Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Study on hydrothermal liquefaction for cell disruption and lipid extraction from

Rhodosporidium toruloides

Yuwei Chen^{1,2,3,#}, Qitian Huang^{4,#}, Jun Ye^{1,2*}, Junming Xu^{1,2},

Jie Chen^{1,2}, Yigang Wang^{1,2}, Xiaoan Nie^{1,2*}

¹ Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of

Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, P. R. China

² Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing

Forestry University, Nanjing 210037, P. R. of China

³ Yancheng Institute of Technology, Yancheng, 224051, P. R. of China

⁴ Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China

[#] These authors contributed equally to this work.

* Corresponding author: Jun Ye, <u>yejun_2007@163.com</u>; Xiaoan Nie, <u>niexiaoan@icifp.cn</u>

Figure S1. (a) (b) Microscopic Morphology of Solids after HTL (140°C, 10/100 g/mL, 60min, ethanol) from different samples. Red arrows point intact cells, yellow arrows point disrupted cells.

Figure S2. Solids after HTL in different temperatures (10/100 g/mL, 60min, ethanol)

Figure S3. (a) (b) Microscopic Morphology of Solids after HTL (180°C, 10/100 g/mL, 60min,

ethanol) from different samples. Yellow arrows point disrupted cells.

Figure S4. Microscopic Morphology of Solids after HTL (160°C, 5/100 g/mL, 60min, n-hexane) from different samples. Red arrows point intact cells, yellow arrows point disrupted cells.

Table S1 Crude fat in solids from different temperatures

Temperature (°C)	140	160	180
Crude fat (%)	17.55±0.10	14.05±0.23	13.56±0.15