Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

S-1 Electrical characteristics

Fig.-S 1 Nyquist plots of Fe/BZY-Pt|BZY|Pt. Legend presents various gas ratios of N₂ and H₂.

Gas	R _s	R ₁	CPE ₁ -T	CPE	R ₂	CPE ₂ -T	CPE	f_1	f ₂ [Hz]
ratio	[Ω]	[Ω]	[F·s ^{CPE1-P-1}]	1-P	[Ω]	$[F \cdot s^{CPE2-P-1}]$	2 - P	[Hz	×10 ⁴
N ₂ :H ₂			×10-4			×10-6]	
30:20	93.	263	6.07	0.38	530	4.47	0.47	18.8	4.99
	4			5			8		
25:25	93.	252	5.95	0.38	542	4.28	0.47		
	1			9			8	20.7	5.16
20:30	90.	217	6.84	0.35	451	4.76	0.47	33.4	6.34
	6			7			6		
12.5:	92.	216	6.11	0.38	504	4.25	0.47		
37.5	5			8			9	29.4	5.94
0:50	91.	385	3.84	0.34	723	2.85	0.48		
	7			9			7	38.1	5.28

Table-S 1 Impedance fitting results of Fe/BZY-Pt|BZY|Pt in mixed N2 and H2

Where

$$\begin{cases} \omega_{max1} = 2\pi f_1 = \frac{1}{C_1 R_1} \\ \omega_{max2} = 2\pi f_2 = \frac{1}{C_2 R_2} \\ eq.-S 1 \end{cases}$$
$$C = T^{1/P} R^{\frac{1-P}{P}} #eq.-S 2 \\ \begin{pmatrix} f_1 = \frac{1}{(T_1 R_1)^{1/P_1} 2\pi} \\ f_2 = \frac{1}{(T_2 R_2)^{1/P_2} 2\pi} \\ eq.-S 3 \end{cases}$$

S-2 Thermochemical coefficients and calculation

In this work, the equilibrium constant *K* of the NH₃ formation reaction was calculated in the condition of atmospheric pressure and 773.15 K. the calculated *K* by van't Hoff equation is 7.17×10^{-5} . With the obtained *K*, and equation relating the N₂ conversion rate to the N₂ fraction is given.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

$$Cp^\circ = A + Bt + Ct^2 + Dt^3 + E/t^2$$

$$t = \text{temperature}(K)/1000$$

$$\Delta_r H^{\circ}(T) = \Delta_r H^{\circ}(298.15 K) + 2 \int_{298.15 K}^{T} Cp^{\circ} NH_3 dT - \int_{298.15 K}^{T} Cp^{\circ} N_2 dT - 3 \sum_{298}^{T} Cp^{$$

$$\left(\frac{\partial lnK}{\partial T}\right)_{p} = \frac{\Delta_{r}H^{\circ}}{RT^{2}}$$
$$K = \frac{\left(\frac{pNH_{3}}{p^{\circ}}\right)^{2}}{\left(\frac{pN_{2}}{p^{\circ}}\right)\left(\frac{pH_{2}}{p^{\circ}}\right)^{3}}$$

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Before reaction:

$$T(inlet) = N_{2}(inlet) + H_{2}(inlet)$$

$$N_{2}(inlet) = T(inlet) \times x(N_{2} \ fraction)$$

$$H_{2}(inlet) = T(inlet) \times (1 - x)$$
In equilibrium:

$$NH_{3}(eq) = N_{2}(inlet) \times y(conversion) \times 2 = T(inlet) \times x \times y \times 2$$

$$N_{2}(eq) = N_{2}(inlet) \times (1 - y) = T(inlet) \times x \times (1 - y)$$

$$H_{2}(eq) = H_{2}(inlet) - \frac{3}{2} \times NH_{3}(eq) = T(inlet) \times (1 - x) - 3 \times T(inlet) \times x \times y$$

$$T(eq) = N_{2}(eq) + H_{2}(eq) + NH_{3}(eq)$$

$$\frac{\left(\frac{pNH_{3}}{p^{\circ}}\right)^{2}}{\left(\frac{pN_{2}}{p^{\circ}}\right)^{3}} = \frac{\left(NH_{3}(eq)/T(eq)\right)^{2}}{\left(N_{2}(eq)/T(eq)\right)\left(H_{2}(eq)/T(eq)\right)^{3}(1 - y) \times \left(\frac{1}{x} - 1 - 3y\right)^{3}} = K$$

Figure-S 2 shows the equilibrium NH_3 production rate at 500 °C with different inlet N_2 gas fractions. The total gas flow rate was 50 mL/min (equivalent to 1.31×10^{-5} mol/s). The highest NH_3 production rate is achievable at a N_2 :H₂ ratio of 1:3, and N_2 conversion increased as the N_2 fraction decreased. Figure-S 3 shows the mathematical solution derived from the reaction equilibrium calculations, given as:

Fig.-S 2 Equilibrium NH₃ production rate (r_{eq} -NH₃; calculated using an equilibrium constant of 7.17×10^{-5} at 500 °C) as a function of the N₂ gas fraction (blue). The total inlet gas flow rate was 50 mL/min. The corresponding N₂ conversion (red) is plotted on a semi-logarithmic scale.

$$\frac{2^2 \times y^2 \times \left(\frac{1}{x} - 2y\right)^2}{(1 - y) \times \left(\frac{1}{x} - 1 - 3y\right)^3} = K \quad \#eq.-S4$$

where x and y stand for $N_2/(N_2 + H_2)$ and the N₂ conversion ratio, respectively, and K is the equilibrium constant at 500 °C (7.17 × 10⁻⁵). As shown in Fig.-S 3, N₂ conversion increased as the fraction of N₂ decreased.

Fig.-S 3 Mathematical solution calculated from the reaction equilibrium equation at 500 °C.

Species (g)	А	В	С	D	Е
NH ₃	19.99563	49.77119	-15.37599	1.921168	0.189174
H ₂	33.066178	-11.363417	11.432816	-2.772874	-0.158558
N ₂ (100-500K)	28.98641	1.853978	-9.647459	16.63537	0.000117
N ₂ (500-2000K)	19.50583	19.88705	-8.598535	1.369784	0.527601

Table-S 2 Coefficients in Shomate equation for Cp° calculation¹.

Table-S 3 Standard enthalpy of formation and standard entropy at 298.15 K¹

Species (g)	$\Delta_{f}H^{}[kJ/mol]$	S° [J/(mol K)]
NH ₃	-45.90	192.77

Figure-S 4 shows the ratio between experimental NH₃ production rate (r_{exp} -NH₃) and theoretical equilibrium NH₃ production rate (r_{eq} -NH₃). An equilibrium constant, K, of 7.17 × 10⁻⁵ was calculated for NH₃ production from N₂ and H₂ (the coefficients for Cp° calculations, standard formation enthalpies, and standard entropies are listed in Table-S 2 and Table-S 3). With a H₂ and N₂ gas flow rate of 25 mL/min (equivalent to 6.57 × 10⁻⁶ mol/s) at the inlet, the calculated NH₃ equilibrium production rate (r_{eq} -NH₃) was 1.38 × 10⁻⁸ mol/s. Protons pumped from the anode side to the cathode side can cause an increase in the H₂ concentration. The H₂ flow rate at each applied voltage (f_{eq} - H_2) was calculated from the sum of the inlet flow rates of 25 mL/min and the amount of H₂ produced from the protons assuming a current efficiency of 1, as follows:

$$f - H_2 = \frac{I}{nF} #eq.S-5$$

where *n* is the moles of electrons consumed for every mole of H₂ produced (n = 2), and *I* is the current at each applied voltage. As a result, the r_{eq} -NH₃ values at the applied voltages were slightly higher than r_{eq} -NH₃ at the OCV, and the experimentally measured NH₃ production rate was lower than the theoretically calculated NH₃ production rate at equilibrium.

Fig.-S 4 Ratio between experimental NH₃ production rate (r_{exp} -NH₃) and theoretical equilibrium NH₃ production rate (r_{eq} -NH₃) (r_{eq} -NH₃ at OCV; calculated using an equilibrium constant of 7.17 × 10⁻⁵).

S-3 Fitting results

For
$$N_2 + 2 * \xrightarrow{k_1} 2N * \#eq.1$$
, the reaction rate equation of $2\frac{dN *}{dt} = k_1[*]^2$ and
 $2\frac{dN *}{dt} = k_1[*]^2/[H_s]^2$ are also tried for simulation. However, losses calculated by
 $\sum_{experimental \ time} (\sum_{time} [NH_3 \ error]^2 / \sum_{time} [NH_3 \ experimental]^2)$ with $2\frac{dN *}{dt} = k_1[*]^2$ and
 $2\frac{dN *}{dt} = k_1[*]^2/[H_s]^2$ are quite large. Although the flow rates of N₂ and H₂ are known

the concentrations of N_2 and H_2 on the surface of the catalyst are unknown. Since the flows of N_2 and H_2 are far in excess relative to reaction intermediates and products, the concentrations of N_2 and H_2 are both set to be a constant dimensionless number 1. There are large discrepancies between simulation and experimental data at -0.9 V and - 1.2 V in Fig.-S 5.

Fig.-S 5 Experimental and simulation plots of NH₃ production rate against time at - 0.9 V and -1.2 V.

k. [mol-1e-1]		
	6.13×10 ⁻⁸	1.04×10 ⁻¹
k ₂ [mol ⁻³ s ⁻¹]	9.46×10 ⁻¹	9.46×10 ⁻¹
k ₃ ×10 ⁵ [mol ⁻¹ s ⁻¹]	-	-
k ₋₃ [mol ⁻¹ s ⁻¹]	1.21	1.21
k ₄ ×10 ⁵ [s mol ⁻²]	9.71	9.71
k ₅ ×10 ⁻⁸ [s mol ⁻²]	6.54	6.54
* total amount [mol]	3.88×10 ⁻²	3.88×10 ⁻²
V _H total amount [mol]	1.71	1.71
N* steady state [mol]	3.83×10-2	3.87×10-2
H _s steady state [mol]	3.92×10 ⁻⁶	1.85×10 ⁻⁶

¹ NIST (National Institute of Standards and Technology, U.S. Department of Commerce) Chemistry WebBook