Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supporting information

The Role of Nitrogen and Sulfur Dual Coordination of Cobalt in Co-N_{4-x}S_x/C Single Atom Catalysts in Oxygen Reduction Reaction

Asnake Sahele Haile^a, Heine Anton Hansen^{b,*}, Weldegebriel Yohannes^c, and Yedilfana Setarge Mekonnen^{a,*}

 ^a Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
^b Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, 2800 Kgs. Lyngby (Denmark)
^c Chemistry Department, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia

Figure S1: Top and side view of the structures of: a) Co-N₄S-1/C and b) Co-N₄S-2/C.

Figure S2: Partial density of states (PDOS) of Co, N, and S atom in: a) Co-N₂S₂/C, b) Co-NS₃/C, c) Co-S₄/C and d) CoN₄S/C systems.

Figure S3: Optimized adsorption structures of ORR intermediates on: a) Co-N₂S₂/C, Co-NS₃/C, and Co-S₄/C. Pink, Cobalt (Co); blue, nitrogen (N); yellow, sulfur (S); gray, carbon (C); red, oxygen (O), and white, hydrogen (H).

Figure S4: Optimized adsorption structures of $\rm O_2$ adsorbed on: a) Co-N_4S/C and b) Co-N_3S/C

Figure S5: Optimized adsorption structures of ORR intermediates on $\text{Co-N}_4\text{S/C}$

Table S1: The Bader charge of the atoms at the active sites of (a) Co-N₄/C and (b) Co-N₃S/C. The charge of N is the average charge of the existing N atoms.

Adsorbate	$Co-N_4/C$		$Co-N_3S/C$		
	Co	Ν	Co	Ν	S
*	0.9	-1.21	0.72	-1.21	0.18
O_2	1.1	-1.2	0.94	-1.19	0.21
*OOH	1.1	-1.20	0.99	-1.20	0.24
*0	1.2	-1.20	1.18	-1.25	0.17
*OH	1.1	-1.20	1.02	-1.20	0.18
H ₂ O	1.0	-1.20	0.70	-1.16	0.17

Table S2: Zero point energy (E_{ZPE}) , entropy (-TS) and enthalpy $(H_{0\rightarrow 298})$ contributions to the free energy and corrections specific to the BEEF-vdW functional (BEEF) for different adsorbates. The differences are calculated with H₂O(g) in equilibrium with H₂O(l) as reference.

Adsorbate	ZPE	-TS	$H_{0\to 289K}\Delta E$	E_{ZPE} -T ΔS	BEEF	ΔH	Total
H_2O	0.56	-0.67	0.103				
H_2	0.27	-0.40	0.088				
$*O + H_2$	0.33	-0.48	0.128 -0.2	23 0.19	0.12	0.03	0.11
*OOH + $\frac{3}{2}$ H ₂	0.82	-0.80	0.224 -0.2	29 0.55	0.395	0.02	0.67
*OH + $\frac{1}{2}H_2$	0.47	-0.32	0.104 -0.0	0.36	0.075	0.001	0.34

Table S3: ORR intermediates adsorption Gibbs free energies at U = 0 V_{RHE} and the calculated ORR overpotential (η_{ORR}) on the considered surfaces.

Systems	OOH*	O*	OH*	$\eta_{\rm ORR}$ / V
$Co-N_4/C$	3.79	2.28	0.66	0.57
Co-N ₃ S/C	4.05	2.16	0.86	0.37
$Co-N_2S_2/C$	4.07	1.93	0.82	0.41
$Co-NS_3/C10$	4.09	2.05	0.91	0.40
$Co-S_4/C10$	4.16	2.28	0.97	0.47
$Co-N_4S/C10$	3.86	2.23	0.72	0.51

Figure S6: The free energy diagram of ORR on: a) Co-N₂S₂/C, b) Co-NS₃/C, c) Co-S₄/C, and d) Co-N₄S/C