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1 Equilibrium Probability Calculations
In equilibrium, the probability of observing a system in a given
micro-state, x, is denoted p(x), and is given by the Boltzmann dis-
tribution,

p(x) =
1
Z

e−βU(x). (1)

Here Z is a normalizing constant called the partition function, β

is the inverse temperature, and U(x) is the potential energy of the
micro-state x. We consider a chain of N particles of unit diameter
d = 1, in two or three dimensions, with short-ranged, isotropic,
pairwise interactions, and we assume the backbone interactions
are so strong they do not break. When the interaction range is
short enough, a good approximation is to treat this system in the
sticky limit, in which the range of the interactions goes to zero,
i.e. particles interact only when they are in direct contact. Each
micro-state x can be assigned and grouped into a macro-state by its
adjacency matrix. We will refer to these macro-states as clusters.

The probability of observing the system in cluster j in equilib-
rium, π j, can then be computed by integrating (1) over the appro-
priate space. We let C j denote the set of all micro-states consistent
with cluster j; including all rotations, translations, reflections, and
deformations along internal degrees of freedom. We find

π j =
1
Z

∫
C j

e−βU(x)dx =
Z j

Z
, (2)

where Z j is the contribution to the total partition function from
cluster j. Evaluating the integral (2) in the sticky limit is quite in-
volved; the calculations can be found in1,2, which can be adapted
to consider assembly from a gas or from a polymer. The end result
is

π j =
z j

Z
κ

b j , Z = ∑
k

zkκ
bk . (3)

Here z j is called the geometric partition function for cluster j, and
depends only on the geometric properties of the cluster such as the
moment of inertia and symmetry number. All the dependence on
the interactions is encapsulated by the sticky parameter, κ, and b j
denotes the number of bonds in cluster j. The sticky parameter is
given by the partition function for a single bond,

κ =
∫ rc

0
e−βU(r)dr, (4)

where rc is some cutoff distance beyond which the potential goes
to zero. Using Laplace asymptotics to evaluate the integral (4), we
find

κ =
√

2πe−βU(d)/
√

βU ′′(d), (5)

where d = 1 is the minimum of the potential energy. When we
estimate probabilities for an interaction potential that has finite
range, such as the Morse potential considered for all the examples
in the text, we use (5) to convert the parameters for the potential
into a sticky parameter.

According to expression (3) for π j, the equilibrium probability
only depends on κ, since z j is a constant for a given cluster. There-
fore, as long as we know z j for all j, we can determine π j for any κ.

Alternatively, if we can determine the value of all the π j for a given
κ0, we can determine equilibrium probabilities for any other κ1,
by performing a simple re-weighting and re-normalization. This
reweighting works provided κ0,κ1 are close enough that there is
sufficient overlap in their associated distributions; it was shown
in3 that the reweighting works over fairly large range of sticky
parameters for small clusters.

The reweighting works as follows. Let K j
0 = κ

b j
0 and K j

1 =

κ
b j
1 . The true equilibrium distributions for these sticky parameter

choices are

π
0
j =

z jK
j

0
∑n znKn

0
, π

1
j =

z jK
j

1
∑n znKn

1
. (6)

Next, we construct an expression for π1
j in terms of π0

j . We let

Π
1
j =

π0
j

K j
1

K j
0

∑n π0
n

Kn
1

Kn
0

, (7)

and we show that Π1
j = π1

j by showing that their ratio is 1. The
calculation shows

Π1
j

π1
j
=

π0
j K j

1

K j
0 ∑n π0

n
Kn

1
Kn

0

∑n znKn
1

z jK
j

1

=
z jK

j
0

∑n znKn
0

K j
1

z jK
j

1

∑n znKn
1

1
1

K j
0 ∑n Kn

0
zn

∑m zmKm
0

Kn
1

Kn
0

=
K j

0
∑n znKn

0

∑n znKn
1

1
∑m zmKm

0

K j
0 ∑n znKn

1

= 1.

This shows that we can evaluate the equilibrium probabilities at
any value κ1 by knowing the equilibrium probabilities at some ref-
erence value, κ0, and applying Equation (7). All that remains is to
compute the reference set of equilibrium probabilities.

While it is possible to evaluate reference probabilities π0
j semi-

analytically for the rigid ground states4, this is not possible for
floppy states, so instead we estimate them by Monte Carlo sam-
pling. We utilized the stratification sampler developed by Holmes-
Cerfon3 to sample the system exactly in the sticky limit. This sam-
pler proposes moves on a constraint manifold in which bonded
particles are exactly unit distance apart, and can also propose to
jump to a new constraint manifold, which corresponds to forming
or breaking a bond. We only allow non-backbone bonds to break
since we assume the backbone bonds are so strong they are un-
breakable. We set κ0 = 2 to quickly explore the entire state space.
During a single run, we generate 5×106 points, saving every fifth
data point. We then split the data sequentially into ten bins and
construct estimators of the equilibrium probability of each state in
each bin. We compute error bars as the variance across the bins.
If we perform this procedure a few times, we can then combine
these estimates, weighting them in such a way as to minimize the
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variance. We stop when the largest relative error bound does not
exceed 3%. This required repeating 4 times for disks and 6 spheres,
and 6 times for 7 disks.

2 Brownian Dynamics Simulations
We perform Brownian dynamics simulations of a chain of colloidal
particles to study the kinetics of folding. Let ~Xt be a vector denot-
ing the coordinates of the center of N particles of diameter d as a
function of time. We choose ~X0 such that the particles are aligned
on the x-axis, spaced a distance d apart. The positions are then
evolved via the overdamped Langevin equation,

d~Xt

dt
=− D

kT
∇U(~Xt)+

√
2Dη(t), (8)

where D is the diffusion coefficient for a particle, k is Boltzmann’s
constant, T is the temperature, U is a potential energy function,
and η(t) is a vector of independent white noises. The potential
energy is computed as a sum over pair potentials between each
particle. To model the short-ranged interactions of the colloids, we
use a Morse potential with the form

UM(r) = E
(

e−2ρ(r−d)−2e−ρ(r−d)
)
. (9)

Here, r is the inter-particle separation, E is the bond energy, and
ρ is a parameter governing the width of the potential. We use a
constant ρ = 40 in our simulations, which corresponds to an inter-
action distance of about 6% of the particle diameter5. The bond
energy is left as a design parameter.

To keep the chain intact, we introduce a stiff harmonic potential
between the initially adjacent particles, which replaces the previ-
ously described Morse potential. The potential has the form

UH(r) =
k
2
(r−1)2, (10)

with spring constant k = 2ρ2E0, to match the curvature of a Morse
potential at the minimum. We set E0 = 14kT for six particle systems
and E0 = 12kT for seven particle systems. With these choices, we
observe that the backbone almost always stays intact, and discard
trajectories in the rare cases in which the backbone breaks.

This equation can be non-dimensionalized by scaling positions
by the particle diameter, d, scaling time by an unknown parame-
ter, c, and scaling the potential energy by kT . Re-using the same
notation, the non-dimensional equation looks like

d~Xt

dt
=−ε∇U(Xt)+

√
2εη(t), (11)

where ε = Dc
d2 is a dimensionless parameter. We perform our simu-

lations at ε = 1.
We numerically solve Equation 11 using the Euler-Maruyama

scheme6. Due to the stiff potential, we use a time-step of ∆t =
5×10−6 to ensure stability of the numerical scheme.

To convert our non-dimensional simulation time, tsim, to phys-
ical time in a lab, tlab, we determine the value of our scaling pa-
rameter, c, using experimental data. Experiments with clusters of
d = 1.3µm colloids above a wall, showed that the diffusion coeffi-
cient is approximately D = 0.1µm2/s for an isolated particle, and
slightly smaller on average for diffusion along an internal degree
of freedom, D = 0.065µm2/s7. Using these values, a lower bound
for our time scaling is c ≈ 17 seconds. The estimated lab time is
then given by tlab = ctsim.

Although this scaling is for colloids diffusing above a wall, we
apply it to both 3-dimensional and 2-dimensional clusters of col-
loids indiscriminately. We do not expect the scaling to give quan-
titative agreement with any particular experiment, which would
anyways require considering different diffusion coefficients for dif-
ferent internal degrees of freedom8, but we do expect it to give an
estimate of the order of magnitude of the timescales involved. Re-
gardless, the ratio of folding timescales we observe in simulations
with different bond energies does not depend on the scaling we
choose.

To determine what state the system is in at time t, we con-
struct an adjacency matrix, At , using the coordinates ~Xt . Let
ri j
t = ‖~X i

t −~X j
t ‖ be the distance between particles i and j at time

t. The adjacency matrix is then constructed such that ai j
t = 1 if

ri j
t < rcut and ai j

t = 0 otherwise. We used a cutoff value rcut = 1.04.
This adjacency matrix is then compared against a database of ad-
jacency matrices, that was precomputed when we performed the
equilibrium probability calculations as in Section 1.

When reporting cluster yields from our Brownian dynamics sim-
ulations, we smooth the yield curves by averaging over a moving
window with size equal to 0.5% of the total number of time points.

3 Coarse Grained Dynamical Model

3.1 Overview

Our model approximates the dynamics on the energy landscape
as a Continuous Time Markov Chain (CTMC), where each node
or state of the Markov chain represents the configurations of a
cluster with a particular set of bonds, described by its adjacency
matrix. We treat particles as distinguishable in this step, so we do
not lump together clusters whose adjacency matrices are equiva-
lent under a permutation of particle labels. We are interested in
both the equilibrium probabilities and the dynamics of this CTMC.
The equilibrium probability πi of state i is given by integrating the
Boltzmann distribution over the continuous set of configurations
that have bonds associated with state i. We estimate this integral
for a given set of bond energies, and then reweight the estimate
to obtain equilibrium probabilities for other bond energies, as de-
scribed in Section 1.

The dynamics of the CTMC are fully specified by the rates Qi j of
transitioning from state i to state j. We approximate these using
the maximium likelihood estimators we would obtain from a long
trajectory of the continuous dynamics with infinitely strong bonds,
combined with the principle of detailed balance. That is, we set
Qi j = 0 unless states i, j are related by either adding or breaking a
single bond. If a bond is added, i.e. state j has the same bonds
as i plus one extra, then we choose Qi j = Pi j/τi, where τi is the
mean first-passage time to form a bond from state i, starting with
the equilibrium distribution and conditioned on no other bonds
breaking, and Pi j is the probability that when this first bond forms,
it is the one from state j. Notably, Qi j does not depend on the
bond energies, it only depends on the diffusion coefficient and the
shape of the manifold of configurations corresponding to state i.
For the reverse transition, from state j to a state i with one bond
broken, we set the rate using detailed balance: Q ji =Qi jπi/π j. This
choice ensures that the equilibrium probability for the CTMC is still
π = (πi)i. Details of how we estimate Pi j,τi are in the following
section.

We remark that it might be more appropriate to estimate the exit
probabilities and rates Pi j,τi by starting from the quasi-stationary
distribution, not the equilibrium distribution, a distribution that
is appropriate for describing rare exits from metastable states; it
would be interesting to know whether this give significantly differ-
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ent estimates9. We are also neglecting hydrodynamic interactions,
which can affect dynamics quite significantly8.

Given our rate matrix Q = (Qi j)i, j and its equilibrium distribu-
tion π, we may solve for many kinetic quantities using linear alge-
bra. In this paper we consider the mean first passage time (mfpt)
τ from the linear chain (state 0) to our target state. Let S be the
indices corresponding to all adjacency matrices that are identified
as our target state. Define a vector of mean first passage times,
~τ = (τ0,τ1, . . .) such that

τi = E[inf{t ≥ 0 such that Xt ∈ A}|X0 = i]. (12)

Each component τi gives the mfpt from state i to a state in S. The
mfpt from the linear chain (state 0) to S is found by solving the
system of linear equations10

(Q~τ)i =−1 (i /∈ {0}∪S), τi = 0 (i ∈ S),

for the vector ~τ = (τ0,τ1, . . .), and then setting τ =~τ0.
In our examples the rate matrices Q are typically quite sparse

and structured. This is because each state can only be connected
to other states with one more or one fewer bonds, and these con-
nections are further constrained by cluster geometry. We take ad-
vantage of this fact by using a sparse solver to invert these linear
systems. For N = 6 disks, we use a dense-LU factorization based
solver. In this case, the system is small enough that using a sparse
solver in unnecessary. For N = 7 disks and N = 6 spheres, we use a
sparse-LU factorization based solver. All linear algebra calculations
are performed using the Eigen C++ library11.

3.2 Parameter Estimation

To construct the CTMC model, we need estimators for πi, the equi-
librium probability of state i, τi, the mean first exit time out of state
i, and Pi j, the probability distribution of which state j forms when
exiting state i, for all i. We discussed how to estimate πi in Section
(1). We now address how to estimate τi and Pi j.

The mean first exit time out of state i is defined to be

τi = E [min{n≥ 0 such that Xn 6= i}|X0 = i] , (13)

the expected value of the first time a new state is reached, con-
ditioned on starting in the equilibrium distribution of state i and
having no existing bonds break. One approach to estimating τi
would be to sample M trajectories, equilibrated in state i and then
evolved in time chunks δ t, until the next state, j, is formed. Us-
ing this method would require significant computation in order to
equilibrate each sample independently. Instead, we propose an es-
timator that only requires a single long trajectory, using all of the
data along the way.

Assume an equilibrated trajectory forms a bond at time step n.
Then at step 1 of the trajectory, we know it will take n steps to exit
state i. At step 2, it takes n− 1 steps. Continue until at step n we
know it takes 0 steps to exit. Each of these samples is drawn from
the equilibrium distribution and can be combined into an estimator
for the mean first passage time. We get

τ̂i =
δ t
n
(1+2+ · · ·+n) =

n(n+1)
2n

δ t (14)

as an estimator after a single transition. We then apply a reflecting
boundary condition (i.e. set the state back to what it was at time
step n− 1), reset the timer, and repeat the process, evolving the
trajectory independently of the first n steps. To evaluate the total
contribution to the estimator after several exits, one only needs to
record the exit times, Tk, for k = 1, . . . ,M, and the number of times

each state j is reached, c j. After M exits, the estimators can be
written as

τ̂i =
δ t

∑
M
k=1 Tk

M

∑
k=1

Tk(Tk +1)
2

δ t, (15)

P̂i j =
c j

M
, (16)

Q̂i j =
P̂i j

τ̂i
. (17)

Note that ∑
M
k=1 Tk is simply the total number of time steps sampled.

Since the rate of bond formation depends only on the underlying
diffusion and not the particle interactions, these estimates only
need to be performed once, to sufficient accuracy.

For each state i, we generated six trajectories in parallel using
Brownian dynamics simulations, checking for bond formation at
time chunks δ t = 0.01. Each trajectory consisted of 16667 exit sam-
ples, for a total of about 100,000 samples for each state. We use
the six trajectories to compute error bars on each τi estimate. We
repeat the sampling procedure until the relative error bars are less
than 8% for each state i, which took us three to four applications
of the algorithm.

This estimation can be excessively time consuming when using
Brownian dynamics simulations, if there are a lot of clusters. We
use Brownian dynamics simulations to generate trajectories in the
case of N = 6 disks. For the larger systems, we further approx-
imate the dynamics with the stratification sampler described in
Section 1. Although this is a Monte Carlo sampler, it proposes
small, local moves, which can move along any of a cluster’s inter-
nal degrees of freedom, and therefore we expect it approximates
overdamped dynamics for a small enough timestep (though this
has yet to be shown rigorously.) This sampler can be modified to
account for reflecting boundary conditions by removing proposal
moves that jump to new constraint manifolds. Doing this will sam-
ple the equilibrium distribution of state i, and we denote a bond
formation event when two particles are within a cutoff distance.
The result is a sequence of configurations, but with no temporal
information. To get approximate dynamical information from this
scheme, we make use of the mean-square displacement property
of a Brownian particle. For a one dimensional Brownian motion,
the mean-square displacement is related to time via the formula
〈(X(t)−X(0))2〉 = 2Dt, where D is the diffusion coefficient. For
our proposal moves, we use an isotropic Gaussian over the tan-
gent space of the current point on the manifold. If we choose the
standard deviation, σ , of this proposal to be small, most moves
will be accepted, and the mean-square displacement will be pro-
portional to σ2. We use σ = 0.15 in our simulations. Based on this,
we introduce an approximate artificial time for each MC step as
∆tMC = σ2/2. Any constant multiplicative factors that may be miss-
ing will multiply each estimated rate in the same way, meaning this
method should approximate the rate matrix up to a multiplicative
constant. We again generate six trajectories in parallel, each con-
sisting of 16667 exit samples, and compute error bars across the
trajectories.

4 Genetic Algorithm Details
The basics of our genetic algorithm were outlined in the main text.
In addition to the cross-over operation, and re-sampling from mu-
tation, we also implement a ‘maximizing’ mutation. The idea be-
hind this is that the optimal design parameters typically consist of
at least one interaction being as strong as possible. Thus, to im-
prove the quality of solutions and convergence speed, we build this
into a mutation. If a given energy, E is greater than some threshold

3



0 0.5 1

Equilibrium Probability

0

0.1

0.2

0.3

0.4

-1

(a)

0 0.5 1

Equilibrium Probability

0

0.1

0.2

0.3

0.4

-1

(b)

0 0.5 1

Equilibrium Probability

0

0.1

0.2

0.3

0.4

-1

(c)

0 0.5 1

Equilibrium Probability

0

0.1

0.2

0.3

0.4
-1

(d)

Figure 1 Time evolution of the population from an application of the
genetic algorithm in identifying the Pareto front for the self assembly of a
triangle from an ABABAB chain. The generations shown are 1, 7, 15, and
25, in (a)-(d), respectively. This run used P = 1000 members, p = 50% as
the cutoff for the mating pool, r = 10% mutation chance, and pM = 40%
maximization chance with a threshold E∗ = 8.

E∗, then with probability pM , we set the energy to the maximum
value, EM . An example showing the convergence of the population
to the Pareto front is shown in Figure 1.

Next, we discuss how we compute non-dominated points, and
our dominated points metric. There are divide-and-conquer ap-
proaches, but we simply perform an O(P2) brute force method.
For each point, i, we compare its objective values to each other
point, j, and count how many points j have greater values in both
objective functions, which we call Di. We do this for each point, i,
and then sort the population from least to greatest Di. If a point
has Di = 0, this point is Pareto optimal for the current generation,
and is carried over to the next generation with probability 1. The
remainder of the population is filled by mating.

5 Sensitivity Analysis

In our analysis, we perturb the model kinetics in two ways to probe
how sensitive the Pareto fronts are to the exact parameters of the
model. One test is to add random noise to the exit rate of each
state. To do this, for each state i, we set the perturbed exit rate
to be r̂i =

1
τi
+σN, where τi is the mean first exit time out of state

i, N is a standard normal random number, and σ is set to 0.2/τi,
so typical perturbations in the rate are within about 20% of the
estimated value. Our second procedure involves perturbing the
transition probabilities. Instead of using the measured values, we
impose a uniform distribution over the set of possible transitions,
which is a drastic change.

In addition to perturbing model parameters, we also gauge the
Pareto front’s sensitivity to the assumed initial state. Instead of
using the linear chain as the initial state, we repeat our calcula-
tions assuming the system starts in various 1-bonded configura-
tions, drawn from the equilibrium distribution in that connectivity
state. We chose some example configurations that were consistent
with the target state, and others with mis-folded bonds.

Figure 2 shows the results of these perturbation on the Pareto
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Figure 2 Top Row: Pareto fronts and non-trivial bond energy parameter-
izations for the triangle state with two particle types, for various 1-bond
starting states. With the exception of the linear chain, all starting states
are sampled from the equilibrium measure in that state. Bottom Row:
Pareto fronts for the other six-disk clusters after perturbing model pa-
rameters. Exit rates out of coarse grained states are perturbed by adding
Gaussian noise with σ = 0.2/τi. Probabilities are perturbed by making
each transition out of a state equally likely.

fronts for the system of six disks using an ABABAB chain. We find
that perturbing the rates in the way we do has a marginal effect on
the Pareto fronts. Perturbing the transition probabilities can have
a large effect on τ−1 but the Pareto fronts still have the same quali-
tative behavior. The same is true of the choice of initial state; most
of the Pareto fronts are very similar with the exception of starting
in a loop, which assembles at a higher rate but with a qualitatively
similar Pareto front. The bond energy parameterizations along the
Pareto front are remarkably insensitive to all of the perturbations
we tested.

6 Confirming Observations With Brownian Dy-
namics Simulations

We ran Brownian dynamics simulations to test some of the more
interesting findings of our coarse-grained model, to see if they are
indeed true or an artifact of our model assumptions or numerical
algorithms.

Figure 6(b) shows that a vertical Pareto front is possible with
both two and three particle types, but a higher rate is attainable
with three types. To test this, we simulated the assembly of the
chevron under the optimal interactions found for both two and
three particle types. Figure 3(a) shows the fraction of clusters in
the chevron state as a function of estimated physical time, and we
see that there is indeed a slightly higher formation rate with three
types. We estimate the mean first passage time to the chevron to be
about 1.57 minutes for two types, and 1.31 minutes for three types,
which is about 17% shorter when using three types. This is likely
because the two type chain usually folds by wrapping around the
lone B-type particle, proceeding one bond at a time, whereas the
three type chain can form several sub-units simultaneously, speed-
ing up the process.

Another interesting prediction was that the inclusion of some
weak, auxiliary bonds not present in the target state could speed
up formation of the target. As an example, we found a near ver-
tical Pareto front for the six-disk triangle state using m = 3 par-
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Figure 3 (a) Results of a Brownian dynamics simulation of 400 AAAAAB
(2 particle types) and AAABCB (3 particle types) chains of 6 colloidal
disks, initialized in a linear chain. The interactions were chosen in accor-
dance with the optimal solution for the chevron computed by the genetic
algorithm. (b) Results of a Brownian dynamics simulation of 400 ABCBAC
chains of 6 colloidal disks, initialized in a linear chain. Interaction energies
were chosen at various points along the Pareto front, with EAA = EAC = 12,
and EBB ∈ {0.1,1,2,3}, with all others being set to 0.1. Result is condi-
tioned on ending in the triangle, in order to compare rates. The fraction
of clusters in each state is plotted as a function of physical time, com-
puted by scaling the non-dimensional simulation time by an appropriate
dimensional constant.

ticle types in the configuration ABCBAC. The optimal bond ener-
gies were found to be a large EAA and EAC, while the rest remain
weak. All but one of these weak bonds remained constant along
the front, with the one exception being EBB, which parameterized
the near vertical front, increasing in rate as EBB was increased. We
performed Brownian dynamics simulations using the optimal pa-
rameters and EBB ∈ {0.1,1,2,3}. As stated before, the yield of the
triangle is only about 0.5, so in 3(b) we plot the fraction of clusters
in the triangle state as a function of time, conditioned on ending
up in the triangle state. We see that the value of EBB from our test
set has little to no effect on the rate of formation of the triangle, so
we are left to conclude that in this case the vertical Pareto front is
probably an artifact of our model.

7 Lattice Polymer
We consider a two-dimensional, square lattice model, where par-
ticles only interact if they are adjacent on the lattice. Each pair of
particles, (i, j), in contact contribute an energy Ei j, depending on
the types of the particles and model input parameters. The sys-
tem is initialized in a linear chain on the x-axis, and an MCMC
method is used to update the configuration. The proposal moves
consist of an end move, rotating a particle at the beginning or end
of the chain about its neighbor, and a corner move, in which a
particle in a corner flips to the opposite corner, if possible. During
each MCMC step, all valid moves for the chain are listed, and a
proposal is selected uniformly at random from these possibilities.
Proposal moves are accepted in accordance with the Metropolis-
Hastings acceptance probability. Dynamical time is measured in
MCMC steps.

We again form our coarse-grained model for this lattice system,
lumping by adjacency matrix, and use the model to evaluate equi-
librium probabilities and mean first passage times. Since these
systems are highly degenerate, and often one is interested in a
particular permutation, we choose individual permutations as the
target state, instead of lumping them into a target set. We study
the system with N = 8 particles on the lattice; the smallest sys-
tem that can form geometrically distinct ground states. We choose
one permutation of each of the two ground states, and apply our
genetic algorithm to characterize their Pareto fronts.

8 Sampling for Larger Systems

Our goal will be to compute the parameterization of the previous
Pareto fronts without relying on the coarse-grained model. We
do this by taking a sampling approach to evaluate the competing
measures for the genetic algorithm. An immediate issue presents
itself; equilibrium simulations will take exceedingly long in the
presence of kinetic traps, making both of our measures infeasible
to compute in a reasonable amount of time.

One way to make the sampling computationally tractable is to
introduce different functions for the objectives. If we can find func-
tions that are correlated with the objectives, preserve the structure
of the Pareto front, and are efficient to sample, then we can extract
the optimal transformed parameterizations. There are many such
functions that can be used, but here we consider just two that have
shown promising results.

We replace πS, the equilibrium probability of the target set, by a
probability related to staying in the target state once it has formed,
ps. Each bond in the target state has an energy, Ei, for i = 1, · · · ,b,
where b is the number of bonds. We compute the harmonic sum

of these energies, h(~E) =
(

∑
b
i=1 E−1

i

)−1
, which gives a notion of

an average energy barrier out of the target state. We then say the
probability to stay in the target state is ps(~E) = 1− exp(−h(~E)).
Note that this quantity does not have to be sampled, it can be
directly evaluated given the target state and input parameters. If
all the bonds are weak, ps → 0, and if all the bonds are strong,
ps→ 1.

We replace our rate, τ−1, with a measure related to the kinetic
accessibility of a given target state, called kA. To do so, we define
two times, ttrap is the maximum amount of time to spend in one
state until the system is considered “trapped”, and T > ttrap is the
total simulation time. During a simulation, if the system spends
longer than ttrap in a state, without breaking or forming any addi-
tional bonds, we stop and compute the misfolded energy, Emisfold.
That is, we add up the energy of all bonds not consistent with the
target state using the trapped configuration. If no trap states form,
we set Emisfold = 0. We average this energy over many trajectories
to compute kA = exp(−〈Emisfold〉). With this measure, if the system
is able to easily escape from misfolded states, kA→ 1, and if it gets
stuck in deep kinetic traps, kA→ 0.

Using the coarse-grained Markov model, we are able to evaluate
these measures semi-analytically. There is a slight ambiguity in
how we define a “trapped” state. Given a set of bond energies, ~E,
we construct the corresponding rate matrix and sort the diagonal
entries in absolute value from least to greatest, which give the rates
of exiting each state. Typically there is a large gap in this sorted list,
so we consider all states before this gap “trapped”, on a case-by-
case basis. We can then evaluate our rate measure by taking a dot
product of the misfolded energy vector with a hitting probability
vector, which can be computed by solving a matrix equation similar
to the linear system we solve for τ.

We revisit the N = 8 particle, 2-type, rectangular lattice protein
from Figure 7(a), and study its behavior under the new measures.
Figure 10(a) shows the Pareto front in the original measures (solid
blue) and how it maps to the new measures (solid red). We see a
large region where kA = 1, which is due to a lack of kinetic traps,
according to our above definition. There is a sharp transition to a
region in which kA continuously decreases as pS increases, mean-
ing the Pareto front is preserved. We then apply our genetic al-
gorithm to the new measures, where we estimate kA by sampling,
using the optimal particle ordering AABABABB. We use a popu-
lation of size 100, a limit of 200 generations, final time T = 500,
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a trap time ttrap = 300, a mating cutoff of the top p = 25%, and
500 samples to estimate kA for each population member. We do
not observe convergence of the whole population, for reasons we
will discuss, so we report only the non-dominated portion of the
population, shown as unfilled red circles.

The sampled Pareto front is close to the analytically computed
curve, but seems to give overestimates across most of the range.
This is because of how we create the next generation. A non-
dominated member of generation n is carried to generation n+ 1,
without re-estimating its objective values. This has the effect of
only keeping the maximum estimates of kA for a given range of pS
values, since values of kA closer to the true average will be domi-
nated by the larger estimates.

Despite the over-estimate of the position of the actual Pareto
fronts, the parameterizations of the front are unaffected by the
statistical bias towards larger kA. We extracted the parameters for
each of the sampled points along the (pS,kA) Pareto front and used
the coarse grained model to evaluate the corresponding values of
(πS,τ

−1), which are plotted as blue, unfilled circles. We find that
these points mostly lay on the original Pareto front, confirming that
we find the same parameterization. Some of the points lay on the
πS axis, with vanishingly small values of τ−1. This is an issue with
our choice of pS; we can maximize pS by making each of the bonds
energies as large as possible, but doing so reduces πS because of
entropic considerations. We handle this issue by discarding popu-
lation members that are trying to maximize all bond energies.

The above tests were performed using the already known opti-
mal particle ordering. We also performed tests where the particle
types are also selected by the genetic algorithm. In this case, the
performance was significantly worse; we see no convergence and
only a handful of points become non-dominated. We do note how-
ever, that the non-dominated points are the ones that find the opti-
mal particle ordering. Based on this observation, we propose a two
step procedure. An initial run can be used to determine possible
candidates for the optimal ordering, and a secondary run can use
these candidate orderings to search for a Pareto front.

As a final test, we apply the sampling approach directly to a
larger problem in which enumeration would be expensive. For an
N = 16 lattice protein, we set the target state to be a square and
choose the permutation in which the backbone zig-zags up four
units and then down four units repeatedly. An optimal configura-
tion using m = 8 particle types is easy to identify by hand; group
particles such that every two have the same type, i.e. AABBCCD-
DEEFFGGHH. Using the genetic algorithm, the minimum number
of types required to achieve a value kA > 10−3 seems to be m = 5,
with the configuration CDDBABBEBDABCBBD. We can again iden-
tify Pareto fronts, but they are less informative for this example;
the presence of chiral traps begins to skew our kA measure for this
larger system. There are so many chiral traps in this case that
even if distinct particles are used, more than 90% of trajectories
will get stuck in a state that is not the target. To test whether the
Pareto optimal parameters we’ve computed actually result in effi-
cient assembly, we estimate the yield of the target states compared
to the most common kinetic traps for each of the lattice structures
we have studied. Figure 10(b) shows this yield comparison, using
the parameters found by the genetic algorithm that give assembly
comparable to distinct particles. We see that the presence of chiral
traps result in a non-negligible reduction of the yields for N = 8,
and the effect gets worse as the system size increases, highlighting
the importance of specifying bond angles even more.
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