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1 Boundary Conditions

1.1 A Lagrangian RVE Permits Controlled Deformation

To initially generate the extended periodic domain, the positions of the nodes, x* (o €
[1,.47]) are replicated across every boundary according to:
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where superscripts T, B, R, and L denote nodes replicated to the top, bottom, left, and right
of the domain, respectively. By extension, double-lettered superscripts represent the corners
(e.g., TR denotes the top right corner). dz/0y and Jy/0z represent the the relative change
of x at the domain bounds as a function of y, and change of y as a function of x, respectively.
Note that for computational efficiency, only the nearest nodes to each boundary, defined as
those less than roughly the length of a single chain (Nb) away, are replicated across their
respective opposite bounds.

1.2 Eularian Conditions Prohibit Diffusion Beyond Domain Lim-
its
To ensure that tracked nodes do not diffuse out of the simulation limits, a Eularian condition

is enforced whereby any particle that exits the bounds of €2 is re-positioned into the domain
according to:
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where ¢ € 0€) denotes that node o has moved into the T, B, R, or L periodic boundaries
of the domain, €2, respectively. Once nodes are repositioned in €2, they are replicated at each
time step according to the conditions of ESI Section 1.1.

2 Domain Size Convergence

In order to select an appropriate initial square domain size (for which h = w), the net-
works’ global stress responses is examined. The smallest domain dimension (i.e., w at full
deformation) must be larger than the contour length of a single chain (Nb = 3.5¢). To
enforce this, the minimum domain size considered in this work contains .4~ = 225 nodes,
which corresponded to initial domain dimensions of 11.25 x 11.25¢ and final dimensions of
5.625 x 22.5¢ (after 100 % incompressible, uniaxial network stretch is applied), which sat-
isfies the condition w > Nb. The ensemble averaged stress response of 10 trial networks,
containing A" = 225, A = 400, and .4~ = 625 nodes (which correspond to roughly 15, 20
and 25 nodes per edge, respectively) is displayed in Fig. Notably, there is no significant
change in the measured stress response as the domain size is increased from 225 nodes to
625 nodes, and so the domain size was set to .4/ = 225 for computational efficiency.
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Figure S1: (A)The four components of virial stress, ensemble averaged over 10 distinct trials
(each), are plotted for increasing domain sizes, 4" = 225 nodes (blue), .4 = 400 nodes (grey), and
A =625 nodes (red). (B) Networks at € &~ 1 are plotted from left to right for .4 = 225 nodes,
A =400 nodes, and 4 = 625 nodes, respectively. Scale bars under each snapshot represent the
contour length of a single chain, Nb (or 3.5¢).



3 Time Step Convergence

In order to select an appropriate time step size, At, the networks’ stress responses, mean
bond kinetic rates, and degree of homogenization were considered. The time step was initially
set such that it was two orders of magnitude lower than the inverse of the stress-free bond
detachment rate, k3—1 = 100 s, or the highest strain rate investigated, é~* = 50 s. As such,
the largest time step considered was At = 0.5 s. As depicted in Fig. [S2] decreasing At over
At = [0.5,0.1,0.05,0.01] s, did not influence the measured stress response of the networks
(Fig. [S21A). Nor did it impact the average measured bond kinetic rates and - by extension -
the average coordination number of the network (Fig. .B). In the scope of this work, At
was conservatively set to 0.1% of the highest inverse strain rate or At = 0.05 s, which is well
below the convergence threshold while also allowing for relatively low computational time.
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Figure S2: (A) The four components of virial stress are plotted for decreasing timesteps, At =
0.5 s (blue), At =0.1s, At = 0.05s, At = 0.01 s (red). (B) The attachment (top) and detachment
(center) rates are plotted with respect to time for the four respective time steps, along with the
resulting average coordination number (bottom). (C) Networks at € 0.9 are plotted from left
to right for At =0.5s, At =0.1s, At =0.05 s, At = 0.01 s, respectively.



4 Stress Response of a Network with Gaussian Springs

As a benchmark comparison between the discrete framework and continuum approach, net-
works of Gaussian springs were modeled and deformed according to the load history of Fig.
6.A in the manuscript. Force-dependent detachment through Eyring’s model was maintained
in order to ensure that the networks achieved initial steady state and observed detailed bal-
ance. The normal stress response (ensemble averaged for fifty networks, each) during loading
and relaxation is depicted in Fig. [S3]A and B, respectively, for five different strain rates.
As expected, the stress predicted by the discrete and continuum models are in good agree-
ment during loading when Guassian chains are used in both frameworks. However, since
force-dependent bond dynamics were maintained, a non-exponential decay in stress is still
observed during relaxation.
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Figure S3: (A) Normal stresses from creep experiments are plotted with respect to engineering
strain, € = Fps — 1, for W =~ 1/8 (cyan), W = 1/4 (teal), W ~ 1/2 (grey), W ~ 1 (maroon),
and W = 2 (red). (B) Normal stresses from relaxation experiments are plotted with respect to
time for three different initial values of stress. All results from the discrete model are plotted as
continuous curves with standard error represented by the shaded region, and results from TNT
are plotted as dotted curves.
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