Supporting Information

Binder free construction of hollow hierarchical Mn-Co-P nanoarrays on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting

Fan Wang^a, Xingzhong Guo^{*a,c}, Fan He^b, Yang Hou^b, Fu Liu^a, Chang Zou^a, Hui

Yang^a

Figure S1. FESEM images of nickel foam.

Figure S2. FESEM images of (a) Co precursor, (b) Mn-Co precursor and (c) Mn-Co-P nanoarrays.

Figure S3. TEM images of (a) Co precursor and (b) Mn-Co precursor nanoarrays.

Figure S4. FESEM images of Mn-Co-P nanoarrays with different Mn contents: (a, b) 0.005 M, (c, d) 0.01 M, (e, f) 0.05 M and (g, h) 0.1 M.

Figure S5. FESEM images of Mn-Co-P nanoarrays with different reaction time: (a, b) 3 h, (c, d) 5 h and (e, f) 10 h.

Figure S6. HRTEM images of Mn-Co-P nanoarrays.

Figure S7. XRD pattern of nickel foam.

Figure S8. XRD patterns of Co-P, Mn-P and Mn-Co-O nanoarrays.

Figure S9. XRD patterns of Co-P and Mn-Co-P nanoarrays with different Mn contents.

Catalysts	Mn (at. %)	Co (at. %)	P (at. %)
Mn-Co precursor	2.73	9.58	
Mn-Co-P	2.65	8.71	8.48

 Table S1. Metal-atomic content detected by ICP-MS analysis.

Figure S10. High-resolution XPS spectra of Mn-Co-O for Mn 3s.

Figure S11. OER performance curves of nickel foam: (a) LSV, (b) the corresponding Tafel slope and (c) Nyquist plot.

Figure S12. (a) LSV curves, (b) the corresponding Tafel plots and (c) Nyquist plots of Co precursor, Mn-Co precursor, Mn-Co-O and Mn-Co-P nanoarrays towards OER.

Electrocatalysts	Overpotential (mV)	Overpotential (mV)	Tafel slop	Reference
	at 10 mA cm ⁻²	at 100 mA cm ⁻²	(mV dec ⁻¹)	
Hollow hierarchical	250	226	64 62	This would
Mn-Co-P nanoarrays	230	326	64.63	I his work
CoMn-LDHs	395		45	1
MnO/Co/PGC	301		77	2
CoMn-LDH@g-C ₃ N ₄	303		48	3
N-CoO@CoP		332	81.5	4
Cu@CoP	270		77.2	5
CoFeBiP	273		77.3	6
Mn-Co-P/NF	310		194	7
Ni-Fe-K _{0.23} MnO ₂	270	220	42.3	8
CNFs-300	270	320		
Mn ₃ O ₄ /CoP	306		51.8	9
MnCo@NiS	286		31.5	10
Mn-Co phosphide	220		50	11
yolk-shell spheres	550		39	11
MnCoP/CC	261	460	44.9	12
Mn _{0.6} Co _{0.4} P-rGO	250		65	13
Mn-CoP nanosheets	290		76	14
Mn (5%)-CoP/CC	317		67.1	15
CoMnP nanoparticles	330		61	16

Table S2. Comparison of the OER performances of hollow hierarchical Mn-Co-P

 nanoarrays with the previously reported electrocatalysts at alkaline media.

Figure S13. LSV curves of Mn-Co-P nanoarrays for (a) different Mn contents and (b) different reaction time towards OER.

Figure S14. (a, b) FESEM images of hollow hierarchical Mn-Co-P nanoarrays after 72 h chronopotentiometry test towards OER.

Figure S15. FESEM images of Mn-Co-P nanoarrays with different reaction time: (a, b) 3 h, (c, d) 5 h and (e, f) 10 h after LSV test towards OER.

Figure S16. HER performance curves of nickel foam: (a) LSV, (b) the corresponding Tafel slope and (c) Nyquist plot.

Figure S17. (a) LSV curves, (b) the corresponding Tafel plots and (c) Nyquist plots of Co precursor, Mn-Co precursor, Mn-Co-O and Mn-Co-P nanoarrays towards HER.

Table S3. Comparison of the HER performances of hollow hierarchical Mn-Co-P

 nanoarrays with the previously reported electrocatalysts at alkaline media.

Electrocatalysts	Overpotential (mV)	Overpotential (mV)	Tafel slop	Reference
	at 10 mA cm ⁻²	at 100 mA cm ⁻²	(mV dec ⁻¹)	
Hollow hierarchical	()	110	29.05	TT1
Mn-Co-P nanoarrays	03	112	28.05	This work
Mn-Co-P/Ti	76		52	17
Co ₁ Mn ₁ Se NBs	87.3		71.2	18
CoMn-LDH@g-C ₃ N ₄	406		59	3
N-CoO@CoP		201	37	4
Cu@CoP	88		51.6	5
Mn-Co-P/NF	63		114	7
Mn ₃ O ₄ /CoP	43		28.9	9
CoNiMn/NC	191		64.38	19
Mn-N-Co ₉ S ₈	102	238	107.2	20
Ni-Fe-K _{0.23} MnO ₂	116	242	102.0	8
CNFs-300	110	242	103.9	Ū
CoMn-P@NG	164		111	21
MnCoP/CC	65		46.16	12
Mn-O@CoP	106		56	22
Mn _{0.6} Co _{0.4} P-rGO	54		63	13
Mn-Co-P	66		82	23
Mn-CoP nanosheets	195		69	14
Mn-CoP	95			24
Mn doped CoP	100		53	25

Figure S18. LSV curves of Mn-Co-P nanoarrays for (a) different content of Mn and (b) different reaction time of Mn towards HER.

Figure S19. (a, b) FESEM images of hollow hierarchical Mn-Co-P nanoarrays after 72 h chronopotentiometry test towards HER.

Figure S20. FESEM images of Mn-Co-P nanoarrays with different reaction time: (a, b) 3 h, (c, d) 5 h and (e, f) 10 h after LSV test towards HER.

Electrocatalysts	Voltage (V) at 10 mA cm ⁻²	Voltage (V) at 100 mA cm ⁻²	Reference
Hollow hierarchical	1.57	1 71	Th:
Mn-Co-P nanoarrays	1.57	1./1	I his work
Co ₁ Mn ₁ Se NBs	1.60		18
Co ₂ Mn ₁ DH	1.65		26
CoMn-LDH@g-C ₃ N ₄	1.62		3
N-CoO@CoP		1.79	4
Cu@CoP	1.65		5
Mn ₃ O ₄ /CoP	1.599		9
MnFeO-NF	1.59		27
Ni-Fe-K _{0.23} MnO ₂	1.62	1.01	0
CNFs-300	1.62	1.81	8
MnCoP/CC	1.68		12
Mn _{0.6} Co _{0.4} P-rGO	1.55	1.77	13
Mn-Co-P	1.74		23

Table S4. Comparison of overall water splitting performances of hollow hierarchicalMn-Co-P nanoarrays with previously reported electrocatalysts at alkaline media.

Figure S21. XRD patterns of hollow hierarchical Mn-Co-P nanoarrays before test, after HER stability test and after OER stability test.

Figure S22. XPS spectra of (a) Mn 2p, (b) Co 2p, (c) P 2p and (d) O 1s of hollow hierarchical Mn-Co-P nanoarrays before test, after HER stability test and after OER stability test.

Figure S23. CV curves of (a) nickel foam, (b) Co-P, (c) Mn-P, and (d) Mn-Co-P nanoarrays at different scan rates (10, 20, 40, 60, 80 and 100 mV s⁻¹) in the non-faradaic potential region of -0.7 to -0.6 V *vs*. Ag/AgCl.

Figure S24. CV curves of Co-P, Mn-P and Mn-Co-P nanoarrays at a scan rate of 50 mV s⁻¹ in 1.0 M PBS (pH=7) for (a) OER and (b) HER.

Figure S25. The quantity of gas theoretically calculated and experimentally measured versus time employing hollow hierarchical Mn-Co-P nanoarrays as both anode and cathode at current density of 100 mA cm⁻².

References

- Z. Yi, C. Ye, M. Zhang, Y. Lu, Y. Liu, L. Zhang and K. Yan, *Appl. Surf. Sci.*, 2019, 480, 256-261.
- 2. X. F. Lu, Y. Chen, S. Wang, S. Gao and X. W. D. Lou, Adv. Mater., 2019, 31, e1902339.
- M. Arif, G. Yasin, M. Shakeel, X. Fang, R. Gao, S. Ji and D. Yan, *Chem. Asian. J.*, 2018, 13, 1045-1052.
- 4. M. Lu, L. Li, D. Chen, J. Li, N. I. Klyui and W. Han, *Electrochim. Acta*, 2020, 330, 135210.
- 5. P. Wang, Y. Lin, L. Wan and B. Wang, *Energy & Fuels*, 2020, **34**, 10276-10281.
- 6. C. Wang, H. Shang, Y. Wang, J. Li, S. Guo, J. Guo and Y. Du, *Nanoscale*, 2021, **13**, 7279-7284.
- Z. Feng, Y. Sui, Z. Sun, J. Qi, F. Wei, Y. Ren, Z. Zhan, M. Zhou, D. Meng, L. Zhang, L. Ma and Q. Wang, *Colloid Surface A*, 2021, 615, 126265.
- 8. H. Liao, X. Guo, Y. Hou, H. Liang, Z. Zhou and H. Yang, *Small*, 2020, 16, e1905223.
- R. Dong, A. Zhu, W. Zeng, L. Qiao, L. Lu, Y. Liu, P. Tan and J. Pan, *Appl. Surf. Sci.*, 2021, 544, 148860.
- 10. X. Wang, L. Li, L. Xu, Z. Wang, Z. Wu, Z. Liu and P. Yangs, *J. Power Sources*, 2021, **489**, 229525.
- 11. Y. V. Kaneti, Y. Guo, N. L. W. Septiani, M. Iqbal, X. Jiang, T. Takei, B. Yuliarto, Z. A. Alothman, D. Golberg and Y. Yamauchi, *Chem. Eng. J.*, 2021, **405**, 126580.
- 12. M. Wang, W. Fu, L. Du, Y. Wei, P. Rao, L. Wei, X. Zhao, Y. Wang and S. Sun, *Appl. Surf. Sci.*, 2020, **515**, 146059.
- X. Xu, H. Liang, G. Tang, Y. Hong, Y. Xie, Z. Qi, B. Xu and Z. Wang, *Nanoscale Adv.*, 2019, 1, 177-183.
- Y. Li, B. Jia, B. Chen, Q. Liu, M. Cai, Z. Xue, Y. Fan, H. P. Wang, C. Y. Su and G. Li, *Dalton Trans.*, 2018, 47, 14679-14685.
- J. Lin, S. Xie, P. Liu, M. Zhang, S. Wang, P. Zhang and F. Cheng, J. Mater. Res., 2017, 33, 1258-1267.
- 16. D. Li, H. Baydoun, C. N. Verani and S. L. Brock, J. Am. Chem. Soc., 2016, 138, 4006-4009.

- 17. T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A. M. Asiri, X. Sun and L. Chen, *ACS Catal.*, 2016, 7, 98-102.
- H. Xu, J. Wei, K. Zhang, M. Zhang, C. Liu, J. Guo and Y. Du, J. Mater. Chem. A, 2018, 6, 22697-22704.
- 19. B. Jiang and Z. Li, J. Solid State Chem., 2021, 295, 121912.
- 20. Y. Xing, D. Li, L. Li, H. Tong, D. Jiang and W. Shi, Int. J. Hydrog. Energy, 2021, 46, 7989-8001.
- J. Liu, W. Li, Z. Cui, J. Li, F. Yang, L. Huang, C. Ma and M. Zeng, *Chem. Commun. (Camb)*, 2021, 57, 7200-2403.
- 22. D. Zhou, Z. Wang, X. Long, Y. An, H. Lin, Z. Xing, M. Ma and S. Yang, *J. Mater. Chem. A*, 2019, 7, 22530-22538.
- 23. G. Tang, Y. Zeng, B. Wei, H. Liang, J. Wu, P. Yao and Z. Wang, *Energy Technol.*, 2019, 7, 1900066.
- 24. X. Li, S. Li, A. Yoshida, S. Sirisomboonchai, K. Tang, Z. Zuo, X. Hao, A. Abudula and G. Guan, *Catal. Sci. Technol.*, 2018, **8**, 4407-4412.
- Y. Ge, J. Chen, H. Chu, P. Dong, S. R. Craig, P. M. Ajayan, M. Ye and J. Shen, ACS Sustain. Chem. Eng., 2018, 6, 15162-15169.
- 26. K. Li, D. Guo, J. Kang, B. Wei, X. Zhang and Y. Chen, *ACS Sustain. Chem. Eng.*, 2018, 6, 14641-14651.
- 27. J. Luo, W. H. Guo, Q. Zhang, X. H. Wang, L. Shen, H. C. Fu, L. L. Wu, X. H. Chen, H. Q. Luo and N. B. Li, *Nanoscale*, 2020, **12**, 19992-20001.