Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

A desulfurization fuel cell with alkali and sulfuric acid byproducts: prototype and

model

Jucai Wei, Yueyuan Gu, Xu Wu*

School of Environmental Science and Engineering, Huazhong University of Science

and Technology, Wuhan 430074, China

Figure S1 Schematic of 2-D numerical model

Figure S2 Nyquist plots of the sulfite/air fuel cell with different NaOH concentrations

Figure S3 Equivalent circuit of EIS tests

Table S1 The EIS calculation results of the sulfite/air fuel cell with different NaOHconcentrations based on the equivalent circuit

c(NaOH) / mol L ⁻	R_s / Ω	R_{bulk}/Ω	C _{bulk} / F	$R_{surface}$ / Ω	C _{surface} /
0	2.80	269.30	1.14×10 ⁻⁵	444.70	1.48×10 ⁻ 4
0.1	2.23	6.51	7.28×10 ⁻⁵	9.39	6.45×10 ⁻ 3
0.25	2.15	5.08	8.18×10 ⁻⁵	8.37	6.91×10 ⁻ 3
0.5	1.81	2.73	3.01×10-4	6.46	6.85×10 ⁻ 3
0.75	2.15	6.32	1.82×10 ⁻⁵	5.94	2.69×10 ⁻ 3
1.0	2.30	6.69	3.63×10 ⁻⁵	1.02	6.67×10 ⁻

Table S2 The EIS calculation results of the sulfite/air fuel cell with different Na_2SO_3

c(Na ₂ SO ₃) / mol L ⁻	- / -		~ (=	- /-	~ (-			
1	R_s / Ω	R_{bulk} / Ω	C _{bulk} / F	$R_{surface}$ / Ω	C _{surface} / F			
0.1	5.76	136.70	2.31×10 ⁻³	464.80	9.04×10 ⁻³			
0.5	2.94	15.10	1.64×10 ⁻³	33.27	3.92×10 ⁻²			
1.0	2.47	10.25	1.34×10 ⁻³	10.07	4.52×10-2			
1.5	2.08	6.28	7.41×10 ⁻⁴	7.57	2.19×10 ⁻²			
2.0	2.06	6.13	7.99×10 ⁻⁴	6.97	2.26×10 ⁻²			
50								
	0.1	M Na ₂ SO ₃						
10	<mark>o</mark> 0.5	5 M Na ₂ SO ₃						
40	¯ <u> </u>) M Na ₂ SO ₃						
N	- 🗸 1.5	5 M Na ₂ SO ₃						
Ë 30	- ◇ 2.0) M Na ₂ SO ₃						
Ē	-							
0 20	-							
Ň								
10			0 0					
	-		4	° •				
0) 20	30	40 50				
Z_{4} / ohm cm ⁻²								

concentrations based on the equivalent circuit

Figure S4 Nyquist plots of the sulfite/air fuel cell with different Na₂SO₃ concentrations

Figure S5 Effects of catholyte flow rate on the performances of the sulfite/air fuel

cell