Supporting Information

Halide-free catalytic carbon dioxide fixation of epoxides to cyclic carbonates under atmospheric pressure

Antarip Mitra, Tanmoy Biswas\#, Sourav Ghosh ${ }^{\#}$, Gouri Tudu, Khushboo S. Paliwal, Suptish Ghosh and Venkataramanan Mahalingam*

MATERIALS AND INSTRUMENTATION

2,5-pyridine dicarboxylic acid (TCI), Terephthalic acid (Sigma Aldrich), epichlorohydrin and other epoxides (TCI and Sigma Aldrich), $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (Merck), AlCl_{3} (Merck) and organic solvents DMF, methanol and acetone (Merck), NMR solvents, CDCl_{3} (Sigma Aldrich) are used as obtained

PXRD measurements are carried out in a Rigaku MiniFlex600 diffractometer attached with a D/tex ultradetector and $\mathrm{Cu} \mathrm{K} \alpha$ source operating at 15 mA and 40 kV . FT-IR measurements are performed in a Perkin Elmer Spectrum instrument. Field emission SEM images and EDS are acquired on a SUPRA 55-VP instrument with patented GEMINI column technology. Prior to measurements, the samples are coated with a thin layer of gold-palladium to avoid charging effects. The TEM images and EDS are collected on a JEM 2100F field emission transmission electron microscope operating at 200 kV . Thermo-gravimetric analysis (TGA) was carried out on a Mettler-Toledo TG50 and SDT Q600 TG-DTA analyser under N_{2} atmosphere from $30^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$ along with a ramp rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. The surface chemistry of the samples are analyzed using X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe II, ULVACPHI Inc., USA) equipped with micro-focused ($200 \mu \mathrm{~m}, 15 \mathrm{KV}$) monochromatic Al-K α X-Ray source ($\mathrm{h} v=1486.6 \mathrm{eV}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are recorded on a JEOL ECS 400 MHz spectrometer and on a Bruker AVANCE Ultrashield Plus 500 MHz spectrometer.

Synthesis of Al-PDC

The synthesis involved the reaction of 2,5-pyridine dicarboxylic acid ($8 \mathrm{mmol}, 1.34 \mathrm{~g}$) and $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(8 \mathrm{mmol}, 3.00 \mathrm{~g})$. The reactants were dissolved in $30 \mathrm{ml} N, N^{\prime}$-dimethyl formamide (DMF) and placed in a 50 ml Teflon lined autoclave and heated for 24 hours at 115 ${ }^{\circ} \mathrm{C}$. The autoclave was allowed to cool and the white solid precipitate (Al-PDC) was collected
by centrifugation. Then the precipitate was washed with DMF and methanol to wash off the unreacted starting materials followed by washing with acetone. The precipitate was finally placed in a hot air oven overnight at $60^{\circ} \mathrm{C}$ and then dried in a vacuum desiccator for further characterization and catalysis.

Synthesis of MIL-68(AI)

To make MIL-68(Al), terephthalic acid ($6 \mathrm{mmol}, 1000 \mathrm{mg}$) and Aluminium Chloride (4 mmol , 533 mg) was used as per report in patent BASF. The mixture was dissolved in $20 \mathrm{ml} \mathrm{N}, \mathrm{N}-$ dimethylformamide and heated at $130{ }^{\circ} \mathrm{C}$ for 18 hours in a round bottomed flask. After completion of the reaction, the solid white product was washed with DMF, methanol and acetone. Then it was placed overnight at $60^{\circ} \mathrm{C}$ in a hot air oven for further characterization and catalysis.

Calculation of Turnover Number

100 mg of Al-PDC was calcined at $750^{\circ} \mathrm{C}$ and $11.3 \mathrm{mg} \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ was formed. In 1 equivalent γ $\mathrm{Al}_{2} \mathrm{O}_{3}$ is composed of almost $52.9 \% \mathrm{Al}$ by mass.

Therefore, $11.3 \mathrm{mg} \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ has around 5.98 mg Al in it.
5.98 mg Al equals $(5.98 / 26.98) \mathrm{mmol} \mathrm{Al}$, which is equal to 0.22 mmol of Al . Here, we used $0.22 \mathrm{mmol} \mathrm{Al}(\mathrm{III})$ to convert 20 mmol epoxides.

So, we can conclude,

100 mg of Al-PDC contains 0.1 mmol of $\mathrm{Al}(\mathrm{III}):(0.22 / 20)^{*} 100=\mathbf{1 . 1} \mathbf{~ m o l} \%$ w.r.t. $\mathbf{A l (I I I)}$

Turnover Number $=($ moles of reactant consumed $) /($ moles of catalyst $)$.

For 100% conversion of 20 mmol epoxides, $\mathrm{TON}=20 / 0.22$

So, 93 \% conversion of epichlorohydrin: $0.93 \times(20 / 0.22)=85.4$

Quantification of 2,5-PDCA in Al-PDC

A solution of 0.5 ml conc. HCl and 5.5 ml THF was added to 100 mg as-prepared Al-PDC at $0^{\circ} \mathrm{C}$ and stirred. This led to leaching of the $\mathrm{Al}(\mathrm{III})$ ion from Al-PDC and resulted in degradation of the polymeric framework. To the resulting solution excess THF (20 ml) was added. Anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added to the solution to absorb water. The resulting mixture was filtered to remove the solid $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the THF was dried in rotavapor. The solid white precipitate was washed multiple times with diethyl ether and dried in a vacuum dessicator. The solid precipitate weighed 91 mg and the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the material confirmed it to be $2,5-\mathrm{PDCA}$. Hence, the stoichiometry of the ligand (91 mg) in 100 mg AL-PDC was determined.

Table S1. Effect of reaction parameters on the coupling of CO_{2} and epichlorohydrin

Entry	Catalysts Used	Temperature	Time	Conversion

		$\left({ }^{\circ} \mathrm{C}\right)$	(hours)	(\%)
1.	No Catalyst	100	20	ZERO
2.	2,5-PDCA	100	20	12
3.	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} .9 \mathrm{H}_{2} \mathrm{O}$	100	20	2
4.	Physical mixture of 2,5-PDCA and $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$	100	20	25
5.	Diaspore [α - $\mathrm{AlO}(\mathrm{OH})$]	100	20	33
6.	γ-Alumina	100	20	<1
7.	Al-PDC	100	20	93
8.	Al-PDC	55	20	20
9.	Al-PDC	70	20	33
10.	Al-PDC	85	20	72
11.	Al-PDC	100	20	93
12.	Al-PDC	115	20	100
13.	Al-PDC	100	8	52
14.	Al-PDC	100	12	66
15.	Al-PDC	100	16	78
16.	Al-PDC	100	20	93
17.	Al-PDC	100	24	95
18.	Al-PDC (post $180{ }^{\circ} \mathrm{C}$ calcination)	100	20	92
19.	Al-PDC (post $250{ }^{\circ} \mathrm{C}$ calcination)	100	20	44
20.	Al-PDC (post $350{ }^{\circ} \mathrm{C}$ calcination)	100	20	5
21.	Al-PDC (post $450{ }^{\circ} \mathrm{C}$ calcination)	100	20	<1
22.	MIL-68(Al)	100	20	15

Conditions: epoxide $20 \mathrm{mmol} ; 100 \mathrm{mg}$ Al-PDC (or other mentioned substances like 100 mg diaspore, $100 \mathrm{mg} 2,5-\mathrm{PDCA}$ etc.); 1 atm. CO_{2}; Conversion was measured using ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy

Table S2. Isolated yield of six synthesized cyclic carbonates.

Cyclic Carbonate	Molecular weight (Cyclic carbonate)	Weight obtained	Yield (\%)
	136.53	2477 mg	91
	164.16	$23.36 \mathrm{~g}^{\text {a }}$	95
	158.15	2943 mg	93
	146.14	2576 mg	88
	174.20	2231 mg	64
	174.20	1603 mg	46

Conditions: epoxide $20 \mathrm{mmol} ; 100 \mathrm{mg}$ Al-PDC as catalyst; $1 \mathrm{~atm} . \mathrm{CO}_{2} ; 100{ }^{\circ} \mathrm{C} ; 20 \mathrm{~h}$. a: 150 mmol styrene oxide, 750 mg Al-PDC.

Table S3. Comparison of the Catalytic Activity of different materials that performed CO_{2} fixation with epoxides under halide free conditions.

Catalyst (Conversion \%)	Pressure	Temp $\left({ }^{\circ} \mathbf{C}\right)$	Time (h)	Nature	Reference
Pyridyl Salicylimines $\mathbf{(9 9 ~ \%)}$	1 atm	100	24	Heterogeneous	ACS Appl. Mater. Interfaces 2018, 10, $9478-9484$
Bifunctional organic catalyst (99 \%)	2 MPa	150	24	Homogeneous	Green Chem., 2021, 23, 1147-1153
Zn MOFs (99 \%)	1 bar	100	24	Heterogeneous	Chem. - Eur. J. 2019, 25, 11474- 11480.
Salophen (100 \%)	10 bar	120	$3.5,24$	Homogeneous	ACS Catal. 2019, 9, 1895-1906
Polyurethane (99 \%)	9 MPa	150	16	Heterogeneous	ACS Sustainable Chem. Eng. 2020, 8, 4337-4340
Schiff Base (99 \%)	1 MPa	110	4,12	Homogeneous	Appl. Catal. Gen. 2020, 601, 117646
Salophen	10 bar	100	Homogeneous	Catal. Sci. Technol., 2021,11, 2529-2539	
Co-ordination polymers (93\% for EPCH and 98\% for S.O.)	$\mathbf{1 ~ a t m . ~}$	$\mathbf{1 0 0}$	$\mathbf{2 0}$	Heterogeneous	This Work

Table S4. Precision of the catalytic activity of Al-PDC to carryout CO_{2} fixation using two different catalysts under optimized conditions.

Entry	Epoxide used	Conversion upon multiple reactions	Standard Deviation	Bar Diagram
1.		a. 93	1.5	
		b. 90		
		c. 93		
		d. 91		

2.		a. 98	1.26			
		b. 98				
		c. 97				
		d. 100				

Conditions: epoxide $20 \mathrm{mmol} ; 100 \mathrm{mg}$ Al-PDC as catalyst; $1 \mathrm{~atm} . \mathrm{CO}_{2} ; 100{ }^{\circ} \mathrm{C} ; 20 \mathrm{~h}$. Conversion was measured using ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy

Fig S1. PXRD pattern of Diaspore $[\mathrm{AlO}(\mathrm{OH})]$

Fig S2. FT-IR spectra of 2,5-PDCA and as-prepared Al-PDC.

Fig S3. FT-IR spectra of as-prepared Al-PDC, calcined Al-PDC at $180^{\circ} \mathrm{C}$ and $250^{\circ} \mathrm{C}$. The absence of wide peaks at around $3000-3500 \mathrm{~cm}^{-1}$ is due to the evaporation of surface adsorbed water molecules upon calcination.

Fig S4. FT-IR spectra of the materials formed upon calcination of Al-PDC in different temperatures.

Fig S5. The TGA pattern of Al-PDC

Fig S6. PXRD pattern of $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ formed upon calcination of Al-PDC at $750^{\circ} \mathrm{C}$ along with the strandard pattern of of $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$

Fig S7. PXRD of MIL-68(Al)

Fig S8. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of reaction mixture containing mesitylene as internal standard, epichlorohydrin and 4-(chloromethyl)-1,3-dioxolan-2-one (90% conversion). The mixture contains around 4 mmol mesitylene, $>18 \mathrm{mmol} 4$-(chloromethyl)-1,3-dioxolan-2-one and 2 mmol epichlorohydrin.

Fig S9. ${ }^{1} \mathrm{H}$-NMR spectrum of 4-(chloromethyl)-1,3-dioxolan-2-one ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig S10. ${ }^{1} \mathrm{H}$-NMR of 4-(ethoxymethyl)-1,3-dioxolan-2-one ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig S11. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum 4-(n-butoxymethyl)-1,3-dioxolan-2-one ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig S12. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum 4-(butyl)-1,3-dioxolan-2-one $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig S13. ${ }^{1} \mathrm{H}$-NMR spectrum 4-(isopropoxymethyl)-1,3-dioxolan-2-one ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig S14. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum 4-(tert-butoxymethyl)-1,3-dioxolan-2-one ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig S15. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum 4-(allyloxymethyl)-1,3-dioxolan-2-one ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig S16. ${ }^{1} \mathrm{H}$-NMR spectrum of 4-(bromomethyl)-1,3-dioxolan-2-one $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig S17. ${ }^{1} \mathrm{H}$-NMR spectrum of 4-(phenyl)-1,3-dioxolan-2-one (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$)

Fig S18. ${ }^{1} \mathrm{H}$-NMR spectrum 4-(phenoxymethyl)-1,3-dioxolan-2-one ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig S19. ${ }^{1} \mathrm{H}$-NMR spectrum 4-(methoxymethyl)-1,3-dioxolan-2-one ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

Fig S20. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum commercially purchased 2,5-Pyridine dicarboxylic acid (DMSO$d_{6}, 400 \mathrm{MHz}$). Full spectrum is inset

Fig S21. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,5-PDCA recovered digesting Al-PDC in conc. HCl. Full spectrum is inset

Fig S22. ${ }^{13} \mathrm{C}$-NMR spectrum commercially purchased 2,5-Pyridine dicarboxylic acid (DMSO- $\mathrm{d}_{6}, 400 \mathrm{MHz}$). The full spectrum from 0 to 220 ppm is inset.

Fig S23. ${ }^{13} \mathrm{H}$ NMR spectrum of 2,5-PDCA recovered digesting Al-PDC in conc. HCl . Full spectrum is inset

Fig. S24. Conversion of epichlorohydrin (EPCH) and styrene oxide (S.O.) along with the error bar.

