Supplementary Information

Building a Spontaneously Formed and Self-healing Protective Layer with a F-rich Electrochemically Active

Organic Molecule for Ultra-stable Li Metal Batteries

Zeyi Yao¹, Jinzhao Fu¹, Yangtao Liu¹, Jiahui Hou¹, Panawan Vanaphuti¹, Xiaotu Ma¹, Ruihan Zhang¹, Zhenzhen Yang² and Yan Wang¹*

- Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439

*Correspondence: <u>yanwang@wpi.edu</u> (Y.W.)

Calculation method

To evaluate the amount of TFBQ on the cathode side, we applied the initial discharge (reduction from TFBQ to LTFBB, 60 mAh/g) specific capacity of the Super P electrode to do the calculation. The total amount of TFBQ in one coin cell is $0.1 \text{ mol/L} * 50 \mu\text{L} = 5 \mu\text{mol}$. The loading of Super P in the electrode we applied: about 0.6 mg. So the total capacity is 0.6 mg * 60 mAh/g = 36 μ Ah = 0.1296 Coulombs, which need 1.343 μ mol electrons. Each TFBQ can deliver 2 electrons, so the reaction consumes 0.6715 μ mol of TFBQ.

Figure S1. Mechanism of TFBQ reaction on Li metal surface.

Figure S2. Images of original 0.1 M TFBQ in LDD electrolyte (a) and a Li chip immersed in the same electrolyte for 14 days (b). A control test of Li chip immersed in 0.1 M BQ for one day (c). Li metal section after cycling in 0.1 M TFBQ LDD electrolyte (d). The collected interphase from cycled Li metal with 0.1 M TFBQ LDD electrolyte (e) and LDD electrolyte (f) after 3 days.

1s F1s S1s Fe2p3 P1s	
.43 17.64 0.02 - 1.08	
33 40.37 1.93	
.33 2.94 0.03	
.45 33.59 2.78	
.46 21.98 0.5 2.11 -	
.46 23.24 1.61 2.21 -	
.59 6.73 2.48 1.54 -	
	1sF 1sS 1sFe 2p3P 1s.4317.640.02-1.083340.371.93.332.940.034533.592.784621.980.52.114623.241.612.21596.732.481.54-

Table S1. XPS data for element concentration corrected by relative sensitivity factors (RSF).

Figure S3. The XPS spectra of O 1s (a) and S 2p (b) for sample A, B, C and E.

Figure S4. The cross-section of interface for cycled Li metal (a) and a specific area with Li dendrites (b).

Figure S5. Multi-element EDX mapping for the protective layer in sample E.

Figure S6. Li-Li symmetric cells with 0.05, 0.1 and 0.2 M TFBQ LDD electrolyte.

Figure S7. Li-Li symmetric cell with 0.1 M TFBQ LDD electrolyte for 175 μ m Li chips.

Figure S8. Charge/discharge curves (a) and cycle performance (b) of neat Super P in 0.1 M TFBQ LDD electrolyte.

Figure S9. CV test for Li-LFP cells with LDD and 0.1 M TFBQ LDD electrolyte.

Figure S10. Surface morphology of LFP electrode before test (a), after 200 cycles under 1 C in LDD electrolyte (b), after formation (c) and after 600 cycles (d) in 0.1 M TFBQ LDD electrolyte.

Figure S11. Rate performance for Li-Li symmetric cell with LDD electrolyte.

Figure S12. Specific energy delivered for Li-LFP battery reported. Table S2. Comparison of the cycle performance for recent Li-LFP full cells.

Reference	Cycle number	Retention (%)	Current density	Journal
This work	100/200/300/ 400/500/600	96.3/95.7/94.0/ 90.3/88.4/84.7	1 C	This work
1	100	83	0.25 C	Adv. Energy Mater.
2	140	65	1 C	Adv. Mater.
3	250	75.8	1 C	Adv. Funct. Mater.
4	300	85	1 C	Adv. Funct. Mater.
5	200	92.3	0.5 C	Adv. Mater.
6	250	80	0.5 C	Adv. Funct. Mater.
7	150	88	0.5 C	Energy Storage Mater.
8	500	89.4	0.5 C	ACS Energy Lett.
9	200	94	0.2 C	Nano Energy
10	400	87.6	1 C	Energy Storage Mater.
11	400	87.3	0.5 C	Nano Energy
12	280	80	0.2 C	Angew. Chem. Int. Ed.
13	100	80.1	1 C	Adv. Energy Mater.
14	200	97.5	0.5 C	Adv. Mater.
15	300	80	0.5 C	Adv. Mater.
16	400	90	0.5 C	Joule
17	300	94.08	1 C	Energy Storage Mater.
18	150	85	0.5 C	Adv. Funct. Mater.
19	500	85	0.5 C	Energy Storage Mater.
20	200	94.3	0.5 C	Adv. Energy Mater.
21	500	80	0.5 C	Nat. Commun.
22	300	82	1 C	Nat. Commun.
23	150	88	0.5 C	Nat. Commun.
24	400	90	0.079 C charge/ 0.263 C discharge	Nat. Energy.
25	300	90	0.2 C charge/ 0.6 C discharge	Adv. Funct. Mater.
26	100	98	1 C	Nano Energy
27	200	98	0.2 C	J. Am. Chem. Soc.
28	100	98	1 C	Angew. Chem. Int. Ed.
29	100	55	0.33 C	Adv. Mater.
30	110	98.9	-	Adv. Mater.
31	300	55	0.5 C	Adv. Mater.

Reference

- 1 F. Qiu, X. Li, H. Deng, D. Wang, X. Mu, P. He and H. Zhou, *Adv. Energy Mater.*, , DOI:10.1002/aenm.201803372.
- D. J. Yoo, A. Elabd, S. Choi, Y. Cho, J. Kim, S. J. Lee, S. H. Choi, T. woo Kwon, K. Char, K. J. Kim, A. Coskun and J. W. Choi, *Adv. Mater.*, 2019, 31, 1–10.
- 3 K. Lin, X. Qin, M. Liu, X. Xu, G. Liang, J. Wu, F. Kang, G. Chen and B. Li, *Adv. Funct. Mater.*, DOI:10.1002/adfm.201903229.
- 4 Y. Cui, S. Liu, D. Wang, X. Wang, X. Xia, C. Gu and J. Tu, *Adv. Funct. Mater.*, , DOI:10.1002/adfm.202006380.
- 5 Y. Sun, Y. Zhao, J. Wang, J. Liang, C. Wang, Q. Sun, X. Lin, K. R. Adair, J. Luo, D. Wang, R. Li, M. Cai, T. K. Sham and X. Sun, *Adv. Mater.*, 2019, **31**, 1–9.
- 6 R. Xu, X. Q. Zhang, X. B. Cheng, H. J. Peng, C. Z. Zhao, C. Yan and J. Q. Huang, *Adv. Funct. Mater.*, DOI:10.1002/adfm.201705838.
- 7 K. Liu, Z. Li, W. Xie, J. Li, D. Rao, M. Shao, B. Zhang and M. Wei, *Energy Storage Mater.*, 2018, **15**, 308–314.
- 8 Y. Zhao, G. Li, Y. Gao, D. Wang, Q. Huang and D. Wang, *ACS Energy Lett.*, 2019, **4**, 1271–1278.
- 9 C. Y. Wang, Z. J. Zheng, Y. Q. Feng, H. Ye, F. F. Cao and Z. P. Guo, *Nano Energy*, 2020, **74**, 104817.
- 10 J. Li, P. Zou, S. W. Chiang, W. Yao, Y. Wang, P. Liu, C. Liang, F. Kang and C. Yang, *Energy Storage Mater.*, 2020, **24**, 700–706.
- 11 Y. Zhao, D. Wang, Y. Gao, T. Chen, Q. Huang and D. Wang, *Nano Energy*, 2019, **64**, 103893.
- H. Ye, Z. J. Zheng, H. R. Yao, S. C. Liu, T. T. Zuo, X. W. Wu, Y. X. Yin, N. W. Li, J. J. Gu, F. F. Cao and Y. G. Guo, *Angew. Chemie Int. Ed.*, 2019, 58, 1094–1099.
- 13 X. R. Chen, B. Q. Li, C. Zhu, R. Zhang, X. B. Cheng, J. Q. Huang and Q. Zhang, *Adv. Energy Mater.*, DOI:10.1002/aenm.201901932.
- 14 J. Wu, Z. Rao, X. Liu, Y. Shen, C. Fang, L. Yuan, Z. Li, W. Zhang, X. Xie and Y. Huang, *Adv. Mater.*, 2021, **33**, 1–9.
- 15 T. T. Zuo, X. W. Wu, C. P. Yang, Y. X. Yin, H. Ye, N. W. Li and Y. G. Guo, *Adv. Mater.*, 2017, **29**, 1–6.
- 16 H. Chen, A. Pei, J. Wan, D. Lin, R. Vilá, H. Wang, D. Mackanic, H. G. Steinrück, W. Huang, Y. Li, A. Yang, J. Xie, Y. Wu, H. Wang and Y. Cui, *Joule*, 2020, 4, 938–952.
- 17 Q. Wang, C. Yang, J. J. Yang, K. Wu, L. Qi, H. Tang, Z. Zhang, W. Liu and H. Zhou, *Energy Storage Mater.*, 2018, **15**, 249–256.
- 18 M. H. Ryou, Y. M. Lee, Y. Lee, M. Winter and P. Bieker, *Adv. Funct. Mater.*, 2015, **25**, 834–841.
- 19 W. Lu, L. Sun, Y. Zhao, T. Wu, L. Cong, J. Liu, Y. Liu and H. Xie, *Energy Storage Mater.*, 2021, 34, 241–249.
- 20 J. Luo, C. C. Fang and N. L. Wu, *Adv. Energy Mater.*, , DOI:10.1002/aenm.201701482.

- F. Zhou, Z. Li, Y. Y. Lu, B. Shen, Y. Guan, X. X. Wang, Y. C. Yin, B. S. Zhu,
 L. L. Lu, Y. Ni, Y. Cui, H. Bin Yao and S. H. Yu, *Nat. Commun.*, 2019, 10, 1–11.
- 22 X. Shen, Y. Li, T. Qian, J. Liu, J. Zhou, C. Yan and J. B. Goodenough, *Nat. Commun.*, DOI:10.1038/s41467-019-08767-0.
- S. Choudhury, R. Mangal, A. Agrawal and L. A. Archer, *Nat. Commun.*, 2015, 6, 1–9.
- 24 G. Li, Z. Liu, Q. Huang, Y. Gao, M. Regula, D. Wang, L. Q. Chen and D. Wang, *Nat. Energy*, 2018, **3**, 1076–1083.
- 25 Z. Jiang, Z. Zeng, X. Liang, L. Yang, W. Hu, C. Zhang, Z. Han, J. Feng and J. Xie, *Adv. Funct. Mater.*, DOI:10.1002/adfm.202005991.
- 26 Y. Jiang, J. Jiang, Z. Wang, M. Han, X. Liu, J. Yi, B. Zhao, X. Sun and J. Zhang, *Nano Energy*, 2020, **70**, 104504.
- H. Duan, J. Zhang, X. Chen, X. D. Zhang, J. Y. Li, L. B. Huang, X. Zhang, J. L. Shi, Y. X. Yin, Q. Zhang, Y. G. Guo, L. Jiang and L. J. Wan, *J. Am. Chem. Soc.*, 2018, 140, 18051–18057.
- 28 Y. Zhang, Y. Zhong, Z. Wu, B. Wang, S. Liang and H. Wang, *Angew. Chemie* - *Int. Ed.*, 2020, **59**, 7797–7802.
- 29 L. Dong, L. Nie and W. Liu, *Adv. Mater.*, 2020, **32**, 1–8.
- 30 C. Cui, C. Yang, N. Eidson, J. Chen, F. Han, L. Chen, C. Luo, P. F. Wang, X. Fan and C. Wang, *Adv. Mater.*, 2020, **32**, 1–9.
- 31 C. Zhang, R. Lyu, W. Lv, H. Li, W. Jiang, J. Li, S. Gu, G. Zhou, Z. Huang, Y. Zhang, J. Wu, Q. H. Yang and F. Kang, *Adv. Mater.*, 2019, **31**, 1–9.