Supplementary Information

Noncovalent Interactions Induced Self-Association in Anthraquinone-Iron Aqueous Redox Flow Batteries

Lixing Xia¹, Yujing Zhang², Heng Zhang¹, Shan Jiang¹, Qianglong Lv², Wenbo Huo², Fengming Chu², Fuzhi Wang¹, Hui Li^{2, *} and Zhan'ao Tan^{2, *}

¹ State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.

² Beijing Advanced Innovation Center for Soft Matter Science and Engineering,

Beijing University of Chemical Technology, Beijing 100029, China.

Corresponding Author

- * tanzhanao@mail.buct.edu.cn
- * hli@mail.buct.edu.cn

Figure S1. The anthraquinone-iron RFB was tested under 40 mA·cm⁻² without using glycine as the acid additive.

Figure S2. Images of (a) membrane and (b) carbon felt on the positive side after cycling in 0.1 M anthraquinone flow battery. Photographs of (c) membrane and (d) carbon felt on the positive side after cycling in 0.5 M anthraquinone flow battery.

Figure S3. ¹H NMR spectrum (500 MHz) of 28 μ L negative electrolyte in 0.55 mL D₂O before cycle (bottom) and after 150 cycles (top). The chemical shifts moved downfield slightly after 150 cycles, suggesting the concentration decreased accordingly.

Figure S4. CV curves of 100 μ L negative electrolyte dissolving in 50 mL 1 M KCl before (black line) and after 150 cycles (red line).

Figure S5. CV curves of 1112 μ L positive electrolyte in 50 mL 1 M KCl before (black line) and after 150 cycles (red line).

Figure S6. Nyquist plot of the 0.5 M anthraquinone-iron RFB before (black dots) and after cycling (red dots). The frequency arranges from 500 kHz to 1 Hz.

Figure S7. ¹H DOSY (600 MHz) spectrum of 50 mM 1-DPAQC1 in D₂O at 298 K.

Figure S8. Number-average molecular weight (M_n) , weight-average molecular weight (M_w) , and polydispersity index determined by GPC versus the concentration at 3.5, 12, 35 mg·mL⁻¹.

Figure S8 displayed that M_w increased with the concentration ranging from 3.5 to 35 mg·mL⁻¹. However, M_n first increased to 4.10 kDa when the concentration was 12 mg·mL⁻¹, and then decreased to 3.47 kDa as the concentration was 35 mg·mL⁻¹. We attribute this trend to the polydispersity broadening.