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S1 Solvent Quality of Polymer Solution

Table S1: Simulation parameters for different bead types. Subscripts S, P, and W indicate solvent,
polymer and substrate beads, respectively.

A rA B rB
S/S -40 1.00 25 0.75
P/P -40 1.00 25 0.75
S/P -40 1.00 25 0.75
S/W -10 1.00 25 0.75
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Figure S1: Single molecule structure factor of Np = 100, xp = 0.010 and 0.020. A dashed line
indicate the fitted function by S(q) ∼ −q1/ν . A dashed line shows the scaling of S(q) ∼ q−1/ν ,
where ν is a Flory exponent in a good solvent condition. Reprinted with permission from [Lee et
al, ACS Macro Lett. 2021, 10, 192-196][1]. Copyright @ American chemical Society.
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Our simulation model is composed of solvent (subscripted by S), polymer (P) and substrate (W)
beads. Repulsion parameters, B and rB, are same regardless of types of pair (Tab. S1). Attraction
parameters are chosen to mimic athermal solvent conditions indicating a negative Flory-Huggins
parameter at any non-zero temperature. This is achieved by setting the interaction parameters
between solvent/solvent, solvent/polymer and polymer/polymer identical. We confirm that our
choice of parameters reproduces well the Flory exponent ν ≈ 0.588 for a good solvent condition
(Figure S1).

S2 Equilibrium Properties of Free Droplet
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Figure S2: Particle number density as a function of distance from the center of droplet for different
droplets. All curves merge in a single curve. A dashed line represents the fitted function of Eqn.
1.

We calculate equilibrium properties of free droplets to calculate Reynolds (Re= D0vimpρ/ηs)
and Weber numbers (We= D0v

2
impρ/σ), where D0 is the equilibrium droplet diameter, ρ is the

droplet mass density, ηs is the shear viscosity, and σ is the fluid’s liquid-vapor surface tension.
Figure S2 shows the radial number density of liquid beads (ρr) as a function of distance from

the droplet center for different polymer compositions. We fit ρr with the following function:

ρr(r) =
ρl + ρv

2
− ρl + ρv

2
tanh

2(r −D0/2)

δ
, (1)

where ρl, ρv, D0, δ are the liquid density, the vapor density, the equilibrium droplet diameter, and
the interface width, respectively. The resulting droplet density ρ = ρl = 6.09 and the equilibrium
diameter D0 = 31.6 are constant regardless of polymer composition.

We also calculate the zero-shear viscosity from separate bulk solution simulations. After prepar-
ing systems of 106 liquid particles containing the same polymer composition and the same particle
density as the droplet, we perform equilibrium simulations for 104τ . The zero-shear viscosity η0 is
calculated by integrating the stress auto-correlation function given by

η0 =
V

kBT

∫ ∞
0

G(t)dt =
V

kBT

∫ ∞
0

〈σµν(t) · σµν(0)〉dt, (2)

σµν being off-diagonal element of the stress tensor, µ 6= ν. Figure 3(a) shows the stress auto-
correlation function G(t) for different polymer solutions. Even for the longest polymer, Np=100
at the highest concentration, xp = 0.025, the stress mostly decays in a very short time, faster than
1τ . Considering the relaxation time of the polymer for Np=100 of about 1600τ (Figure 3(b)), the
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Figure S3: (a) Stress auto-correlation function for different polymer solutions and (b) the end-to-
end relaxation time of polymer as a function of Np at xp = 0.025. τee at different concentration is
not different from the result shown here. In (b), a dashed line shows the scaling of τee(Np) ∼ N3ν

p ,
where ν is a Flory exponent in a good solvent condition. Reprinted with permission from [Lee et
al, ACS Macro Lett. 2021, 10, 192-196][1]. Copyright @ American chemical Society.

Table S2: Calculated zero-shear viscosity for different polymer lengths and concentrations. Errors
are given in the parenthesis.

Np

xp 0.005 0.010 0.015 0.020 0.025

Pure solv. 6.68 (± 0.85)
5 6.91 (± 0.94) 6.90 (± 0.80) 6.28 (± 0.68) 6.42 (± 0.66) 6.22 (± 0.87)
10 7.62 (± 0.71) 6.85 (± 0.90) 6.68 (± 0.59) 7.21 (± 0.45) 6.76 (± 0.70)
20 7.23 (± 0.69) 6.79 (± 0.85) 7.01 (± 0.90) 6.44 (± 0.69) 7.15 (± 0.73)
50 6.89 (± 0.88) 7.40 (± 0.78) 7.80 (± 1.03) 7.17 (± 0.60) 6.96 (± 0.92)
100 7.07 (± 0.79) 6.76 (± 0.95) 6.41 (± 0.80) 6.28 (± 0.81) 7.66 (± 0.93)

polymer contribution to the solution viscosity is negligible. The resulting η0’s are listed in Tab.
S2, but there is no clear trend of it depending on Np and xp due to very small η0. Thus, the
polymer contribution to the solution viscosity is very small and almost identical for all systems
under investigation.

We calculate liquid-vapor surface tension of a droplet using the radial distance-dependent pres-
sure tensor calculated by the Irving-Kirkwood method:[2]

pµν(r) = 〈ρ(r)〉kBT I+
1

A

〈∑
i>j

(rij)µ(fij)νθ
(r − ri
rij

)
θ
(rj − r
rij

)〉
, (3)

where I is the unit tensor, rij and fij is the relative distance and force vectors between particles i
and j, respectively. θ(x) is the Heaviside functions. For a spherical interface, the surface tension
is calculated from the pressure tensor in the spherical coordinate where the origin is the center of
a droplet. Therefore, we transform r and f into spherical polar coordinates and obtain radial (prr)
and tangential components of the pressure tensor (pθθ and pφφ) as a function of distance from the
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Figure S4: (a) Radial and tangential components of the pressure tensor as a function of distance
from the center of a droplet. This figure is obtained from the droplet of Np = 5 and xp = 0.025.
(b) Surface tension as a function of xp for different Np. Error colored by shaded area is shown
only for Np = 50 droplets. The black dashed line indicates the surface tension of a pure solvent
droplet.

Table S3: Reynolds and Weber numbers of free droplets. Errors are given in the parenthesis.

Np

xp 0.005 0.010 0.015 0.020 0.025

Re
Pure solv. 57.4 (± 7.3)

1 57.5 (± 7.3)
5 55.6 (± 7.6) 56.7 (± 6.6) 61.2 (± 6.6) 59.9 (± 6.2) 61.8 (± 8.6)
10 57.4 (± 5.3) 56.2 (± 7.4) 57.5 (± 5.0) 53.2 (± 3.3) 56.8 (± 5.8)
20 53.1 (± 5.1) 56.4 (± 7.1) 54.1 (± 6.9) 59.5 (± 6.4) 53.7 (± 5.5)
50 55.6 (± 7.1) 51.9 (± 5.5) 49.5 (± 7.3) 53.4 (± 4.5) 55.2 (± 7.3)
100 54.3 (± 6.1) 56.7 (± 8.0) 60.0 (± 7.5) 61.1 (± 7.8) 50.2 (± 6.1)

We
Pure solv. 106.4 (± 2.0)

1 107.5 (± 2.0)
5 106.2 (± 2.3) 106.4 (± 2.8) 106.7 (± 2.0) 107.9 (± 2.2) 107.8 (± 1.8)
10 107.5 (± 2.1) 106.0 (± 2.3) 107.0 (± 3.1) 106.6 (± 2.9) 107.3 (± 3.1)
20 106.4 (± 3.1) 105.6 (± 3.0) 105.8 (± 3.4) 107.5 (± 2.5) 107.5 (± 1.8)
50 107.7 (± 2.6) 107.2 (± 3.9) 106.5 (± 2.7) 107.4 (± 2.1) 107.2 (± 2.3)
100 105.2 (± 3.9) 106.5 (± 2.5) 107.9 (± 2.5) 105.8 (± 3.8) 106.0 (± 2.1)

droplet center. The surface tension is then calculated by:[3]

σ =
4

D2
0

∫ ∞
0

dr2[prr(r)−
1

2
{pθθ(r) + pφφ(r)}] (4)

Figure 4(a) shows the pressure tensor components as a function of distance from the center of
the droplet. The pressure difference near the interface, and the width in which prr and pθθ (or
pφφ) differ from each other is the same as the interfacial width in Figure S2. By integrating the
difference of the radial and tangential pressures (a dashed line in Figure 4(a), we obtain the surface
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tension for different droplets as shown in Fig. 4(b). As expected, the surface tension of different
droplets seems to be almost the same within the statistical error, which means that Reynolds and
Weber numbers of our droplets are the same without statistically meaningful difference.(Tab. S3)

S3 Molecular Kinetic Theory of Wetting
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Figure S5: (a) Particle density profile as a function of a distance from the surface. The first
minimum after the first peak indicates the the thickness of the first adsorption layer. (b) Two-
dimensional radial distribution function of particles in the first adsorption layer. The first minimum
indicates the distance to the nearest neighbor.
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Figure S6: (a) Cumulative fraction of the particle which moves a distance larger than λ within
the first adsorption layer as a function of time. (b) Probability distribution of the molecular jump
times.

If a solid-liquid interface were static and homogeneous, that is not the case for our droplets of
polymer solution, parameters in Equation 1 in the main article can be evaluated explicitly from
the static droplets deposited on the substrate(Table S4).[4] To compare the friction coefficient of
the impacting droplet with that from the MKT, we first obtain the thickness of the first adsorption
layer, hads, at which the particle density profile along z-direction has a minimum after the first
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Table S4: Parameters for the molecular kinetic theory of wetting. hads and 〈τjump〉 mean the
thickness of the first adsorption layer and the average time for the molecular jump to the nearest
site, respectively.

System hads λ 〈τjump〉 κ0 n γ ζCL ζCL/γ
Pure Solvent 0.93 0.87 1.68 0.59 2.32 7.20 4.48 0.62
AP/W = −30 0.85 0.87 4.20 0.24 2.61 7.14 12.61 1.77
AP/W = −90 0.51 0.89 21.22 0.04 0.69 7.14 16.50 2.31

peak (Figure 5(a)). It is obvious that the thickness is smaller for the stronger polymer-surface
attraction strength. We also calculate the two-dimensional radial distribution function in the first
adsorption layer, and then define the distance of the first minimum correlation as the distance to
the nearest adsorption site, λ (Figure 5(b)). Calculated λ’s turn out to be almost identical for all
systems. To obtain the frequency of a molecular jump, κ0, we calculate a cumulative fraction of
particles which move further than λ within the first adsorption layer as a function of time duration
t as in Figure 6(a)(fjump(t)). By taking a time derivative of the cumulated fraction, we obtain
the (unnormalized) distribution of molecular jump times, P (t) = dfjump(t)/dt (Figure 6(b)). We
find a very long tail of the distribution for the system of strong polymer-surface attraction, that
is obviously from the contribution of adsorbed polymer beads. Averaging τjump for P (τjump) gives
the average time of parallel molecular jumps, 〈τjump〉. Finally, we take an inverse of it to get
κ0 = 〈τjump〉−1. We also calculate the number of adsorption sites per unit area, n, by averaging
the number of particles per unit area in the first adsorption layer only for a central region of the
solid-liquid interface. The obtained ζCL = nkBT/κ0λ and the evaluated slope ζCL/γ are also listed
in Table S4.
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