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S1 Derivation of Ring Sequence from Wallpaper Group Diagrams

In what follows, we illustrate the derivation of ring sequence and shape from the wallpaper group diagrams
in the International Tables for Crystallography, Volume A. [1] We point out that different ring shapes (fun-
damental domains) and therefore sequences are possible; these simply reflect our choices following previous
work, [2, 3] which does not detract from the generality of our results. Figures S1–S5 all follow the same
layout. Starting from the left, a wallpaper group diagram is shown; solid gray lines serve as visual aids but
do not denote symmetry elements, whereas dashed lines indicate glide-mirror planes, solid black lines denote
mirror planes, ovals represent 2-fold rotation centers, and regular n-polygons denote n-fold rotation centers.
A single fundamental domain is highlighted, bounded by colored arrows and circles, on which a 5-bladed
pinwheel motif is drawn to illustrate the operations of the group. Colored lines with arrows are used to de-
note symmetrically equivalent edges; identically colored circles also denote which corners are symmetrically
equivalent, but the coloring schemes for edges and corners are not related to each other. The direction of
an arrow is included to illustrate the relative direction that it matches another edge of the same color, but
is chosen arbitrarily, and could, for example, be reversed. A 2-headed arrow denotes a 2-fold rotation at its
center implying equivalence around its midpoint. This color-coded mapping of equivalent edges defines a
fundamental polygon. [4, 5, 6, 7]

Next, the ring itself is drawn. This is the “middle” layer of our model in which symmetrically unique
positions are given unique identities denoted by different colors. When angle potentials are added, corners
develop and the energetically minimized ring is shown next. Edges corresponding to the fundamental domain
drawn on the symmetry diagram are shown for reference. When the ring is deformed, as discussed further
in Sec. S3.1, the equilibrium angles at different corners are increased or decreased by an amount related
to ψ (defined therein). An energetically minimized ring following these adjustments is shown next, though
we emphasize some fluctuations are possible since the ring is not perfectly rigid and is simulated at finite
temperature. Finally, we illustrate those deformations with curved edges on the symmetry diagram for
comparison. Recall that in our model: (1) mirrored edges cannot be deformed and remain straight, (2) an
edge with a 2-fold rotation at its center becomes “wave-like”, and (3) all other edges (translated, rotated
about an end point, or which undergo glide reflection) are deflected and appear as half of such a wave (cf.
Sec. S3.1). When deformations occur, the equilibrium angle of the corners may change; this change is a
multiple of ψ and is indicated on the diagrams for each corner where they occur.

All such deformations to the candidate fundamental domain must respect the symmetry operations of the
group while maintaining a minimal area; resulting restrictions on the shape and size are given in the captions
and are discussed more in Refs. [2, 3] for the choices made here, and more generally in Refs. [1, 7]. Once the
domain is chosen, the symmetry operations determine which points along different edges are symmetrically
equivalent. Folding or bending the plane to align matching points results in the corresponding orbifold. [8]
Here we label edges with a fixed number of beads, N1 and N2, that define a parallelogram from which our
fundamental domain has been derived, which we take as inputs along with an angle, γ, between them. [2, 3]

Figure S1: Summary of row 1 groups from the main text. For both groups p2gg and c1m1, the fundamental
domain chosen is a rectangle with γ = π/2. The angle ψ is defined in Sec. S3.1.
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Figure S2: Summary of row 2 groups from the main text. For all these groups, the fundamental domain
chosen is a rectangle with γ = π/2. The angle ψ is defined in Sec. S3.1.

Figure S3: Summary of row 3 groups from the main text. These groups are formed from a region bounded
by intersecting mirror planes containing a center of rotation, hence the A*{b} orbifold pattern, where A
is an integer and {b} is a set of integers. For the c2mm group, the fundamental domain chosen is a right
triangle (γ = π/2) with no restrictions on the relative lengths of its sides; however, for p31m, N1 = N2 and
γ = 2π/3 and for p4gm, N1 = N2 and γ = π/2, are selected.
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Figure S4: Summary of row 4 groups from main text. These groups are formed exclusively as a result of
intersecting mirror planes, hence the *{a} orbifold pattern, where a is a set of integers. Thus, we refer to
these groups as kaleidoscopes. For the p2mm group, the fundamental domain is a rectangle with γ = π/2;
whereas for p3m1, N1 = N2 and γ = π/3 (equilateral triangle), for p4mm, N1 = N2 and γ = π/2 (right
isosceles triangle), and for p6mm, γ = π/3 and N2 = N1/2 (right scalene triangle).
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Figure S5: Summary of row 5 groups from the main text. These groups are formed exclusively as a result of
rotations about an axis normal to the plane, hence the {A} orbifold pattern. The mapping of one edge to
another by a rotation operation makes the net sequence palindromic about that center of rotation, so we refer
to these groups as palindromes; note that p1 is technically not palindromic since it contains no rotations.
The fundamental domain chosen for both p1 and p2 is a parallelogram with no restrictions on the relative
lengths of its sides or γ. For p3, the domain selected is a rhombus (N1 = N2) with γ = π/3 and for p4, the
domain is a square (N1 = N2 and γ = π/2). We illustrate several different fundamental domains that can
be chosen for p6. In the first two, an isosceles triangle is selected (N1 = N2, γ = 2π/3). In (1) the way the
deformations are chosen causes a “pinch” point to occur at one acute vertex while the other is expanded. If
the deformations are chosen differently, as in (2), these can be avoided leaving the corner angles unaffected;
only the equilibrium angles along the edges are modified. Finally, a 4-sided kite can also be chosen, shown
as (3); as in (2), the deformations can be chosen to prevent any modification to the corners.
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S2 SDA Tile Summary

Figure S6 contains the summary of all tiles simulated in this work, their edges, and associated symmetry
group.

Figure S6: Summary of the shapes of SDAs simulated in this work. A geometric description accompanies
each tile illustrating the length of each side, deformations made, and any restrictions. Again, identically
colored spheres denote symmetrically identical corners; symmetrically equivalent edges are denoted by the
color and the direction of their arrows. There is no connection between the colors of the corners and the
edges.

S3 Model Details

S3.1 Bond Stretching

Rings are deformed by bending their edges consistent with the isometry that operates on them as described
in the main text. This encompasses the cases where: (1) an edge may be reflected, (2) it may be translated
(possibly after also being reflected) or rotated about a corner to match a different edge on the ring, or (3)
it may contain a two-fold rotation center at its midpoint. Note that two-fold rotation centers are always
located at the midpoints of edges if they are not located at vertices, as required by symmetry. [1]

Edges along which a reflection occurs are required to remain undeformed (straight); deformations only
occur for the other two cases. These edges of rings are deformed by imagining a circle is inscribed between its
two ends in the case of a “translated” (T) edge (case 2), or by a pair of identical circles in contact when there
is two-fold center of rotation (R) at its midpoint (case 3) as depicted in Figs. S7(b,c), respectively. These
deformations respect the symmetry elements themselves and make edges operated on by different isometries
distinguishable from each other. By electing this method of deformation, the ring’s equilibrium angles along
its edges and corners may be expressed purely as a function of the perturbation angle, ψ, defined as the
change in the angle at the corners (vertices) of the chosen fundamental domain.
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Figure S7: Deformation of a fundamental domain’s edge. (a) The undeformed edge as a reference is given
with two orthogonal rays at each end. These rays do not correspond to other edges on the domain, but are
simply fictitious constructs required in the derivation. (b) Deformation of a “translated” edge (T case) by
inscribing a circle (gray) of radius, r. This causes a deflection at the endpoints of angle ψ. The triangle
at the right defines the angle β. (c) Deformation of an edge with a two-fold rotation center (R case) at its
midpoint by two equally sized circles of radius, r. For consistency with (b) the total linear distance between
endpoints is described as L. (d) Illustration of a regular polygon whose vertices are given by the beads along
an edge, with equilibrium angle φ.

In our model, we elect to use a single ψ to characterize all edges on a fundamental domain, along which
we placed a discrete number of beads; however, since some fundamental domains form triangles, for example,
the length of some edges will necessarily not correspond to an integer number of beads. Moreover, some
wallpaper groups allow the relative lengths of our choices of edges to vary and thus if one is of integer length,
others will not be. [2, 3] The number of beads required along such edges is computed by rounding down,
N = bL/σc, where N is the number of beads (with a diameter of σ) to be placed on the edge of length, L.
To accommodate this discrete nature of the model, the bonds between the beads must be allowed to stretch
so that when extended, the edge in question can reach the desired length. Since edges made of an integer
number of beads do not need to stretch at all, the amount of required stretching will vary within the ring.
Rather than specify stiff bonds of different equilibrium lengths, we chose to allow all bonds to stretch up to
the maximum extent required by any edge that is not an integer number of beads in length.

First we derive this bond stretching factor for the T case. In this instance, the linear distance, L, between
and edge’s endpoints should remain unchanged to be consistent with the desired wallpaper group’s geometry.
Since our model is composed of discrete beads, they will have to be placed along the arc which has length,
s, and thus, relative to the unperturbed case, will require that their bonds be allowed to stretch farther.
This stretching factor is simply given by FTσ = s/(N − 1) = (s/L) ∗ (L/(N − 1)), where there are to be N
beads (and therefore N − 1 bonds) placed along the edge inclusive of the endpoints. The arc length follows
directly from s = rα, where r is the radius of the inscribing circle and α is the angle as shown in Fig. S7(b).
However, α is unknown and we instead seek an expression in terms of ψ.

Since θ is defined with respect to the surface tangent, π/2 = β+ψ, and π/2 = θ+ψ, so β = θ; combined
with the Law of Sines we have:

sin α

L
=

sin β

r
=

sin θ

r
. (1)

Rearrangement yields:

s

L
=
rα

L
= α

(
sin θ

sin α

)
. (2)

Inserting θ = π/2− ψ, and α = π − 2β = π − 2θ = π − 2(π/2− ψ) = 2ψ we arrive at

FTσ = α

[
sin(π/2− ψ)

sin α

] [
L

N − 1

]
= 2ψ

[
sin(π/2− ψ)

sin(2ψ)

](
L

N − 1

)
.

(3)
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Figure S8: Illustration of the bonding potential used in our simulations. More details are available in the
Sec. 2 (Methods) of the main text.

Note that when ψ = 0 (no perturbation or bending), we have an indeterminate expression FT ∼ 0/sin(0) =
0/0; however, from L’Hospital’s rule we have a well-defined limit:

lim
ψ→0

FTσ = lim
ψ→0

(
L

N − 1

)[
sin(π/2− ψ)− ψcos(π/2− ψ)

cos(2ψ)

]
=

L

N − 1
, (4)

i.e., s/L → 1, as expected, though this limit must be explicitly programmed. Note that mirror edges are
never deformed and thus always have s/L = 1 (ψ = 0). Also note the upper bound for the validity of this
expression is when the sphere has “fully impacted” the edge, making its equator lie along the original straight
line (diameter = L); in this case, ψ = π/2, and the above expression reveals, as expected, s/L→ π/2.

After inspection of Fig. S7(c) it is clear that the above expression holds for the R case as well, assuming
that once again, θ is defined as the angle formed with a ring’s corner as its vertex. In this case, two
circles are assumed to be inscribed between the endpoints (as shown) meeting at the midpoint where the
2-fold rotation center is. Following the same steps, we arrive at FR = FT, where L always refers to the
linear distance between the two endpoints and N is the total number of beads to be placed between them.
Figure S8 illustrates the bonding potential, as described further in the main text. This shows how the bond
stretching factor determines the width of the potential’s well.

S3.2 Additional Simulation Details

The fractional surface coverage, f , of a system was computed as:

f =
NtotAring

A
, (5)

where A is the total area of the two dimensional simulation cell, Ntot is the number of rings present, and
Aring is the estimated surface area of a ring. This surface area is computed assuming the ring has adopted
is ideal (target) conformation and is undeformed, as given in Figs. S1–S5. This is computed as:

Aring = abs

[
det

∣∣∣∣N2cos γ N2sin γ
N1 0

∣∣∣∣] , (6)

where “abs” denotes the absolute value, N1 and N2 are the number of beads placed along adjacent edges of
the domain, and γ is the interior angle. This determinant yields the area of the parallelogram defined by
these vectors; however, some domains are triangular, and are actually formed by dividing this parallelogram
in half, e.g., all groups in row 3 (cf. Fig. S3). In this case, Aring → Aring/2.

S4 Scoring Function

We scored the degree of correct assembly in a system by looking at all interacting pairs of rings. For each
ring, we defined a vector along each edge and compared how these vectors were oriented relative to each other
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Figure S9: Orientations of p4gm fundamental domains. At the top, the ideal orientation around a domain
of chirality L. Edges are numbered and the black vectors denote the handedness; the colored arrows merely
denote the underlying symmetry as given in Fig. S3. The approaching domain (ring B) is always depicted
as transparent. At the bottom, three characteristic types of relative orientations are shown along with their
scores, SA,B.

versus how they should be in an ideal scenario. To compute these vectors, the vector between the centers
of mass of beads n and n + 1 were computed for all beads along a ring’s edge; the mean vector was taken
and assumed to be at the edge’s center of mass. Note that the chirality of the ring determines the direction
the beads were created in, meaning the vector simply points in the opposite direction for otherwise identical
rings of different chiralities. For example, in Fig. S10 rings of different chiralities are indicated by different
colors (blue or orange) and the vectors along their edges are pointing in a right-handed, counterclockwise
fashion in the former, and in a left-handed, clockwise fashion in the latter.

A ring “A” that interacts with another ring “B” across a given edge of A determines the expected
orientation of each of the vectors along the edges of B. For example, in Fig. S9, the ideal orientations
around one enantiomorph (called “L”) corresponding to ring A are shown for the p4gm group; its yellow
corner is a 4-fold rotation center, therefore ring B should be an L enantiomorph across both (red) edges
0 and 2. The blue edge (edge 1) is a mirror plane so the other enantiomorph, “D”, is expected. Clearly,
expectations are different for different edges. Therefore, we can define an expected angle, θi(j), that the
vector along edge i on ring A should be rotated counterclockwise so that it matches its orientation on ring
B, when B is correctly oriented across edge j of ring A. Even if ring B is placed incorrectly, it is possible
that some its edges are aligned as expected but not others.

In Fig. S9 three different examples of different characteristic orientations and their scores are given. First,
in the ideal case, SA,B = sA,B = sB,A = 1 when another L enantiomorph aligns its edge 0 with ring A’s edge
2; e.g., rings 4 and 26 in Fig. S10. By contrast, if a D enantiomorph approached in such a way that one of
its red edges matched one on ring A, then SA,B = sA,B = sB,A = −1/3; e.g., rings 3 and 6 in Fig. S10. The
same score results if another L enantiomorph makes contact with ring A’s blue edge. Finally, if another L
enantiomorph happens to approach so that its edge 1 contacts ring A’s edge 2, then sA,B = −

√
2/2, while
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Figure S10: A snapshot from a simulation of a racemic mixture of p4gm rings. The box is indicated by thick
black lines, and rings which go past an edge have had their coordinates unwrapped. The vectors along the
edges of each ring are given by a different color starting from the edge’s center of mass; these centers are
colored blue or orange to indicate different enantiomorphs. Gray points indicate the locations of the beads
of the ring. The index of each ring is depicted at the center of the ring.
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sB,A = +
√

2/6 so that SA,B = −
√

2/6.
In the main text, we defined the global score for a system based on these pairwise interactions as:

S = 〈Nn〉〈SA,B〉, (7)

where 〈Nn〉 is the average number of interacting neighbors a ring has, and 〈SA,B〉 is the average score of
interacting pairs of rings. This score reflects the product of the (1) local densification or aggregation of rings,
and (2) the degree of their local alignment. If each edge only interacts with a single ring, Nn is bounded
above by Ne (defined in main text); however, it is possible that multiple rings could be in contact with the
same edge, so in principle Nn is bounded by local packing constraints around ring A. The pairwise score is
bounded −1 ≤ SA,B ≤ +1. First, note that S, like SA,B , is not necessarily monotonic in pairwise energy. In
Fig. S9 the orientations with SA,B = −1/3 have 1 edge aligned and therefore an energetic benefit (E < 0),
whereas when SA,B = −

√
2/6 > −1/3, there are no matches and so E = 0. However, when local defects are

present, they generally destroy long range order; the more aligned a system is (〈SA,B〉 → 1), the lower the
total energy of the system can be.

S5 Simulation Results

In Figs. S11–S16, the first three graphs illustrate the global score, S, and its individual components for the
three representative cases of: (1) a single chirality system of undeformed rings, (2) a racemic mixture of
undeformed rings, and (3) and racemic mixture of deformed rings. Generally, the deformation angle was
set to ψ = 15◦, unless otherwise stated. Snapshots of the last frame in these simulations are shown at the
right, outlined in the color corresponding to the score curves: blue, orange, and green for cases (1), (2),
and (3), respectively. The upper snapshot is of the rings themselves colored according to chirality (red or
blue, arbitrary), while the lower image is colored according to SA,B divided into 5 bins as illustrated by the
colorbar at the right. Cartoons of the undeformed rings are included as insets for reference.
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Figure S11: Row 1 simulation results. The boundaries of these rings are formed by exclusively using
symmetry operations that include reflections (including glides which are a combination of reflection and
translation) and as a result, each ring must be surrounded on all sides by the opposite chirality. Thus, single
chirality systems do not assemble at all (cf. blue curves and boxes); strictly speaking, at sufficiently low
T ∗ single beads from different rings may align, leading to a disordered aggregate (cf. main text). Racemic
mixtures, can assemble, however, the relative orientation of a ring’s neighbors is not guaranteed; thus while
the number of neighbors each ring has, 〈Nn〉, rises, the average pairwise score of each interaction remains
essentially random (cf. orange curves and boxes). When the rings are deformed (ψ = 15◦) this is remedied
and 〈Nn〉 is about the same as in the undeformed, racemic mixture, but now 〈SA,B〉 → 1 (cf. green curves
and boxes).
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Figure S12: Row 2 simulation results. The boundaries of these rings contain a single set of opposing edges
that result from symmetry operations involving reflections (including glides which are a combination of
reflection and translation); thus, rings of the opposite chirality are required to enable assembly along those
edges. The other edges can be “matched” by rings of the same chirality. The result is that for single
chirality systems assembly is suppressed in one direction but enabled in the other, resulting in “1D strings”
(cf. blue curves and boxes). A racemic mixture of undeformed rings can assemble in all directions, but
the relative orientation of neighbors is not guaranteed resulting in defects (cf. orange curves and boxes).
Once deformations (ψ = 15◦) are introduced, this is remedied (cf. green curves and boxes). Notably, the
single chirality case is subject to aggregation of strings driven by interactions of single beads along the non-
assembling edge; the result is a rapid increase or decrease in 〈Nn〉 complemented by changes in 〈SA,B〉 as
illustrated in the p1m1 and p1g1 examples. Note that the results for p1g1 were obtained at a slightly lower
T ∗ = 0.3.
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Figure S13: Row 3 simulation results. The orbifold symbol for these groups is of the form A*{b} where A
is an integer and {b} is a non-empty set of integers. This indicates the presence intersecting mirror planes
(denoted by {b}) with a center of rotation (denoted by A); specifically A = 2, 3, or 4 for c2mm, p31m,
and p4gm, respectively. Since a ring requires another ring of the opposite chirality across a mirrored edge,
the intersecting mirror planes effectively form a concave “shell” enclosing a set of fundamental domains.
The order of the interior rotation determines how many. Consequently, single chirality systems form nearly
perfect (〈SA,B〉 → 1) dimers (A = 2), trimers (A = 3), or tetramers (A = 4) as shown by the blue curves
and in the blue boxes. An undeformed, racemic mixture can assemble in all directions increasing 〈Nn〉, but
again, the relative orientations of different rings are not guaranteed meaning 〈SA,B〉 is very low (cf. orange
curves and boxes); this is opposite the single chirality case (cf. blue curves and boxes). By deforming the
edges (ψ = 15◦) the best of both worlds may be achieved resulting in a high global S (cf. green curves and
boxes).
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Figure S14: Row 4 simulation results. The orbifold symbol for these groups is of the form *{a} where {a}
is a non-empty set of integers. This indicates the exclusive presence of intersecting mirror planes that make
angles denoted by {a}; for example, the fundamental domain for p6mm (*632) is a triangle generated by 3
intersecting mirror planes making angles of π/6, π/3, and π/2. Reflections are the only symmetry operation
involved in these groups, and as a result, each ring must be surrounded by its opposite chirality on all sides to
assemble; single chirality systems, therefore, do not assemble at all (〈SA,B〉 → 0), whereas racemic mixtures
tend to assemble perfectly (〈SA,B〉 → 1) as shown in blue and orange, respectively. Since all edges are
mirrors, all edges are straight and no deformations are permitted. Here, due to its smaller size, the p6mm
ring required a slightly lower T ∗ = 0.2 to assemble.
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Figure S15: Row 5 simulation results (p1–p4). The orbifold symbol for these groups is of the form {A}
where {A} is a non-empty set of integers. This denotes the presence of rotation centers with orders given by
A; for example, p3 (333) is generated by the combination of three 3-fold centers of rotation. No symmetry
operations besides rotations are present. The exception being p1 (o) where there are no rotations. Due
to the absence of reflections, single chirality systems are actually ideal and can assemble without defect
(cf. blue curves and boxes, 〈SA,B〉 → 1). Racemic (undeformed) mixtures, in principle could assemble
perfectly well if the two enantiomorphs were kept separate, however, in practice they are free to intermingle
and form defective structures with the same average number of neighbors as the single chirality case (cf.
orange curves). This can be remedied by introducing deformations (ψ = 15◦) to the rings; this results in
phase-separated regions of each chirality. Naturally, these domains make contact forming an interface which
is perceived as a defect. To illustrate these domains better, here we show the racemic, deformed results for
N = 200 rings instead of N = 50. Note that p6 is also a member of this row, but is examined in more depth
in Fig. S16.
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Figure S16: Simulation results for the group p6. This group also belongs to row 5 and its rings (fundamental
domains) exhibit behavior identical to those of other groups found in this row. Here, we illustrate several
different possible choices for the ring, as given in Fig. S5. In the first case, the ring is formed by taking
an isosceles triangle and making one acute corner more acute and the other more obtuse. The second case
results from simply “twisting” the triangle’s edges without requiring a deformation of the corner angles. The
difference results from placing the “sine wave” (corresponding to the deformation associated with the 2-fold
rotation center along the hypotenuse) in different directions relative to the deformations made on the other
two edges. Finally, we can also form a 4-sided kite as in case (3). For all these rings, the single chirality
case assembles perfectly (〈SA,B〉 → 1) as shown in blue; while the racemic, undeformed mixtures assemble
defectively. In principle the choice of the ring does not matter, however, from a practical perspective certain
angles can make structures easier or harder to assemble based on packing of the spheres (circles) out of which
the rings are composed. Choice (3) was found to be more robust for large systems [N = 200 for case (3)],
though over the same amount of simulation time as the other cases [N = 50 for cases (1) and (2)] the system
did not fully anneal (cf. green curves); regardless, the linear trend of S suggests it will continue over time.
Note that the shorter edges of the ring in (3) required a lower T ∗ = 0.2 and larger ψ = 30◦ to assemble.
This size was chosen so that the unit cell of the crystal would be approximately the same across all cases
and does not qualitatively affect any conclusions.
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