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Experimental

1. Synthesis of NiMoO4@NF nanorods

The NiMoO, nanorods were hydrothermally grown on Ni foam (NiMoO4@NF)

according to the literature methodl'l. Typically, Ni(NO3),-6H,O (0.35 g, 1.2 mmol) and

NaMoOy4-2H,0 (0.32 g, 1.3 mmol) were dissolved in 30 mL deionized water and stirred

until a transparent solution was achieved. The Ni foam was cut into 4 X2 cm? pieces
and cleaned in 3 M HCI solution and deionized water successively. The resulting
solution was transferred into a 50 mL Teflon-lined stainless-steel autoclave. Then the
Ni foam was soaked in the solution. The autoclave was heated at 150 °C and kept 6 h.

After the reaction, the solution was removed, and the Ni foam was washed with ethanol

and dried to obtain NiMoO,4@NF nanorods.
2. Synthesis of heterostructural Ni-MoN on Ni foam (Ni-MoN@NF)

Three pieces of the obtained 4 X2 cm? NiMoO4@NF nanorods were placed in a

tube furnace, and 0.4 g of dicyandiamide was placed on the upstream side. The final

catalyst was achieved after the sample was treated at 550 °C for 2 h with a heating rate



of 5 °C min~! under Ar atmosphere. For comparison, the catalysts that were treated at
500, 550 and 600 °C were named as Ni-MoN@NF500, Ni-MoN@NF550 and Ni—
MoN@NF600, respectively. To study the influence of the amount of dicyandiamide on
the performance of the catalyst, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 g of dicyandiamide were
used, respectively, under the same condition. The prepared target catalysts were called
as Ni-MoN@NFO0.1, Ni-MoN@NFO0.2, Ni-MoN@NF0.3, Ni-MoN@NF0.4, Ni—
MoN@NFO0.5 and Ni-MoN@NFO.6, respectively.

3. Synthesis of MoN@NF

The MoN@NF sample was achieved by immersing the Ni-MoN@NF composite

in 3 M HCI to remove metal Ni.
4. Synthesis of NiMo—H@NF

Three pieces of the obtained NiMoO4@NF were placed in a tube furnace. The
final NiMo—H@NF nanorods were obtained after the sample was treated at 550 °C for

2 h with a heating rate of 5 °C min~! under 5% H,/Ar atmosphere.
5. Physical Characterization

Powder X-ray diffraction (PXRD) patterns were determined on MiniFlex600-C
X-ray diffractometer. The microstructure and morphology were analyzed by Field
emission scanning electron microscopy (FESEM, FEI Tecnai F-20) and high-resolution
transmission electron microscopy (HR-TEM, Hillsboro, OR, USA). X-ray
photoelectron spectrometer (Thermo ESCALAB 250) was utilized to analyze the

surface elemental composition and valence bond structure.
6. Electrochemical measurements

The HER performance of the electrocatalysts was tested with a typical three-
electrode system in 1 M KOH by using an electrochemical workstation (CHI760E,
China). A piece of sample with an area of 0.5 X 0.5 cm? was directly used as the working

electrode. For comparative purposes, 3 mg of commercially available 20 wt% Pt/C was

bonded on the same area of NF by using Nafion. A saturated Hg/HgO electrode and a



graphite rod were used as the reference and counter electrodes, respectively. The
potential referred in this work was converted according to the equation Erpg = Eng/iieo
+ 0.098 + 0.059 x pH. The linear sweep voltammetry (LSV) was tested from 0 to —0.4
V vs. RHE with 5 mV s™!. Tafel curves were calculated from LSV. Electrochemical
impedance spectroscopy (EIS) was implemented from 100 kHz to 100 mHz with AC
amplitude of 5 mV. The long-term cycling test was conducted for 2000 times at the
potentials between 0.1 and 0.3 V vs. RHE with 50 mV s™! and the V-t curve was also

collected at a controlled current density of =10 mA ¢m™2 for 100 h.

The electrochemically capacitance (Cgq)) and the Electrochemically Active Surface
Area (Agcsa) are linearly proportional. Therefore, the Agcsa can be estimated by
the Cy;, which can be easily conducted by cyclic voltammograms in the region of
0.02 to 0.13 V at various scan rates (10, 20, 30, 40, 50, 60, 70, 80, 90 and 100mV
s71). The capacitance was calculated in a potential where no faradic processes
were observed, i.e., at 0.05 V vs. RHE. And the slope of the Aj vs. scan rate curve
is twice that of the Cy,. According to the previous report, it is suitable that using
a 40 uF cm™ as the specific capacitance value. Thus, the Agcsa can be reckoned

by the following formulal'l:

Cdl
* A geo

-2
Agcsa=240 UF cm

where Agcsa is the electrochemically active surface area, and Ageo is the geometric

area of electrode.

The TOF values of the catalysts were calculated from the equation:
TOF =(J x A)/(2 xF xn)
where J is the current density at a given overpotential, A is the surface area of the NF,
F is the Faraday constant (96,485 C mol™'), and n is the number of moles of the active

sites of the catalyst deposited on the electrode.
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Figure S1. (a) XRD pattern of NiMoO,4 nanorods.
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Figure S2. XPS full scan spectroscopy of Ni-MoN@NF.



Figure S3. SEM images of NiMoO,4 nanorods.
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Figure S4. (a) N, adsorption-desorption isotherms and (b) BJH pore size distribution

of Ni-MoN.
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Figure S5. Examples of droplets for DI-water on (a-c) NF and (d-f) Ni-MoN@NF.
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Figure S6. (a) XRD patterns of Ni-MoN@NF; High-resolution XPS spectra of Ni—
MoN@NF (b) Mo 3d, (c) Ni 2p and (d) N 1Is.

Figure S7. (a) SEM and (b) TEM images of Ni-MoN@NF after long-term stability
time test.
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Figure S8. Comparison between theoretical calculation and experimental measurement of H,

evolution, indicating an up to 100% FE for H; production on Ni-MoN@NF catalysts.
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Figure S9. CVs with different rates from 10 to 100 mV s7! in the region of 0.02-0.13
V for (a) Ni-MoN@NF, (b) MoN@NF, (¢) MoNi-H@NF and (d) Pt/C@NF in 1 M
KOH.
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Figure S10. Double layer capacitance (Cg) of Ni-MoN@NF, MoN@NF, MoNi—
H@NF, and Pt/C@NF.
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Figure S11. Comparison of the geometrical area and electrochemical active surface
area (ECSA)-normalized specific activities of Ni-MoN@NF and MoN@NF,
(evaluated at an overpotential of 200 mV).
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Figure S12 Turnover Frequencies of the resulting Ni-MoN@NF and MoN@NF at
various current densities.
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Figure S13. XRD patterns of Ni-MoN@NF500, Ni-MoN@NF550 and Ni-
MoN@NF600.
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Figure S14. (a) Polarization curves; (b) histogram of overpotentials at 10 and 100 mA
cm~? for Ni-MoN@NF500, Ni-MoN@NF550, Ni-MoN@NF600 substrate measured

in 1 M KOH; (c¢) corresponding Tafel plots; (d) electrochemical impedance spectra of
Ni-MoN@NF500, Ni-MoN@NF550, Ni-MoN@NF600.
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Figure S15. (a-b) SEM images of Ni-MoN@NF500; (c-d) SEM images of Ni—
MoN@NF550; (e-f) SEM images of Ni-MoN@NF600.
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Figure S16. XRD patterns of Ni-MoN@NFO0.1, Ni-MoN@NF0.2 and Ni-MoN@NFO0.3.
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Figure S17. (a) Polarization curves; (b) histogram of overpotentials at 10 and 100 mA
cm 2 for Ni-MoN@NFO0.1 —Ni-MoN@NF0.6; (c) corresponding Tafel plots; (d)
electrochemical impedance spectra of Ni-MoN@NF0.1 —Ni-MoN@NFO0.6.



Table S1. Summary of state-of-the-art electrocatalysts in KOH for HER

Catalyst Support Electrolyte Mo [MmV] Tafel slope Reference
[mV dec?]
Ni-MoN@NF Ni foam 1 M KOH 37.36 57.6 This work
Ni—Nip,MogsN Ni foam 1 M KOH 15 39 ACS Appl. Mater.
Interfaces, 2018,
10, 30400
Ni3N-Nip,Mog N sheets C foam 1 M KOH 31 64 Nano Energy,
2018, 44, 353
Ni-Nig,Mog gNparticles Glassy carbon 1 M KOH 38 40 Nano Energy,
2016,22, 111
Ni/Ni,P/Mo,C@C Glassy carbon 1 M KOH 223 68 J. Mater. Chem. A,
2018, 6, 5789
Ni-Mo,C-CNF Glassy carbon 1 M KOH 197 54.7 J. Colloid Interface
Sci., 2020, 558,
100
MoS,-Ni;S; HNRs Ni foam 1 M KOH 98 61 ACS Catal., 2017,
7,2357
Co,P/Mo03C03;C/Mo,C@C Glassy carbon I MKOH 182 65 J. Mater. Chem. A,
2018, 6, 5789
NisN@VN Ni foam 1 M KOH 56 47 J. Mater. Chem. A,
2019, 7, 5513
NisN-VN Ni foam 1 M KOH 64 37 Adv. Mater., 2019,
31, 1901174
NiMoN/NF-450 Ni foam 1 M KOH 22 101 J. Mater. Chem. A,
2018, 6, 8479
Ni-SN@C Membrane 1 M KOH 23 39 Adv. Mater., 2021,
seawater 2007508
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