Maximizing utilization of carbon fibers by bimetalliccatalytic etching and electrochemical modification for difunctional aqueous supercapacitors

Jie Zhang^{1,2}, Hao Zhang^{1,2}, Wenli Li^{1,2}, Guangwen Xu¹, Yanbin Cui^{1,2,*}

¹State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

² Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

*E-mail: ybcui@ipe.ac.cn

*Corresponding author: Prof. Yanbin Cui

Supporting information

Experimental Section

Preparation of Lg-CC

The Co-Fe LDH nanosheets were synthesized by a cathodic electrodeposition method in a standard three-electrode cell in which a piece of carbon cloth ($2 \times 1 \text{ cm}^2$, 0.33 mm in thickness), Pt foil, and Saturated calomel electrode (SCE) were used as the working electrode, the counter electrode, and the reference electrode, respectively. Specifically, a precursor solution of Co(NO₃)₂·6H₂O (15 mmol) and Fe(NO₃)₃·9H₂O (5 mmol) was performed at a constant potential of -1.3 V for 80 s (Temperature: ~25 °C). The obtained Co-Fe LDH/CC catalyst was then annealed at 900 °C for 80 min under the CO₂ atmosphere, followed by immersing in 3 M HCl overnight. Finally, the product was washed several times with DI water to remove the residual acid and dried at 60 °C. Afterwards, the O-CC sample was prepared as the similar process with that of Lg-CC except for the loading Co-Fe LDH.

Preparation of Ralg-CC

The Lg-CC as a working electrode was activated electrochemically for 2 h at a constant potential of 2.2 V in 1 M Na_2SO_4 aqueous solution followed by electrochemical reduction in same system at 50 mV/s in the potential window of - 1.5~0.8 V and conducted for 50 cycles to obtain Ralg-CC.

Fabrication of flexible asymmetric supercapacitor

To balance the charge of negative electrode, onion-like MnO₂/CC (O-MnO₂/CC) positive electrode was fabricated using a step-wise electroplating method in a Mn(CH₃COO)₂·4H₂O (0.4 M) and Na₂SO₄ (0.6 M) solution at two different operation voltages 3 V (250 s) and 1 V (100 s) among three-electrode system containing Lg-CC as working electrode, a Pt foil as counter electrode, and a saturated calomel electrode (SCE) as reference electrode. The mass loading of the positive electrodes was controlled based on the charge balance equation (C₊V₊=C₋V₋). Besides, after immersing a piece of cellulose paper (NKK-MPF30AC-100, Japan) in a 1 M Na₂SO₄ aqueous solution for 10 min, a separator was obtained and then carefully entangled with the O-MnO₂/ACC and Ralg/CC. Eventually, the assembled device was wrapped with a thin parafilm to prevent the volatilization of water.

Materials characterization

The X-ray diffraction (XRD) patterns were collected by a Rigaku Smartlab Xray diffractometer using Cu K α radiation. The morphology and microstructure images were observed by a JEM-7001F scanning electronic microscope (SEM) and a JEOL-2100 transmission electron microscope (TEM). Raman spectra were recorded by a confocal laser inVia Raman microscope (Renishaw, $\lambda_e = 514$ nm). The pore size distribution curve was produced from the isotherm by Density Functional Theory (NLDFT) methods. X-ray photoelectron spectroscopy (XPS) measurements of the samples were fulfilled by utilizing a Thermal-Fisher ESCALAB 250Xi X-ray spectrophotometer. The water contact angle was measured by the optical contact angle measurement system (DSA100S, KRUSS GmbH, Germany). Cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), as well as electrochemical impedance spectroscopy (EIS) of the individual electrode were carried out in a threeelectrode electrochemical work station having Platinum and Saturated calomel electrode as counter and reference electrode, respectively. The aqueous electrolyte for Zn ion supercapacitor was 1M ZnSO₄/1 M Na₂SO₄.

Fig. S1 EDS image of carbon cloth loaded with LDH precursors thermally treated at at 800 °C.

Fig. S2 Cross-sectional SEM image of Ralg-CC.

Fig. S3 (a) CV curves of RCC at various scan rates. (b) The halves of the anodic and cathodic current measured at -0.6 V vs SCE plotted as a function of scan rate.

Fig. S4 SEM image of Ralg-CC after the cycling test in ZnSO₄/Na₂SO₄ electrolyte.

Table S1 Comparison study on the electrochemical performance of Ralg-CC in this

 work with previously reported results.

Active materials	Electrolyte	Potential (V)	Capacitance (mF/cm²)	Ref.
Activated Carbon Felt	1M Na ₂ SO ₄	-1~0	907.83	[1]

MOF-derived N-doped carbon bubbles/carbon tube arrays	1M H ₂ SO ₄	0~1	~370	[2]
CC@CoO@S-Co ₃ O ₄	2М КОН	0~0.45	873	[3]
PANI/ZnO/ZIF- 8/Graphene/ polyester	3M Kcl	-0.2~1	~750	[4]
Co–Mn MOF	2M KOH	0~0.35	~600	[5]
CoP/Carbon Cloth	1M LiCl	-0.8~0	571.3	[6]
Electrochemically pretreated carbon nanotube film/PPY	5M LiCl	-1~0.1	965.3	[7]
MoS ₂ @CTNT	0.5M Na ₂ SO ₄	-0.8~0	557.83	[8]
H-VO _x /CC	5M LiCl	-1~0	554	[9]
Ralg-CC	1M Na ₂ SO ₄	-1.3~0	1089	This work

References:

- 1. G. Lou, Y. Wu, X. Zhu, Y. Lu, S. Yu, C. Yang, H. Chen, C. Guan, L. Li and Z. Shen, *ACS applied materials & interfaces*, 2018, 10, 42503-42512.
- 2. Z. Tang, G. Zhang, H. Zhang, L. Wang, H. Shi, D. Wei and H. Duan, *Energy Storage Materials*, 2018, 10, 75-84.
- S. Dai, Y. Yuan, J. Yu, J. Tang, J. Zhou and W. Tang, *Nanoscale*, 2018, 10, 15454-15461.
- 4. Y.-N. Liu, L.-N. Jin, H.-T. Wang, X.-H. Kang and S.-W. Bian, *J Colloid Interf Sci*, 2018, 530, 29-36.
- 5. S. H. Kazemi, B. Hosseinzadeh, H. Kazemi, M. A. Kiani and S. Hajati, *ACS Applied Materials & Interfaces*, 2018, 10, 23063-23073.
- 6. Z. Zheng, M. Retana, X. Hu, R. Luna, Y. H. Ikuhara and W. Zhou, ACS

Applied Materials & Interfaces, 2017, 9, 16986-16994.

- Z.-H. Chang, D.-Y. Feng, Z.-H. Huang and X.-X. Liu, *Chem Eng J*, 2018, 337, 552-559.
- W Cao, Y Gong, W Wang, M Chen, J Yang, Y Xue, *Nanoscale*, 2021, 13, 8658-8664.
- S Chen, H Jiang, Q Cheng, G Wang, S Petr, C Li, *Chem Eng J*, 2021, 403, 126380.