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A.1 Stress tensor on a surface

The stress tensor Σ represents the state of stress at any location of the membrane and includes both the in-plane normal
and shear stresses as well as out-of-plane shear stress due to bending. Each column of the stress tensor Σ constitutes
the traction vector on the curve drawn on the membrane, known as the stress vector, and is represented as

Σα = Nαβaβ + Sαn, (S1)
whereN is the surface stress tensor, S represents the shearing force due to bending, and aβ (for β = 1, 2) represents
the surface tangent vector normal to the curve. The local equilibrium of forces, in the tangential and normal directions,
is given by [1]

∇ ·N − S · b = 0, (S2)

∇ · S +N : b+ p = 0, (S3)
with

N = ζ + π + b ·M and S = −∇ ·M . (S4)
Here, ζ andM are the elastic stress and moment tensors, b is the curvature tensor, and π is the viscous stress tensor.

The elastic stress and moment tensors can be obtained from the energy density for an incompressible membrane as [1,
2]

ζ = −2κ(H − `σ)b− 2κ̄Ka− ξa,
M = κ(H − `σ)a+ κ̄ (2Ha− b) , (S5)

where ξ is the Lagrange multiplier that imposes the incompressibility constraint and a is the metric tensor of the
surface. The surface tension λ is related to ξ with the following expression [1]

λ = −(ξ +W ). (S6)
The viscous stresses obey the constitutive relation [3]

π = 2ν [d− wb] . (S7)
Here,

d =
(
∇v +∇vT

)
/2, (S8)

is the rate-of-strain tensor expressed in terms of the velocity field v (see [2–4] for details). w is the normal velocity
of the surface, given by

w = n · rt, (S9)
where r is the position vector of a material point on the surface.
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A.2 Dimensionless governing equations

Here we summarize the governing equations for the coupled dynamics of the system in the dimensionaless form. The
tangential force balance equation becomes

∇λ̃− 4w̃∇H̃ + 2(∇ · d̃−∇w̃ · b̃)

=−∇φ
[

2B̂Ŝ

T̂
log

φ

1− φ
− 4L̂Ŝ

T̂
(H̃ − L̂Ŝφ)− ÂB̂Ŝ

T̂
(2φ− 1)− ÂB̂

T̂
∆φ

]
,

(S10)

along with the surface incompressibility relation,

∇ · ṽ = 2w̃H̃. (S11)

The normal force balance relation takes the following form

∆(H̃ − L̂Ŝφ) + 2(H̃ − `Lσsφ)(2H̃2 − K̃)− 2B̂Ŝ H̃

[
{φ log φ+ (1− φ) log (1− φ)}+

Â

2
φ(1− φ)

+
Â

4Ŝ
|∇φ|2

]
− 2H̃

[
(H̃ − `σsLφ)2 +

κ̄

κ
K̃
]
− T̂

[
b̃ : d̃− w(4H̃2 − 2K̃)

]
= p̃+ T̂ λ̃H̃.

(S12)

The mass conservation of proteins is given by

φt + Pe∇ · (ṽφ) = ∆φ

[
1

1− φ
+

2L̂2Ŝ

B̂
φ− Âφ

]
− φ

[
2L̂

B̂
∆H +

Â

2Ŝ
∆2φ

]
+∇φ ·

[
∇φ
(

1

(1− φ)2
+

2L̂2Ŝ

B̂
− Â

)
− 2L̂

B̂
∇H̃ − Â

2Ŝ
∇(∆φ)

]
.

(S13)

A.3 Governing equations in the linear Monge regime

The continuity condition and tangential force balance simplify as

∇ · v = 2wH, (S14)

and,

∇λ+∇2v +∇(∇ · v)− 4w∇H − 2∇w : ∇∇z =

−∇φ
[

2B̂Ŝ

T̂
log

φ

1− φ
− 4L̂Ŝ

T̂
(H − L̂Ŝφ)− ÂB̂Ŝ

T̂
(2φ− 1)− ÂB̂

T̂
∇2φ

]
.

(S15)

The normal force balance Equation (S12) reduces to

∇4z − 2L̂Ŝ∇2φ− 2B̂Ŝ∇2z

[
{φ log φ+ (1− φ) log(1− φ)}+

Â

2
φ(1− φ) +

Â

4Ŝ
|∇φ|2 +

L̂2Ŝ

B̂
φ2
]

− T̂ (∇v +∇vT ) : ∇∇z = p+ T̂ λ∇2z.

(S16)

Finally, the transport equation for the protein density field Equation (S13) takes on the following form:

φt + Pe∇ · (vφ) = ∇2φ

[
1

1− φ
+

2L̂2Ŝ

B̂
φ− Âφ

]
− φ

[
2L̂

B̂
∇2H +

Â

2Ŝ
∇4φ

]
+∇φ ·

[
∇φ
(

1

(1− φ)2
+

2L̂2Ŝ

B̂
− Â

)
− 2L̂

B̂
∇H − Â

2Ŝ
∇(∇2φ)

]
.

(S17)

A.4 Linear stability analysis in the linear Monge regime

We substitute the follwoing normal modes into Equation (27) and Equation (28),

φ′ = Φeαtei2πk·x and z′ = Zeαtei2πk·x, (S18)
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yielding the relations

Z

[
16π4k4 + 8π2k2B̂Ŝ

(
{φ0 log φ0 + (1− φ0) log(1− φ0)}

+
Â

2
φ0(1− φ0) +

L̂2Ŝ

B̂
φ20

)
+ 4π2k2T̂

]
= −8π2k2L̂ŜΦ,

(S19)

and

αΦ = −4π2k2Φ

[
1

1− φ0
+

2L̂2Ŝ

B̂
φ0 − Âφ0

]
− 16π4k4φ0

[
L̂

B̂
Z +

Â

2̂S
Φ

]
. (S20)

Eliminating variables Z and Φ, we obtain the dispersion relation given in Equation (29).

A.5 Numerical methods

We solved the dimensionless governing equations in the linear Monge regime (Equation (S14) to Equation (S17))
numerically inside a square domain with periodic boundary conditions. Numerical simulations were performed on a
spatial uniform grid of size 64 × 64 for the lower value of Ŝ (200). However, we considered a finer uniform grid
of size 128 × 128 for the higher values of Ŝ (500, 1000, and 2000), where we observed smaller sizes of protein
aggregates. We used a finite difference scheme to solve the transport equation for the protein density (Equation (S17)),
whereas the velocity (Equation (S14) and Equation (S15)) and the shape (Equation (S16)) were solved using a Fourier
spectral method [5, 6]. A semi-implicit scheme was used for the time marching for the protein density φ with a time
step ∆t = 3 × 10−4, where the nonlinear terms involving velocity and curvature were treated explicitly. In contrast,
the nonlinear aggregation-diffusion terms were treated with linear implicit terms. The resulting transport equation is
shown below

φn+1 − φn

∆t
+ Pe ∇ · (vn+1φn+1) = ∇2φn+1

[
1

1− φ
+

2L̂2Ŝ

B̂
φ− Âφ

]n+1

− φn+1

[
2L̂

B̂
∇2Hn+1

]
+ φn+1

[
Â

2Ŝ
∇4φn+1

]
+∇φn+1 ·

[
∇φ
(

1

(1− φ)2
+

2L̂2Ŝ

B̂
− Â

)
− 2L̂

B̂
∇H − Â

2Ŝ
∇(∇2φ)

]n+1

,

(S21)

where the superscript n+ 1 indicates the explicit terms for time step n + 1, for which the currently available values
were considered. The explicit terms were further updated using an iterative scheme, and within each iteration, velocity
and shape were recalculated for the updated values of protein density. The iterations were performed within a time
step until convergence was achieved. For the convergence within a time step, we used a tolerance of 5× 10−7. When
the differences between values of variables from successive iterations fell below the tolerance, we considered the
values of the variables to be converged in that time step. The Fortran code for the numerical simulation is available on
https://github.com/armahapa/protein aggregation in membranes.
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B Supplementary figures
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Figure B.1: Protein distribution on the deformed membrane at a long time mimicking the steady state in the plane of
L̂ and Ŝ, with Â = 25.
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Figure B.2: Membrane tension on the projected membrane surface at a long time mimicking the steady state in the
plane of L̂ and Ŝ, with Â = 25.
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C Supplementary movies

Movie M1: Time evolution of the protein density on a flat square membrane of area 1 µm for Â = 25 and Ŝ = 200 in
the Cahn-Hilliard case.

Movie M2: Time evolution of the protein density on a flat square membrane of area 1 µm for Â = 25 and Ŝ = 500 in
the Cahn-Hilliard case.

Movie M3 Time evolution of the protein density on a flat square membrane of area 1 µm for Â = 25 and Ŝ = 1000
in the Cahn-Hilliard case.

Movie M4: Time evolution of the membrane deformation and protein density in a square membrane of size 1 µm2 for
Â = 25, Ŝ = 200 and L̂ = 8× 10−4 for the fully coupled system.

Movie M5: Time evolution of the membrane deformation and protein density in a square membrane of size 1 µm2 for
Â = 25, Ŝ = 1000 and L̂ = 8× 10−4 for the fully coupled system.

Movie M6: Time evolution of the membrane deformation and protein density in a square membrane of size 1 µm2 for
Â = 25, Ŝ = 2000 and L̂ = 8× 10−4 for the fully coupled system.
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https://drive.google.com/file/d/1h-2WZgW5tpKKJssts3howy3HecwslYMH/view?usp=sharing
https://drive.google.com/file/d/19jSHyU0_hfL6UMa6_ZddD-9Sk-I7IpvN/view?usp=sharing
https://drive.google.com/file/d/10WcSacJUYPI2ThyplGgtQOk8QNOt6PVB/view?usp=sharing
https://drive.google.com/file/d/1PLMvH0R5-PxBw7Ov7q5pnHyhfq5Zt46k/view?usp=sharing
https://drive.google.com/file/d/1yb3EMkPSe5MNyMZVu6-DaTHH5Y_XJTvo/view?usp=sharing
https://drive.google.com/file/d/1-nQLsUQmjpLKy1f9Bod127AfelKqoVZz/view?usp=sharing
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