# **Electronic Supplementary Material for**

### Activating atomically dispersed Co-N/C sites on g-C<sub>3</sub>N<sub>4</sub>

### nanosheets via incorporating sulfur enables efficient visible light

## H<sub>2</sub> evolution

Fang Wang<sup>a,b</sup>, Yuan Xue<sup>b</sup>, Weibing Xu<sup>a\*</sup>, Shixiong Min<sup>b\*</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.

<sup>b</sup>School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan,

750021, P. R. China.

\*Corresponding authors: weibingxu@hfut.edu.cn; sxmin@nun.edu.cn







Fig. S2 HRTEM images of (A) Co-CNs and (B) S-Co-CNs.

| <b>Fable S1</b> Chemical | composition of | f Co-CNs and S-Co-CNs | catalysts determined l | by |
|--------------------------|----------------|-----------------------|------------------------|----|
|--------------------------|----------------|-----------------------|------------------------|----|

| using EDX analysis. |          |          |           |          |          |  |
|---------------------|----------|----------|-----------|----------|----------|--|
| Sample              | C (at.%) | N (at.%) | Co (at.%) | O (at.%) | S (at.%) |  |
| Co-CNs              | 41.94    | 56.03    | 0.18      | 1.85     | 0        |  |
| S-Co-CNs            | 43.88    | 50.14    | 0.17      | 5.62     | 0.19     |  |



Fig. S3 Time courses of H<sub>2</sub> evolution over ErB-sensitized S-Co-CNs catalysts with different Co contents. Reaction conditions: catalyst, 50 mg; 100 mL of TEOA solution, 10%, pH 8; ErB, 0.2 mM; light source, 30-W LED lamp,  $\lambda \ge 450$  nm.



Fig. S4 XRD patterns of (A) Co-g-CNs and (B) S-Co-CNs prepared with with



Fig. S5 XRD patterns of S-M-CNs catalysts.



Fig. S6  $H_2$  evolution rates on different S-M-CNs catalysts in ErB-TEOA system. Reaction conditions: catalyst, 50 mg; 100 mL of TEOA solution, 10%, pH 8; ErB, 0.2





Fig. S7 UV-vis absorption spectra of ErB during the photocatalytic H₂ reaction under visible light irradiation. Reaction conditions: S-Co-CNs, 50 mg; ErB, 0.2 mM; 100 mL TEOA solution, pH 8; light source, 30-W LED lamp, λ≥450 nm. The S-Co-CNs was removed by filtration and the remaining ErB solution was diluted by 10 times.

**Table S2** The comparison of photocatalytic H2 evolution activity and AQY in dye-sensitized  $g-C_3N_4$  loaded with different cocatalysts under visible light irradiation.

| 0                                                         | 5 1             |                                 | 2                                              |                                                    | 0                 |     |
|-----------------------------------------------------------|-----------------|---------------------------------|------------------------------------------------|----------------------------------------------------|-------------------|-----|
| Catalyst                                                  | Dye             | Reaction conditions             | Light source                                   | Activity<br>(µmol h <sup>-</sup><br><sup>1</sup> ) | AQY (%)           | ref |
| mpg-C <sub>3</sub> N <sub>4</sub> /Pt (1<br>wt.%) (30 mg) | EY (0.4 M)      | TEOA (80 mL, 15<br>vol.%, pH 7) | 250 W high<br>pressure Hg<br>lamp (≥420<br>nm) | 115.5                                              | 14.4% (520<br>nm) | 1   |
| g-C <sub>3</sub> N <sub>4</sub> /Pt (7 wt.%)<br>(100 mg)  | EY (12.5<br>μM) | TEOA (80 mL,<br>0.79 M, pH 7)   | 400 W high<br>pressure Hg<br>lamp (≥420        | 160                                                | 18.8<br>(400~700) | 2   |

| g-C <sub>3</sub> N <sub>4</sub> /Pt (1.25<br>wt.%) (100 mg)                           | ErB (2.27<br>mM)                                          | TEOA (100 mL, 5<br>vol.%, pH 9)   | nm)<br>300 W Xe<br>lamp (≥420<br>nm)    | 652.5  | 33.4% (460<br>nm)                    | 3            |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|-----------------------------------------|--------|--------------------------------------|--------------|
| Pt (1 wt.%)/g-C <sub>3</sub> N <sub>4</sub><br>(10 mg)                                | Zn-tri-PcNc<br>(5.0 µmol g <sup>-</sup><br><sup>1</sup> ) | AA (10 mL, 50 mM, pH 1.5–1.8)     | 300 W Xe<br>lamp (≥500<br>nm)           | 125.2  | 1.85% (700<br>nm)                    | 9            |
| Pt (0.5 wt.%)/g-C <sub>3</sub> N <sub>4</sub><br>(10 mg)                              | LI-4/Zn-tri-<br>PcNc (5.0<br>µmol g <sup>-1</sup> )       | AA (10 mL, 50<br>mM, pH 1.5)      | 300 W Xe<br>lamp (≥420<br>nm)           | 371.4  | 7.7% (500<br>nm)                     | 10           |
| $\begin{array}{c} MoS_x \ (0.5 \ wt\%) \text{-g-} \\ C_3N_4 \ (100 \ mg) \end{array}$ | ErB (12.5<br>μM)                                          | TEOA (80 mL,<br>0.79 M, pH 7)     | 400 W high<br>pressure Hg<br>lamp (≥420 | 26     | 8.3% (545<br>nm)                     | 8            |
| Co(OH) <sub>2</sub> (23<br>wt.%)/g-C <sub>3</sub> N <sub>4</sub> (26<br>mg)           | EY/RB (17<br>mg/25 mg)                                    | TEOA (100 mL,<br>10 vol.%, pH 10) | 300 W Xe<br>lamp (≥420<br>nm)           | 144.2  | 29.6% (520<br>nm); 27.3%<br>(550 nm) | 11           |
| g-C <sub>3</sub> N <sub>4</sub> /Pt SAs (0.74<br>wt.%) (10 mg)                        | EY (0.4<br>mM)                                            | TEOA (100 mL,<br>10 vol.%, pH 7)  | 30 W LED<br>(520 nm)                    | 34.2   | 0.84% (520<br>nm)                    | 4            |
| g-C <sub>3</sub> N <sub>4</sub> /Pt/GO<br>(50mg)                                      | EY (50 mg)                                                | TEOA (100 mL, 20 vol.%, pH 7)     | 300 W Xe<br>lamp (≥420<br>nm)           | 191    | 9.7%<br>(420nm)                      | 6            |
| PtNi (0.5 wt.%)/g-<br>C <sub>3</sub> N <sub>4</sub> (50 mg)                           | EY (50 mg)                                                | TEOA (100 mL, 20 vol.%, pH 7)     | 300 W Xe<br>lamp (≥420<br>nm)           | 294.5  | NA                                   | 12           |
| MMT/g-C <sub>3</sub> N <sub>4</sub> /NiCoP<br>(15 wt.%) (10mg)                        | EY(0.1mM)                                                 | TEOA (100 mL, 10 vol.%, pH 11)    | 300 W Xe<br>lamp (≥420<br>nm)           | 125    | 40.3%<br>(420nm)                     | 7            |
| SnIn <sub>4</sub> S <sub>8</sub> /g-C <sub>3</sub> N <sub>4</sub> (11<br>wt.%) (50mg) | CoPc (1.75<br>mg)                                         | TEOA (100 mL,<br>15 vol.%)        | 500 W Xe<br>lamp (≥430<br>nm)           | 636.99 | NA                                   | 5            |
| MoS <sub>2</sub> (50 wt.%)/g-<br>C <sub>3</sub> N <sub>4</sub> (5 mg)                 | EY (20 μM)                                                | TEOA (40 mL, 10<br>vol.%)         | 300 W Xe<br>lamp (≥420<br>nm)           | 8.9    | NA                                   | 13           |
| S-Co-CNs (0.18 at.%<br>Co, 50 mg,)                                                    | ErB (0.2 mM)                                              | TEOA (100 mL,<br>10 vol.%, pH 8)  | 30 W LED<br>(≥450 nm<br>nm)             | 319    | 13.02%<br>(520 nm)                   | This<br>work |



Fig. S8 TEM images of S-Co-CNs catalyst after stability test.



Fig. S9 Mott-Schottky plots of pristine CNs, Co-CNs, and S-Co-CNs.

#### References

- 1. S. Min and G. Lu, J. Phys. Chem. C 2012, 116, 19644.
- 2. J. Xu, Y. Li, S. Peng, G. Lu and S. Li, Phys. Chem. Chem. Phys., 2013, 15, 7657.
- 3. Y. Wang, J. Hong, W. Zhang and R. Xu, Catal. Sci. Technol., 2013, 3, 1703.
- 4. X. Zhang, L. Yu, C. Zhuang, T. Peng, R. Li and X. Li, ACS Catal., 2014, 4, 162.
- 5. X. Zhang, T. Peng, L. Yu, R. Li, Q. Li and Zhen Li, ACS Catal., 2015, 5, 504.
- 6. J. Xu, Y. Li and S. Peng, Int. J. Hydrogen Energy, 2015, 40, 353.
- 7. Z. Li, Y. Wu and G. Lu, Appl. Catal., B, 2016, 188, 56.
- Y. Xue, Y. Lei, X. Liu, Y. Li, W. Deng, F. Wang and S. Min, New J. Chem., 2018, 42, 14083.
- 9. P. Wang, Z. Guan and Q. Li, J. Mater. Sci., 2018, 53, 774.
- 10. P. Wang, L. Zong, Z. Guan, Q. Li and J. Yang, Nanoscale Res. Lett., 2018, 13, 33.
- 11. J. Xu, Y. Qi, W. Wang and L. Wang, Int. J. Hydrogen Energy, 2019, 44, 4114.
- M. Lu, Z. Sun, Y. Zhang, Q. Liang, M. Zhou, S. Xu and Z. Li, *Synth. Met.*, 2020, 268, 116480.
- C. M. Nagaraja, M. Kaur and S. Dhingra, Int. J. Hydrogen Energy, 2020, 45, 8497.