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1 Solving for the association fraction in PC-SAFT

The association fraction is obtained by solving a system of non-linear equations given by:
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, (1)

where nassoci is the number of types of sites on species i, ρ is the number density of the system, ni,a is the number of
sites of type a on species i, Xi,a is the fraction of sites of type a on species i not bonded to any other site and ∆ij,ab

is the association strength between site of type a on species i and site of type b on species j. Whilst one could solve
for the above equation using standard root-finding algorithms such as Newton–Raphson, a commonly-used approach
is to imply solve the above equation iteratively such that:
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where the supercript (k) denotes a particular iteration; X
(0)
i,a is typically assigned a value of 1 for all sites and species.

Solving the above equation directly often results in oscillatory convergence; this is avoiding by introducing a damping
factor, α:
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where α is usually given a value of 0.5. With this, it typically takes 5-10 iterations for the value of Xi,a to converge.

2 Estimation of kij for polymer blends

In order to estimate the binary interaction parameter, kij , between polymers used in PC-SAFT, regression to
experimental liquid–liquid equilibrium data is performed. Table 1 summarises the available data in literature for the
polymer blends studied in this work.

The data provided in Tripathi 1 ’s work gives the composition at the liquid-liquid envelope, thus, as one can obtain
such data from PC-SAFT (i.e. xαi (T, P ; kij), where α indexes the phase and i and j indexes the species), it is possible
to define the following objective function:

min
kij

∑
n

(
xα,expi,n − xαi (Tn, Pn; kij)

)2
. (4)

Using the standard steepest-decent algorithm, it is possible to determine the value of kij . It was found that the
objective function was convex, as such, using the values obtained from the Hudson-McCoubrey combining rule as an
initial guess, the locally optimal parameter obtained can be assumed to be the globally optimal parameter.

However, the data provided by Kressler et al. 2 details whether, at a given temperature and composition, phase-
splitting is observed. In order to use this data to obtain kij , the objective function is redefined as:

min
kij

(
1− Np,c(kij)

Np

)
. (5)
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Table 1: Summary of polymer blend LLE data used and kij values obtained.

Polymer blend (molecular weight) Refs kij
PS(1344)/PB(1104) Tripathi 1 0.00034276
PS(1672)/PB(1104) Tripathi 1 -0.0003567
PS(4368)/PB(1104) Tripathi 1 -0.001414
PS(1344)/PB(2585) Tripathi 1 0.000721
PS(1672)/PB(2585) Tripathi 1 -0.0001737
PS(2950)/PMMA(10550) Callaghan and Paul 3 0.01404
PS(2950)/PMMA(4250) Callaghan and Paul 3 0.01415
PS(9200)/PMMA(2400) Callaghan and Paul 3 0.01301
PS(9200)/PMMA(4250) Callaghan and Paul 3 0.01288
PS(1250)/PMMA(6350) Kressler et al. 2 0.01629
PS(1390)/PMMA(6350) Kressler et al. 2 0.01603
PS(1390)/PMMA(12000) Kressler et al. 2 0.01605

where Np is the number of point and Np,c counts the number of times where, at a given composition and temperature,
PC-SAFT predicts the same phase as the experimental data. Unfortunately, this function is not smooth; as such, a
gradient-free algorithm was used instead.

The kij values obtained from these procedures are given in table 1.

3 Derivation of κ

Following the methodology of Ariyapadi and Nauman 4 , the value of the gradient energy parameter κ can be derived
from the Gibbs free energy of mixing function. This methodology can be used to identify a suitable expression for
κ when more complex free energy functions are used. For this section, we use a simple quartic polynomial as an
illustrative example.

In terms of both the averaged volume fractions of species 1 and 2 over all lattice sites φ̄1 and φ̄2 respectively, the
Gibbs energy of mixing can be written as follows:

g̃m(φ̄1, φ̄2) = Aφ̄21φ̄
2
2, (6)

where A is a constant that is often fitted or specified as a model parameter. The relationship between φ̄i and the
normal volume fraction φi is written as follows:

φi(r) = φ̄i + εi, εi =
R2
G,i

6
(∇2φi), (7)

where RG,i is the radius of gyration for species i. It should be noted that when the system is homogeneous, φ̄ and
φ are identical.

The total Gibbs energy of the system GSystem can be evaluated by integrating eq. (6) over the entire volume:

GSystem =

∫
Ṽ

Aφ̄21φ̄
2
2 dṼ . (8)

Upon introducing the expression given in eq. (7) and discarding terms of ε2 or higher, we can write down the following
expression for GSystem:
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2
2) dṼ . (9)

At this stage, we can consider how the Landau–Ginzburg free energy functional which is written as follows:

GSystem =

∫
Ṽ

g(φ1) +
κ

2
(∇φ1)2dṼ , (10)

consists of both a uniform (U) and non-uniform (NU) contribution:

GSystem = GU +GNU (11)
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The uniform contribution can be simply written as follows:
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2 dṼ , (12)

while the non-uniform contribution can be written as follows:
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A direct comparison between eq. (13) and eq. (10) enables us to write down the following expression for κ:
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We can note that this expression for κ is comparatively complicated and it introduces a compositional dependence
which is typically neglected by most studies. In constrast, when only the residual free energy component of the Gibbs
free energy of mixing given by the Flory–Huggins equation is considered, κ can be written quite cleanly:

κ
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6
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6
). (15)

It must be noted that the residual / excess component of the zeroth order Redlich–Kistler approximation for g̃m
takes on the same form as the residual component of the Flory–Huggins equation when the polymers are of same
length.

In order to obtain κ for UNIFAC-FV and the PC-SAFT models studied, one should, in principle, obtain it by
repeating the process used to obtain equation 15. However, due to lengthy equations involved in these models,
this is quite complex and introduces additional non-linearities to the Cahn–Hilliard equation. As such, in order to
approximate κ, we will be approximating both UNIFAC-FV and PC-SAFT by the Flory–Huggins equation such
that:

min
χ12

∑
n

(
χ12 −

∆gmix,m(φi,n)−∑i φi,n ln (φi,n)/Ni
φi,n(1− φi,n)

)2

, (16)

where n indexes the number of points where ∆gmix,m is evaluated in the range of φi between zero and one. Using
the polyfit function provided in the numpy module, one hundred points are used to fit χ12 for UNIFAC-FV and
PC-SAFT. The resulting values for κ in the cases studied are given in figure 1.
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(a) Fitted κ (using equation 16) for a of a PS/PB blend
where N1 = N2 = 50. For PC-SAFT: kFitted

ij = −0.0014
and kCR

ij = 0.0001.
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(b) Fitted κ (using equation 16) for a of a PS/PMMA
blend where N1 = N2 = 500. For PC-SAFT: kFitted

ij =
0.0125 and kCR

ij = 0.0180.

Figure 1: Fitted κ (using equation 16) for different polymer blends of interest using the PC-SAFT with kij estimated
from either the Hudson-McCoubrey combining rule (red, dashed) or equation 64, in main text, (red, solid), UNIFAC
(blue, solid) and Flory-Huggins (black, solid) equations.(color online)
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