Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Controlling the carrier density in niobium oxynitride BaNbO₂N *via* cation doping for efficient photoelectrochemical water splitting under visible light

Takafumi Iwai,^a Akinobu Nakada,^a Masanobu Higashi,^a Hajime Suzuki,^a Osamu Tomita,^a Ryu Abe^{a,b}*

^a Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

^b CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.

*Corresponding author. E-mail: ryu-abe@scl.kyoto-u.ac.jp

Fig. S1 SEM images of BNON, BNON:Zr-3, BNON:Ti-3, BNON:W-3, and BNON:Mo-1 samples.

Fig. S2 Cross-sectional SEM image of BNON electrode.

Fig. S3 XRD patterns of BNON, and BNON:Mo-x (x = 1, 3) samples. The inset shows the enlarged pattern around impurity phases.

Fig. S4 XP spectra in (a) Zr 3p, (b) W 4f, (c) Ti 2p, and (d) Mo 3d regions of BNON:Zr-3, BNON:W-3, BNON:Ti-3, and BNON:Mo-1 samples.

Table S1 The atomic ratio of the dopant to Nb in BNON samples evaluated by XPS.

Sample	Measured dopant/(Nb+dopant) ratio	Ideal dopant/(Nb+dopant) ratio
BNON:Mo-1	0.01	0.01
BNON:W-3	0.08	0.03
BNON:Zr-3	a	0.03
BNON:Ti-2	0.02	0.02
BNON:Ti-3	0.03	0.03
BNON:Ti-4	0.04	0.04

^{*a*} Unmeasurable due to the overlap of the peaks corresponding to Zr 3d and Ba 4p.

Fig. S5 (a) XRD patterns of BNON, and BNON:Ti-*x* (x = 2, 3, 4) samples. KCl (10 wt%) was added as an internal standard sample for the correction of 2 θ angles. (b) XP spectra of Nb 3d region for BNON:Ti-*x* (x = 2, 3, 4) samples.

Fig. S6 Time course of photocurrent at +1.02 V (vs. RHE) in an aqueous Na₂SO₄ solution (0.1 M, pH 6) containing H₂O₂ (0.1 M) for unmodified BNON:Ti-4 electrode under visible light ($400 < \lambda < 800$ nm).

Fig. S7 Dependence of photocurrent density of (a) BNON:Zr-*x* and (b) BNON:Ti-*x* electrodes in an aqueous Na₂SO₄ solution (0.1 M, pH 6) under visible light on the amount of dopant.

Fig. S8 IPCE spectra of CoO_y/BNON:Ti-4 electrode (phosphate buffer solution, pH 8), and absorption spectrum of BNON:Ti-4.