## **Supporting Information**

## Characterization of electrocatalytic proton reduction and surface adsorption of platinum nanoparticles supported by a polymeric stabilizer on an ITO electrode

Yuta Tsubonouchi,<sup>1</sup> Masashi Kajita,<sup>1</sup> Taichi Hayasaka,<sup>1</sup> Hamada S. Mandour,<sup>1,2</sup> Mohamed R. Berber,<sup>3</sup> Zaki N. Zahran,<sup>1,2</sup> and Masayuki Yagi<sup>1</sup>\*

<sup>1</sup> Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan.

<sup>2</sup> College of Science, Tanta University, Tanta 51111, Egypt.

<sup>3</sup> College of Science, Jouf University, Sakaka 2014, Saudi Arabia.

\*Author to whom correspondence should be addressed. E-mail: yagi@eng.niigata-u.ac.jp

## **Contents.**

Table S1. Summary of data in bulk electrolysis for proton reduction.

- Figure S1. Distribution of particle size of citrate-Pt and PAA-Pt nanoparticles.
- Figure S2. Time-courses of the adsorbed amount of citrate-Pt and PAA-Pt on the ITO electrode in QCM measurements.

Figure S3. XPS spectra of citrate-Pt and PAA-Pt on the ITO electrode.

Figure S4. CVs of citrate-Pt/ITO and PAA-Pt/ITO electrodes before and after chronoamperometry.

Table S1. Summary of data in bulk electrolysis for proton reduction in a  $0.1 \text{ M KNO}_3$  solution (pH = 5.3) using citrate-Pt/ITO and PAA-Pt/ITO electrodes.

| Electrodes     | Applied potential<br>/ V vs. Ag/AgCl | Time / h | Charge / C | Amount of $H_2$ / umol | Faraday efficiency<br>(%) |
|----------------|--------------------------------------|----------|------------|------------------------|---------------------------|
| citrate-Pt/ITO | -1.0                                 | 1        | 4.73       | 18.3                   | 75                        |
| PAA-Pt/ITO     | -1.0                                 | 1        | 2.84       | 9.9                    | 67                        |



Figure S1. Distributions of particle sizes of (A) citrate-Pt and (B) PAA-Pt nanoparticles in the flesh solution as measued by a small-angle X-ray scattering (SAXS) technique.



Figure S2. Time-courses of the adsorbed Pt amount of (A) citrate-Pt and (B) PAA-Pt on ITO electrode in QCM measurements. The Pt concentrations ( $c_{Pt}$ ) in the reaction solutions are indicated by different colors in respective figures.



Figure S3. XPS spectra of (A) citrate-Pt and (B) PAA-Pt on ITO in a Pt 4*f* region. The solid black and dotted red lines represent the experimental and simulated spectra, respectively. The deconvoluted bands are shown by the blue ( $Pt^0$  state) and green ( $Pt^{II}$  state) solid lines.



Figure S4. CVs of (A) citrate-Pt/ITO and (B) PAA-Pt/ITO electrodes in a 0.1 M KNO<sub>3</sub> solution (pH = 5.3) before (black dashed lines) and after (red solid lines) chronoamperometry at -1.0 V vs. Ag/AgCl.