Supporting Information

A metal-organic framework approach to engineer mesoporous ZnMnO₃/C towards enhanced lithium storage

Xi Hu, Qianhong Huang, Yuze Zhang, Hao Zhong, Zhi Lin, Xiaoming Lin,* Akif

Zeb,* Chao Xu* and Xuan Xu*

Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China.

^{*}Author to whom correspondence should be addressed: E-mail: linxm@scnu.edu.cn (X. M. Lin); akif_zeb7@yahoo.com; chaoxu@m.scnu.edu.cn (C. Xu); xuxuan@scnu.edu.cn (X. Xu).

Fig. S1 Raman spectrum of ZnMnO₃/C.

Fig. S2. XRD patterns of ZnMnO₃/C calcinated at 600, 700 and 800 °C.

Fig. S3. Cycling performance of ZnMnO₃/C at 1 A g⁻¹

Fig. S4. XRD patterns of the ZnMnO₃/C electrode after 20 cycles of the charge process.

Fig. S5. XRD patterns of the ZnMnO₃/C electrode after 20 cycles of the discharge process.

Fig. S7. Raman spectrum of ZnMnO₃.

Fig. S8. (a) CV curves of ZnMnO₃ electrode at different sweep rates; (b) A linear relationship between log (scan rate) and log (peak current); (c) Typical capacitive contribution of ZnMnO₃ electrode at 2.0 mV s⁻¹; (d) Contribution ratios of capacitance at different scan rates.

Electrode materials	Cycle capacity (mAh g ⁻¹)	Cycle number	Ref
ZnMnO ₃ porous spherulites	729/0.5 A g ⁻¹	50	S1
Hierarchical porous ZnMnO ₃ yolk-shell microspheres	540/0.4 A g ⁻¹	300	S2
Porous ZnMnO ₃	560/0.4 A g ⁻¹	300	S3
Multi-shelled ZnMnO ₃ hollow micro-spheres	290/0.4 A g ⁻¹	150	S4
1D ZnMnO ₃	382.9/0.8 A g ⁻¹	100	S5
MOF-derived ZnMnO ₃ /C	460/1 A g ⁻¹	500	This work

Table S1 The comparison of specific capacitance hybrid materials and other reported materials

References

- (S1) X. R. Liu, C. H. Zhao, H. Zhang and Q. Shen, Facile synthesis of porous ZnMnO₃ spherulites with a high lithium storage capability, *Electrochim. Acta*, 2015, **151**, 56-62.
- (S2) X. R. Su, J. Huang, B. Y. Yan, Z. P. Hong, S. Y. Li, B. C. Pang, Y. L. Luo, L. Feng, M. J. Zhou and Y. Y. Xia, Hierarchical porous ZnMnO₃ yolk–shell microspheres with superior lithium storage properties enabled by a unique onestep conversion mechanism, *RSC Adv.*, 2018, **8**, 31388-31395.
- (S3) C. H. Zhao, Z. G. Teng, D. N. Zhao, Z. B. Hu and K. Y. Liu, Porous ZnMnO₃ plates prepared from Zn/Mn–sucrose composite as high-

performance lithium-ion battery anodes, *Micro & Nano Letters*, 2016, **11**, 494-497.

- (S4) J. Y. Xu, H. Zhang, R. F. Wang, P. B. Xu, Y. L. Tong and F. Gao, Delicate control of multishelled Zn-Mn-O hollow microspheres as a high-performance anode for lithium-ion batteries, *Langmuir*, 2018, 34, 1242-1248.
- (S5) Y. Tian, Z. X. Chen, W. J. Tang, Z. H. Yang, W. X. Zhang, S. Li, K. Wang, Y. H. Su, Q. Xia and B. Guo, A facile synthetic protocol to construct 1D Zn-Mn-Oxide nanostructures with tunable compositions for high-performance lithium storage, *J. Alloy. Compd.*, 2017, **720**, 376-382.