Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Sm³⁺ rare-earth doping in non-noble metal oxide –WO₃ grown on carbon cloth fibre as a bifunctional electrocatalyst for high-performance water electrolysis.

R. Rajalakshmi, C. Viswanathan and N. Ponpandian*

Department of Nanosience and Technology, Bharathiar University, Coimbatore 641 046, India

Figure S1. TEM image of Sm 5% doped WO₃ electrocatalyst representing rod and particle morphologies.

Figure S2. The valence band (VB) edges of pristine WO_3 , WO_3 - Sm 4%, and WO_3 - Sm 4% electrocatalysts.

Figure S3. Chronoamperometry curves recorded for all the prepared electrocatalysts of pure and Sm doped WO₃ for 10,000 s recorded for (a) HER and (b) OER.

Figure S4. Cyclic voltammograms recorded in the non-Ohmic region of (a) $WO_3 - Sm 4\%$ and (b) $WO_3 - Sm 5\%$ electrocatalysts.

Figure S5. The LSV polarization curves of (a) Sm 4% doped WO₃ electrocatalyst with and without iR compensation for HER and (b) Sm 5% doped WO₃ electrocatalyst with and without iR compensation for OER.

Figure S6. The Bode impedance plot obtained from the electrochemical impedance spectroscopy for all the electrocatalyst of WO₃ and its Sm doped constituent.

Figure S7. Comparison of (a) cut-off frequency (f_c) in Hz with the (b) electrochemical active surface area (C_{dl}) in mF cm⁻² of all the synthesized electrocatalysts.

Figure S8. (a) Bode phase angle plot of all the synthesized WO₃ electrocatalysts obtained from the electrochemical impedance spectroscopy.

Figure S9. Prolonged potentiostatic electrolysis with Sm 5% doped WO_3 electrocatalyst for OER varying the onset potential in different intervals of time.

Figure S10. a) LSV measurements of HER screened at 5 mV s⁻¹ on WO₃ – Sm 4% before and after potentiostatic electrolysis, (b) LSV measurements of OER screened at 5 mV s⁻¹ on WO₃ – Sm 5% electrocatalyst before and after the prolonged potentiostatic electrolysis.

Table S1. The calculated mass loading of electrochemical activated $WO_3 - Sm 4\%$ for HER and $WO_3 - Sm 5\%$ for OER on carbon cloth fibre (CC) substrate.

	Mass loading	
Sample code	(mg/cm^2)	
	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	
CC@WO ₃ - Sm 4%	3.67 ± 0.27	
CC@WO ₃ - Sm 5%	3.34 ± 0.26	

Table S2. The comparison of HER activity between the Sm 4% doped WO₃ catalyst and other reported electrocatalysts of WO₃ derived from Fig 13c.

S. No	Electrocatalyst	Overpotential (η)	Tafel slope	Reference
		@ 10 mA cm ⁻²		
		(mV)	(mV dec ⁻¹)	
1.	Zeolite/WO3	138	500	[1]
2.	Mn-WO3	63	61	[2]

3.	WO ₃ -x@NC	37	96	[3]
4.	G/WS ₂ /WO ₃	90	100	[4]
5.	WSe ₂ /WO ₃ -y	58.2	185	[5]
6.	Pd@WO ₃	95	287	[6]
7.	Meso-WO _{2.83}	87	225	[7]
8.	WO ₃ /NPRGO	115	40	[8]
9.	WO ₃ /C@CoO	61	42	[9]
10.	Pt/WO ₃	121	150	[10]
11.	CoSe ₂ /WSe ₂ /WO ₃ @CC	68	97	[11]
12.	WS ₂ /WO ₃	50	395	[12]
13.	WO _x Nws/N-rGO	38.2	40	[13]
14.	Ta-WO ₃	65	470	[14]
15.	Fe-WO _x P/rGO	42	54.6	[15]
16.	WO ₃ – Sm 4%	67	135	This work
17.	CC@WO3 - Sm 4%	54	157	This work

Table S3. The comparison of OER activity between the Sm 5% doped WO₃ catalyst and other reported electrocatalysts of WO₃ obtained from Fig 13d.

S. No	Electrocatalyst	Overpotential (η) @	Tafel slope	Reference
		10 mA cm ⁻²		
		(mV)	(mV dec ⁻¹)	
1.	WO ₃ -Vo (oxygen			[16]
	vacancies)	183.3	590	
2.	IrO ₂ /WO ₃	65	420	[17]
3.	H _x -WO ₃	134	110	[18]
4.	$SrCo_{0.4}Fe_{0.2}W_{0.4}O_{3-\delta}$	104	296	[19]
5.	WO _{3-x} @NC	86	306	[3]
6.	Pd@WO ₃	62.8	113	[6]
7.	WO ₃ - Sm 5%	102	146	This work
8.	CC@WO ₃ – Sm 5%	90	138	This work

Table S4: Comparison of water-splitting performances for CC@WO₃-Sm 4% and CC@WO₃-Sm 5% with reported bifunctional electrocatalysts in the acidic media.

S.No	Electrocatalyst	Substrate	Potential	Refs.
1.	CoS ₂ nanotube	Carbon cloth	1.67 at 10 mA cm ⁻²	Nanoscale Horiz.
				2017, 2, 342.
2.	Ni/Mo ₂ C	Carbon cloth	1.66 at 10 mA cm ⁻²	Chem. Sci. 2018, 8,
				968.
3.	P-Co ₃ O4	Ni foam	1.63 at 10 mA cm ⁻²	ACS Catal. 2018,
				8, 2236.
4.	E-Mo-NiCoP	Carbon cloth	1.61 at 10 mA cm ⁻²	Nano-Micro
	MoNiCoP			Letters,
				2019,11, 55
5.	NiMoP ₂ nanowires	Carbon cloth	1.67 at 10 mA cm ⁻²	J. Mater. Chem. A
				2020, 5, 7191.
6.	NiCo ₂ P ₂ /graphene	Ti mesh	1.61 at 10 mA cm ⁻²	Nano Energy 2020,
	quantum dot			48, 284.
7.	FeCoP ultrathin	Ni foam	1.60 at 10 mA cm ⁻²	Nano Energy 2021,
	arrays			41, 583.
8.	N-NiMoO ₄ /NiS ₂	Carbon cloth	1.60 at 10 mA cm ⁻²	Adv. Funct. Mater.
				2021, 29, 1805298.
9.	CC@WO ₃ -Sm 4%	Carbon cloth	1.60 V at 10 mA cm ⁻	This work
	CC@WO ₃ -Sm 5%		2	

Reference

- S.F. Anis, R. Hashaikeh, Electrochemical water splitting using nano-zeolite Y supported tungsten oxide electrocatalysts, J. Nanoparticle Res. 20 (2018). doi:10.1007/s11051-018-4153-2.
- [2] S. Chandrasekaran, P. Zhang, F. Peng, C. Bowen, J. Huo, L. Deng, Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting, J. Mater. Chem. A. 7 (2019) 6161–6172. doi:10.1039/c8ta12238e.

- [3] J. Chen, H. Yang, X. Sang, Z. Su, D. Li, Q. Wang, Oxygen vacancy rich tungsten oxide with nitrogen doped mesoporous carbon as matrix for overall water splitting and 4-nitrophenol reductive removal, Solid State Sci. 83 (2018) 23–30. doi:10.1016/j.solidstatesciences.2018.06.010.
- [4] Y. Chen, R. Ren, Z. Wen, S. Ci, J. Chang, S. Mao, J. Chen, Superior electrocatalysis for hydrogen evolution with crumpled graphene/tungsten disulfide/tungsten trioxide ternary nanohybrids, Nano Energy. 47 (2018) 66–73. doi:10.1016/j.nanoen.2018.02.023.
- [5] V.Y. Fominski, S.N. Grigoriev, R.I. Romanov, M.A. Volosova, A.I. Grunin, G.D. Teterina, The formation of a hybrid structure from tungsten selenide and oxide plates for a hydrogen-evolution electrocatalyst, Tech. Phys. Lett. 42 (2016) 555–558. doi:10.1134/S1063785016060055.
- [6] R. Choudhary, S. Patra, R. Madhuri, P.K. Sharma, Cow Dung Derived PdNPs@WO₃ Porous Carbon Nanodiscs as Trifunctional Catalysts for Design of Zinc-Air Batteries and Overall Water Splitting, ACS Sustain. Chem. Eng. 5 (2017) 9735–9748. doi:10.1021/acssuschemeng.7b01541.
- H. Cheng, M. Klapproth, A. Sagaltchik, S. Li, A. Thomas, Ordered mesoporous WO_{2.83}: Selective reduction synthesis, exceptional localized surface plasmon resonance and enhanced hydrogen evolution reaction activity, J. Mater. Chem. A. 6 (2018) 2249–2256. doi:10.1039/c7ta09579a.
- [8] G. Hu, J. Li, P. Liu, X. Zhu, X. Li, R.N. Ali, B. Xiang, Enhanced electrocatalytic activity of WO₃ @NPRGO composite in a hydrogen evolution reaction, Appl. Surf. Sci. 463 (2019) 275–282. doi:10.1016/j.apsusc.2018.08.227.
- [9] Y. Lv, Y. Liu, C. Chen, T. Wang, M. Zhang, Octopus tentacles-like WO₃/C@CoO as high property and long life-time electrocatalyst for hydrogen evolution reaction, Electrochim. Acta. 281 (2018) 1–8. doi:10.1016/j.electacta.2018.05.145.
- [10] H. Tian, X. Cui, L. Zeng, L. Su, Y. Song, J. Shi, Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO₃ electrocatalyst, J. Mater. Chem. A. 7 (2019) 6285– 6293. doi:10.1039/c8ta12219a.
- [11] Y. Lv, Y. Liu, Y. Liu, Z. Chen, M. Zhang, CoSe₂/WSe₂/WO₃ hybrid nanowires on

carbon cloth for efficient hydrogen evolution reaction, J. Alloys Compd. 768 (2018) 889–895. doi:10.1016/j.jallcom.2018.07.285.

- [12] X. Shang, Y. Rao, S.S. Lu, B. Dong, L.M. Zhang, X.H. Liu, X. Li, Y.R. Liu, Y.M. Chai, C.G. Liu, Novel WS2/WO3 heterostructured nanosheets as efficient electrocatalyst for hydrogen evolution reaction, Mater. Chem. Phys. 197 (2017) 123–128. doi:10.1016/j.matchemphys.2017.05.027.
- [13] T.H. Wondimu, G.C. Chen, H.Y. Chen, D.M. Kabtamu, A.W. Bayeh, K.C. Wang, H.C. Huang, C.H. Wang, High catalytic activity of oxygen-vacancy-rich tungsten oxide nanowires supported by nitrogen-doped reduced graphene oxide for the hydrogen evolution reaction, J. Mater. Chem. A. 6 (2018) 19767–19774. doi:10.1039/c8ta07000h.
- [14] X. Xie, W. Mu, X. Li, H. Wei, Y. Jian, Q. Yu, R. Zhang, K. Lv, H. Tang, S. Luo, Incorporation of tantalum ions enhances the electrocatalytic activity of hexagonal WO₃ nanowires for hydrogen evolution reaction, Electrochim. Acta. 134 (2014) 201–208. doi:10.1016/j.electacta.2014.04.122.
- [15] T.H. Wondimu, G.C. Chen, D.M. Kabtamu, H.Y. Chen, A.W. Bayeh, H.C. Huang, C.H. Wang, Highly efficient and durable phosphine reduced iron-doped tungsten oxide/reduced graphene oxide nanocomposites for the hydrogen evolution reaction, Int. J. Hydrogen Energy. 43 (2018) 6481–6490. doi:10.1016/j.ijhydene.2018.02.080.
- [16] H. Liang, Z. Cao, C. Xia, F. Ming, W. Zhang, A.-H. Emwas, L. Cavallo, H.N. Alshareef, Tungsten Blue Oxide as a Reusable Electrocatalyst for Acidic Water Oxidation by Plasma-Induced Vacancy Engineering, (n.d.). doi:10.31635/ccschem.020.202000325.
- [17] M. Tariq, W.Q. Zaman, Y. Wu, A. Nabi, Z. Abbas, W. Iqbal, W. Sun, Z. Hao, Z.H. Zhou, L. Cao, J. Yang, Facile synthesis of IrO₂ nanoparticles decorated @ WO₃ as mixed oxide composite for outperformed oxygen evolution reaction, Int. J. Hydrogen Energy. 44 (2019) 31082–31093. doi:10.1016/j.ijhydene.2019.10.013.
- [18] A.G. Breuhaus-Alvarez, J.L. Dimeglio, J.J. Cooper, C.R. Lhermitte, B.M. Bartlett, Kinetics and Faradaic Efficiency of Oxygen Evolution on Reduced H_x WO₃ Photoelectrodes, J. Phys. Chem. C. 123 (2019) 1142–1150. doi:10.1021/acs.jpcc.8b11777.

[19] G. Chen, Z. Hu, Y. Zhu, Z.G. Chen, Y. Zhong, H.J. Lin, C. Te Chen, L.H. Tjeng, W. Zhou, Z. Shao, Ultrahigh-performance tungsten-doped perovskites for the oxygen evolution reaction, J. Mater. Chem. A. 6 (2018) 9854–9859. doi:10.1039/c8ta02864h.