenclature for NMR analysis of (2-EH)BM.

Figure B.7.2: ¹H-NMR spectrum for (2-EH)BM (δ in ppm, J in Hz, in C₆D₆): 4.57 (s, 2H, **E**), 3.45 (t, 2H, **C4**, ³JH,H 8.0), 3.40 (d, 2H, **D6**, ³JH,H 8.0), 1.55-1.33 (m, 8H, **C3**, **D5**, **D4**, **D7**), 1.26 (s, broad, 4H, **D3**, **D2**), 0.81 (m as 2x t overlap, 9H, **D1**, **C1**, **D8**).

Figure B.7.3: ¹³C-NMR spectrum for (2-EH)BM (δ in ppm, J in Hz, in C₆D₆): 95.75 ppm (**E**, ¹JC-H= 161.2), 70.41 (**D6**, ¹JC-H= 139.8), 67.61 (**C4**, ¹JC-H= 140.4), 40.36 (**D5**, ¹JC-H= 126.3), 32.37 (**C3**, ¹JC-H= ~122), 31.23 (**D4**, ¹JC-H= 126.1), 29.61 (**D3**, ¹JC-H= 122.1), 24.48 (**D7**, ¹JC-H= 124.1), 23.48 (**D2**, 124.1), 19.83 (**C2**, ¹JC-H= 122.1), 14.25 (**D1**, 124.1), 14.02 (**C1**, ¹JC-H= 124.1), 11.37 (**D8**, ¹JC-H= 124.5).

Figure B.7.4: ^{13}C ; DEPT135 spectrum for (2-EH)BM: δ (ppm, in $C_6D_6).$

Figure B.7.5: 13 C spectrum recorded with 1 H coupling via Gated Decoupling measurement for (2-EH)BM (δ in ppm, in C₆D₆).

Figure B.7.6: ${}^{1}H$, ${}^{1}H$ COSY 2D spectrum for (2-EH)BM (δ in ppm, in C₆D₆).

Figure B.7.7: $^{1}\text{H}, ^{13}\text{C}\text{-HETCOR}$ 2D spectrum for (2-EH)BM (δ in ppm, in $C_6D_6).$

C. FTIR spectra:

Figure C.1: FTIR spectrum of DEM.

Figure C.2: FTIR spectrum of DPM.

Figure C.3: FTIR spectrum of DBM.

Figure C.4: FTIR spectrum of D(2-EH)M.

Figure C.5: FTIR spectrum of (2-EH)EM.

Figure C.6: FTIR spectrum of (2-EH)PM.

Figure C.7: FTIR spectrum of (2-EH)BM.

D. Mass spectra:

Figure D.1: Mass spectrum of (2-EH)EM and relevant fragments.

Figure D.2: Mass spectrum of (2-EH)PM and relevant fragments.

E. Tables:

Compound	Molecular structure	CAS No.	Formula	Molar mass	Oxygen content
				g/mol	wt%
DMM (OMDME ₁)	~0~~0~	109-87-5	$C_3H_8O_2$	76.1	42.05
OMDME ₂	~°~~°~	628-90-0	$C_4H_{10}O_3$	106.1	45.24
OMDME ₃	<u>_0_0_0_0</u> _	13353-03-2	$C_5H_{12}O_4$	136.2	46.99
OMDME ₄	<u>_0_0_0_0_0</u>	13352-75-5	$C_6H_{14}O_5$	166.2	48.13
OMDME ₅	<u>_0_0_0_0_0_0</u> _	13352-76-6	$C_7H_{16}O_6$	196.2	48.93
OMDME ₆	<u>_0_0_0_0_0_0_0</u> _0_	13352-77-7	C ₈ H ₁₈ O ₇	226.2	49.51
n-heptane	~~~~	142-82-5	C7H16	100.21	0.00
n-nonane	~~~~~	111-84-2	C ₉ H ₂₀	128.26	0.00
n-undecane	~~~~~	1120-21-4	$C_{11}H_{24}$	156.31	0.00
n-tridecane	~~~~~	629-50-5	C ₁₃ H ₂₈	184.37	0.00
n-tetradecane	~~~~~~	629-59-4	C ₁₄ H ₃₀	198.39	0.00
n-pentadecane	~~~~~~	629-62-9	$C_{15}H_{32}$	212.42	0.00
n-nonadecane	~~~~~~	629-92-5	C ₁₉ H ₄₀	268.53	0.00

Table E.2: Phy	vsico-chemical	properties	of OMDMEs	and n-alkanes.
10010 2.2.111	ysico chemicar	properties	OI OIVIDIVIL'S	and in alkanes.

Compound	Density at 20 °C	Molar volume	Melting point	Boiling point	Refractive index
	kg/m³	cm³/mol	°C	°C	-
DMM (OMDME ₁)	859.3 ¹	88.6	-105.0 ¹	42.0 ¹	1.351 ¹
OMDME ₂	971.0 ^{2 a}	109.3	-69.7 ³	105.0 ³	1.384 4
OMDME ₃	1030.5 ⁴	132.1	-42.5 ³	155.9 ³	1.396 4
OMDME ₄	1073.7 ⁴	154.8	-9.8 ³	201.8 ³	1.406 4
OMDME ₅	1105.7 ⁴	177.5	18.3 ³	242.3 ³	1.413 4
OMDME ₆	1140.0 ⁵	198.5	38.0 5	273.0 ⁵	-
n-heptane	683.7 ⁶	146.6	-90.6 ⁶	98.4 ⁶	1.386 ^{1 a}
n-nonane	719.2 ¹	178.3	-53.5 ⁶	150.8 ⁶	1.406 ¹
n-undecane	740.2 ¹	211.2	-25.6 ⁶	195.9 ⁶	1.416 ¹
n-tridecane	756.4 ¹	243.7	-5.3 ⁶	235.4 ⁶	1.426 ¹
n-tetradecane	759.6 ¹	261.2	6.0 ⁶	253.5 ⁶	1.429 ¹
n-pentadecane	768.5 ¹	276.4	10.0 ⁶	270.6 ⁶	1.432 ¹
n-nonadecane	785.5 ¹	341.9	32.0 ⁶	330.1 ⁶	1.441 ¹

^a at 25 °C

Table E.3: Fuel properties of	able E.3: Fuel properties of OMDMEs and n-alkanes.									
Compound	Cetane number	Autoignition point	Flash point	Kinematic viscosity at 20 °C	HFRR	CFPP	Surface tension			
	-	°C	°C	mm²/s	μm	°C	mN/m			
DMM (OMDME ₁)	28.0 ^{7 a}	237 ¹	-32 ¹	0.36 ^{4 b}	759 ⁸	-	20.4 ⁹			
OMDME ₂	68.0 ^{7 a}	230 ²	16 ²	0.56 ^{2 c}	545 ^{2 b}	-	27.0 ^{2 b}			
OMDME ₃	72.0 ^{7 a}	235 4	54 ⁴	1.08 ^{4 b}	534 ⁴	-	28.8 ⁴			
OMDME ₄	84.0 ^{7 a}	235 ⁴	88 4	1.72 ^{4 b}	465 ⁴	-	30.7 4			
OMDME ₅	93.0 ^{7 a}	240 ⁴	115 ⁴	2.63 ^{4 b}	437 ⁴	-	32.6 ⁴			
n-heptane	56.0 ¹⁰	204 ¹⁰	-7.4 ¹¹	0.61 6	-	-	20.3 ⁶			
n-nonane	72.0 ¹⁰	205 10	28.8 11	0.97 ⁶	-	-	22.9 ⁶			
n-undecane	81.0 ¹⁰	240 ¹⁰	61.1 ¹¹	1.61 ⁶	-	-	24.7 ⁶			
n-tridecane	90.0 ¹⁰	202 10	90.6 11	2.47 ⁶	-	-	26.0 ⁶			
n-tetradecane	95.0 ¹⁰	220 ¹⁰	104.5 11	3.00 ⁶	-	-	26.6 ⁶			
n-pentadecane	96.0 ¹⁰	202 10	117.9 ¹¹	3.58 ⁶	-	-	27.2 ⁶			
n-nonadecane	-	-	167.4 ¹¹	-	-	-	-			

^a determined according to IP Standard 617

^b at 25 °C

° at 40 °C

Table E.4: Thermodynamic properties of OMDN	/IEs and n-alkanes.			
Compound	ΔH_f^0	ΔH_c^0	LHV	HHV
	kJ/mol	kJ/mol	MJ/kg	MJ/kg
DMM (OMDME ₁)	-443.33	1880.52	22.40 ⁵	24.71
OMDME ₂	-597.06	2406.13	20.60 5	22.67
OMDME ₃	-777.59	2904.94	19.40 ⁵	21.33
OMDME ₄	-946.33	3415.54	18.70 ⁵	20.55
OMDME ₅	-1137.87	3903.34	18.10 ⁵	19.89
OMDME ₆	-1320.19	4400.36	17.70 ⁵	19.45
n-heptane	-223.98 ¹²	4816.92 ¹²	44.56	48.07
n-nonane	-274.97 ¹²	6124.53 ¹²	44.32	47.75
n-undecane	-325.96 ¹²	7432.14 ¹²	44.17	47.55
n-tridecane	-376.96 ¹²	8739.74 ¹²	44.06	47.40
n-tetradecane	-402.45 ¹²	9393.55 ¹²	44.02	47.35
n-pentadecane	-427.95 ¹²	10047.35 ¹²	43.99	47.30
n-nonadecane	-529.93 ¹²	12662.57 ¹²	43.88	47.16

Compound	Joback group				
	-CH₃	-CH2-	>CH-	-0-	
DEM	2	3	0	2	
DPM	2	5	0	2	
DBM	2	7	0	2	
D(2-EH)M	4	11	2	2	
(2-EH)EM	3	7	1	2	
(2-EH)PM	3	8	1	2	
(2-EH)BM	3	9	1	2	
DMM	2	1	0	2	
DPeM	2	9	0	2	
DiBM	6	1	2	2	

Table E.5: Joback groups for the description of the investigated OMDAEs (all employed groups exhibit a non-ring structure).

Table E.6: Joback parameters for the estimation of boiling points (T_b), melting points (T_m), dynamic viscosities (η_a and η_b) and enthalpies of fusion ΔH_f^0 of the investigated OMDAEs¹³ (all employed groups exhibit a non-ring structure).

Estimation parameters	Joback group					
	-CH₃	-CH ₂ -	>CH-	-0-		
Tb	23.58	22.88	21.74	22.42		
T _m	-5.1	11.27	12.64	22.23		
η_{a}	548.29	94.16	-322.15	122.09		
$\eta_{ ext{b}}$	-1.719	-0.199	1.187	-0.386		
$\Delta H_{\rm f}^0$	-76.45	-20.64	29.89	-132.2		

Component		Density at 20 °C	Molar volume	Boiling point	Refractive index
		kg/m³	cm³/mol	°C	-
DMM	~0~0~	-	88.6	42.0 ¹	1.351 ¹
DEM	$\sim^{\circ}\sim^{\circ}\sim$	829.7	125.5	87.1	1.373
DPM	$\sim \sim \sim \sim \sim$	834.6	158.4	135.2	1.393
DBM	$\sim \sim \sim \sim \sim \sim$	835.4	191.8	178.8	1.406
DPeM	~~~°~~~~	841.1 ¹⁴	-	221.6 ¹⁵	1.417 ¹⁴
D(2-EH)M		848.2	321.2	285.1	1.435

Component	Molar	Flash point	Kinematic viscosity	Surface	ΔH_f^0	ΔH_c^0	LHV	HHV
	mass		at 20 °C	tension				
	g/mol	°C	mm²/s	mN/m	kJ/mol	kJ/mol	MJ/kg	MJ/kg
DMM	76.1	-32.0 ¹	0.36 4	20.4 ⁹	-443.33	1880.52	22.40 5	24.71
DEM	104.15	-5.0	0.52	21	-566.67	3115.86	27.38	29.92
DPM	132.20	29.5	0.85	23.1	-543.37	4497.84	31.36	34.02
DBM	160.26	60.5	1.22	24.3	-549.60	5850.29	33.76	36.51
DPeM	188.31	-	-	-	-	-	-	-
D(2-EH)M	272.47	133.5	4.56	27.1	-750.26	11084.35	37.78	40.68

References

- D. R. Lide, ed., CRC handbook of chemistry and physics. A readyreference book of chemical and physical data, CRC Press, Boca Raton, 85th edn., 2004.
- 2 D. Deutsch, D. Oestreich, L. Lautenschütz, P. Haltenort, U. Arnold and J. Sauer, High Purity Oligomeric Oxymethylene Ethers as Diesel Fuels, *Chemie Ingenieur Technik*, 2017, **89**, 486–489.
- 3 R. H. Boyd, Some physical properties of polyoxymethylene dimethyl ethers, *Journal of Polymer Science*, 1961, **50**, 133–141.
- 4 L. Lautenschütz, D. Oestreich, P. Seidenspinner, U. Arnold, E. Dinjus and J. Sauer, Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers, *Fuel*, 2016, **173**, 129–137.
- 5 E. Jacob, M. Stark, M. Härtl and G. Wachtmeister, in *11. Tagung Einspritzung und Kraftstoffe 2018*, ed. H. Tschöke and R. Marohn, Springer Vieweg, Wiesbaden, 2019, pp. 17–55.
- 6 Verein Deutscher Ingenieure, *VDI-Wärmeatlas*, Springer, 2013.
- 7 L. Lautenschütz, D. Oestreich, P. Seidenspinner, U. Arnold, E. Dinjus and J. Sauer, Corrigendum to "Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers" [Fuel 173 (2016) 129–137], *Fuel*, 2017, **209**, 812.
- M. Härtl, P. Seidenspinner, G. Wachtmeister and E. Jacob, Synthetischer Dieselkraftstoff OME1 — Lösungsansatz für den Zielkonflikt NOx-/Partikel-Emission, *MTZ - Motortechnische Zeitschrift*, 2014, **75**, 68–73.
- 9 X. Wang, J. Pan, J. Wu and Z. Liu, Surface Tension of

Dimethoxymethane and Methyl tert -Butyl Ether, *Journal of Chemical & Engineering Data*, 2006, **51**, 1394–1397.

- 10 F. Harnisch, I. Blei, T. R. dos Santos, M. Möller, P. Nilges, P. Eilts and U. Schröder, From the test-tube to the test-engine, *RSC Advances*, 2013, **3**, 9594–9605.
- 11 W. A. Affens, Flammability Properties of Hydrocarbon Fuels. Interrelations of Flammability Properties of n-Alkanes in Air, *J. Chem. Eng. Data*, 1966, **11**, 197– 202.
- 12 E. J. Prosen and F. D. Rossini, Heats of combustion and formation of the paraffin hydrocarbons at 25 degrees C, *J. RES. NATL. BUR. STAN.*, 1945, **34**, 263.
- 13 K. G. Joback and R. C. Reid, Estimation of pure-component properties from group-contributions, *Chemical Engineering Communications*, 1987, **57**, 233– 243.
- 14 D. Kursanov, n-Butyl n-octyl formal, Akad. Nauk S.S.S.R., Inst. Org. Khim. Sintezy Org. Soedinenii Sbornik, **1950**.
- 15 M. Ghysels, Contribution à l'étude des formals des alcools primaires, *Bulletin des Societes Chimiques Belges*, 1924, **33**, 57–78.