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1. Experimental

1.1 CO2 Reduction Procedure

The reduction process was performed using a conventional three-electrode 

electrochemical H-type cell, with a piece of Nafion®117 membrane as a 

separator. An Ag/AgCl and a Pt foil (1×1 cm) were used as the reference 

and the counter electrodes, respectively. A 30 mL 1.0 M KHCO3 solution 

was used as the electrolyte, which was bubbled with 1.0 atm CO2 

(99.999%) to reach saturation with CO2.

All potentials initially measured in this work were converted to the 

reversible hydrogen electrode (RHE) using the following Nernst equation: 

E(RHE) = E(Ag/AgCl) + 0.199 + 0.059 × pH

The Faradaic efficiency of CO was calculated from the total amount of 

charge (Q/C) passed through the sample and the total amount of CO 

(nCO/mol). Q=I×t, where I is the reduction current at a specific applied 

potential, and t is the time for the constant reduction current. The total 

amount of CO produced was measured using gas chromatography (GC, 

Agilent 8860). As two electrons are needed to produce one CO molecule, 

the Faradaic efficiency can be calculated as follows: Faradaic efficiency = 

2F×nCO/(I×t), where F is the Faraday constant (96,485 C/mol).

1.2 Electrochemically Active Surface Area (ECSA) Measurement
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The ECSA was estimated by measuring the capacitive current associated 

with double-layer charging from the scan rate dependence of cyclic 

voltammetry (CV). The measurement was performed among a potential 

window of -0.041 to 0.158 V vs. RHE, where the Faradaic current on 

working electrode is negligible.

1.3 In-situ FTIR. 

The preparation of working electrodes for operando IR measurements were 

modified from a previously reported method. Briefly, an Au thin film is 

plated on the reflective surface of the Si prism, and then drop-coated with 

the catalyst ink. The catalyst ink was prepared by mixing 5 mg samples 

with 30 L Nafion (5%) in 0.5 mL deionized water. The ink dispersion was 

then uniformly drop-coated onto the above prepared Au film. The working 

electrode was mounted in a one-compartment, three-electrode 

spectroelectrochemical cell with a platinum-wire as the counter electrode 

and a standard Ag/AgCl electrode as the reference. A bare Au film without 

catalyst loading was served as the background control. The FTIR spectra 

were captured using a Nicolet iS50 FT-IR spectrometer equipped with a 

MCT detector. The spectral resolution was set to 4 cm-1 for all 

measurements. All electrochemical tests were controlled using a CHI 

electrochemical workstation (CHI760E) with 1.0 M KHCO3 used as the 

electrolyte. Before the measurements, Ar gas was bubbled into the 
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electrolyte for at least 20 min to remove the residual air, followed by a 

continuous CO2 purge for at least 30 min until the electrolyte is CO2- 

saturation. In a typical test, with CO2 continuously bubbled into the 

electrolyte, the activation of the working electrode was first carried out by 

cycling the potential between 0 and -1.0 V vs. RHE until a repeatable CV 

was obtained. Then, the potential was swept between -0.3 and -0.7 V vs. 

RHE at 5 mV s-1 for electrochemical measurements. 
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2. Addition Data

Fig. S1 The digital image for the sample of NCN-6.
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Fig. S2 TEM images of samples: (a) NCN. (b) NCN-3. (c) NCN-4.5. (d) 

NCN-9.
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Fig. S3 The XPS survey of all prepared NCN materials.
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Fig. S4 LSV curves of all as-prepared NCN materials in CO2-saturated 

(solid line) and Ar-saturated (dashed line) 1 M KHCO3 solution.
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FE of CO2 and H2
distribution 
depending on applied 
potential:(a) NCN. (b) 
NCN- 3. (c) NCN- 4.5. 
(d) NCN- 6. (e) NCN- 9. 

Fig. S5 FE of CO2 and H2 distribution depending on applied potential:(a) 

NCN. (b) NCN-3. (c) NCN-4.5. (d) NCN-6. (e) NCN-9.
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The standard curve for the detection of CO and H2 products.Fig. S6 The relevant standard curve for the detection of (a) CO and (b) H2 

products.
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Fig. S7 NMR of liquid products of NCN-6 at each potential from -0.4 V to 

-1.1 V vs. RHE.
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Fig. S8 Partial current density of CO generated on various NCN materials. 
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Fig. S9 CO production rate over various NCN catalysts at the given 

potentials.
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Fig. S10 Long-term stability of all as-prepared catalysts in 1.0 M KHCO3 

at the -0.6V vs. RHE.
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Fig. S11 (a) Raman spectra and (b) TEM image of NCN-6 after CO2RR at 

-0.6 V vs. RHE over 25 h.
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Fig. S12 Current density plots against potentials under a series scan rates 

of (a) NCN. (b) NCN-3. (c) NCN-4.5. (d) NCN-6. (e) NCN-9. Electrolyte: 

1 M KHCO3. The scan rate: 10, 20, 30, 40 and 50 mV s-1.



12

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

Relative pressure (P/P0)

Q
ua

nt
ity

 a
ds

or
be

d 
(c

m
3 /g

 S
TP

)

 NCN-9
 NCN-6
 NCN-4.5
 NCN-3
 NCN

Fig. S13 CO2 adsorption isotherms of various NCN catalysts.
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Fig. S14 (a) The BET surface areas, (b) the adsorption-desorption and (c) 

pore size distribution isotherms of NCN, NCN-3, NCN-4.5, NCN-6 and 

NCN-9. 
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Table S1. The content of N and C in different catalysts by elemental 

analysis.

Catalysts The content C/Atom% The content N/Atom%

NCN 95.8 4.1

NCN-3 94.3 5.7

NCN-4.5 93.2 6.8

NCN-6 92.3 7.7

NCN-9 92.6 7.4

Table S2. The content of N species in different catalysts by XPS.

Catalysts Pyridinic N
/Atom%

Pyrrolic N
/Atom%

Graphitic N
/Atom%

Oxidized N
/Atom%

NCN 0.44 0.55 2.12 0.57

NCN-3 0.88 0.61 2.28 1.27

NCN-4.5 1.37 0.68 2.81 1.08

NCN-6 1.74 0.75 2.82 1.28

NCN-9 1.67 0.77 2.77 1.14
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Table S3. Electrocatalytic CO2 RR performance of recently reported 

metal-free catalysts.

Catalysts Electrolyte FECO Current density 

(mA cm -2)

Ref.

NCN-6 1.0M KHCO3 70% -22 This work

NSHCF900 0.1M KHCO3 94% -103 1

OA-PCN 0.5MNaHCO3 40% -7 2

MPC-1000 0.1M KHCO3 62% -6 3

NPC-1000 0.5M KHCO3 98.4% -14 4

Se-CNs 0.1M KHCO3 90% -20 5

NS-CNSs-1000 0.5M KHCO3 85.4% -18 6

NS-C-900 0.1M KHCO3 92% -14 7

NC-1100 0.5M KHCO3 95% -12 8

NCNT 0.1M KHCO3 80% -1.0 9

NC-900-HH 0.1M KHCO3 90% -5 10
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